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ABSTRACT 
In this paper, a new algorithm based on case base reasoning and 

reinforcement learning is proposed to increase the rate 

convergence of the reinforcement learning algorithms in multi-

agent systems. In the propose method, we investigate how 

making improved action selection in reinforcement learning 

(RL) algorithm. In the proposed method, the new combined 

model using case base reasoning systems and a new optimized 

function has been proposed to select the action, which has led to 

an increase in algorithms based on Q-learning. The algorithm 

mentioned has been used for solving the problem of cooperative 

Markov’s games as one of the models of Markov based multi-

agent systems. The results of experiments have shown that the 

proposed algorithms perform better than the existing algorithms 

in terms of speed and accuracy of reaching the optimal policy. 

General Terms 

Multi Agent Learning , Machine Learning . 

Keywords 

Reinforcement Learning, Case Base Reasoning, Multi agent 
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1. INTRODUCTION 
Case Based Reasoning (CBR) is a knowledge based problem 

solving technique, which is based on reusing on the previous 

experiences and has been originated from the researches of 

cognitive sciences [1]. In this method, it is assumed that the 

similar problems can possess similar solutions. Therefore, the 

new problems may be solvable using the experienced solutions 

to the previous similar problems. A multi-agent system (MAS) 

is comprised of a collection of autonomous and intelligent 

agents that interact with each other in an environment to 

optimize a performance measure [2]. Multi-agent systems are 

applied in a wide variety of domains including robotic teams, 

distributed control, resource management, collaborative 

decision support systems, data mining, and are useful in the 

modeling, analysis and design of systems where control is 

distributed among several autonomous decision makers. In 

multi-agent system research, two main perspectives are found in 

the literature; the cooperative and non-cooperative perspective. 

In cooperative MASs, the agents pursue a common goal and the 

agents can be built expect benevolent intentions from other 

agents. In contrast, a non-cooperative MAS setting has non-

aligned goals, and individual agents try to obtain only to 

maximize their own profits. In multi-agent systems, the need for 

learning and adaption is essentially caused by the fact that the 

environment of an agent is dynamic and just empirically 

observable while the environment (the reward functions and the 

transition states) is unknown. Noting that the agents in multi-

agent systems face shortage or lack of information about the 

environment and there is not a comprehensive knowledge of 

environment (the reward functions and the transition states)  

and the environment is also usually unknown, using 

reinforcement learning algorithms is very important [22]. 

Hence, the reinforcement learning methods may be applied in 

MAS to find an optimal policy in MGs. In addition, agents in a 

multi-agent system face the problem of incomplete information 

with respect to the action choice. If agents get information 

about their own choice of action as well as that of the others, 

then we have joint action learning [3], [4]. Joint action learners 

are able to maintain models of the strategy of others, and the 

explicitly takes into account the effects of joint actions.  In 

contrast, independent agents only know their own action which 

is often a more realistic assumption since distributed multi-

agent applications are typically subject to limitations such as 

partial observability, communication costs, and stochastic. 

 There are several models proposed in the literature for multi 

agent systems MASs based on Markov models. One of these 

models is the Markov Game (also called Markov Games-MG). 

which is the Markov games are extensions of Markov Decision 

Process (MDP) to multiple agents. In an MG, actions are the 

result of joint action selection of all agents, while rewards and 

the state transitions depend on these joint actions. In a fully 

cooperative MG called a multi-agent MDP (or MMDP), all 

agents share the same reward function and they should learn to 

agree on the same optimal policy [5].  

There are several methods for finding an optimal policy in 

MMDPs. In [6], an algorithm is proposed for learning 

cooperative MMDPs, but it is only suitable for deterministic 

environments. In [7], another view on Markov Games is taken, 

i.e. The game can be seen as a sequence of normal form games. 

The algorithm called as Nash-Q is proposed which under 

restrictive conditions converges to Nash equilibrium policy. In 

[8] MMDPs are approximated as a sequence of intermediate 
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games. The authors present optimal adaptive learning and prove 

convergence to Nash equilibrium of the game. In [9] Song et al. 

Recommended an algorithm called Pareto-Q which used Pareto 

optimization based on social rules. In [10], an algorithm called 

FQM has been introduced that changes the Q values of each 

action in Boltzmann’s function strategy through an initiative 

function and this way, causes an earlier convergence to 

optimally answer, in [10], an algorithm named Hysteretic Q-

learning has been introduced which by adding a new parameter 

by FMQ method causes an improved performance of this 

algorithm. In [11], an algorithm called CAQL has been 

introduced, which acts through a Q - learning algorithm. In 

[12], a Q-learning- algorithm  based method has been proposed. 

Reinforcement learning algorithms at every time stage allow the 

agent do one action based on its observations from the 

environment and enter a new status, then a reward signal 

showing the quality of selected action is given to the agent. In 

Reinforcement Learning (RL), learning is carried out online, 

through trial-and-error interactions of the agent with the 

environment. Unfortunately, convergence of any RL algorithm 

may only be achieved after extensive exploration of the state-

action space, which can be very time consuming. However, the 

rate of convergence of an RL algorithm can be increased by 

using heuristic functions for selecting actions in order to guide 

the exploration of the state-action space in a useful way. In [13], 

[14] investigates how to make improved action selection 

functions based on heuristics in on-line policy learning for 

robotic scenarios. These functions have been applied to select 

the action in every state. Although these methods have been 

successfully used to find the optimal policy in Markov games, 

the problem of using the previous experiences of agents for 

solving the new problem is still disregarded in these methods. 

Since in the environment is unknown in multi-agent systems, 

and the agent should upgrade its knowledge of environment 

through observation, so the problem of keeping and reusing the 

previously- acquired knowledge causes an increase in learning 

rate. In this paper, to increase the speed of learning rate to get 

the optimal policy for Markov’s games in the independent 

agent’s state, a hybrid algorithm called Case based Best 

Heuristically Accelerated Decentralized Q-learning (CB-

BHADQL) is proposed in which, a modified function is used to 

select the action and the Case Base Reasoning technique and a 

special Q-Function called Decentralized Q-learning has been 

used to increase the learning rate. To evaluate the proposed 

methods, they have been applied to an example of MMDP 

called Grid Game. The results of computer simulations have 

shown that these algorithms outperform the previous 

approaches from both cost and speed perspective. In the next 

part of the paper, at first fundamental concepts are explained in 

section 2 and in section 3, the proposed algorithm is presented. 

Simulation results, and discussions evaluation of the 

algorithm’s behavior and its analysis is done are reported in 

section 4, and section 5 is the conclusion. 

2. REINFORCEMENT LEARNING 

In this section, we first review some basic principles of Markov 

decision Process (MDP) and then present the basic formulation 

of the Q-learning algorithm, a well-known reinforcement 

learning technique for solving MDPs. A reinforcement learning 

agent defines its behavior through interaction with an unknown 

environment and observation of the results of its behavior [14]. 

The idea of reinforcement learning is shown in figure 1. In 

figure 1, at first the agent receives the current status of the 

system (S). Function a is defined using a deciding function 

(Policy) and after exerting the action a on the environment, the 

agent receives reward r. Then, using the values of a, s and r, the 

value of reinforcement learning function is updated by Value 

Function. The algorithms of reinforcement learning try to find 

policies for registering the states to actions in which each agent 

must act in that state.   
 

 

 

 

 

 

 
 

Fig 1. Reinforcement Learning Model 

2.1 Markov Decision Process 

Markov decision process is formally defined as follows: 

 
Definition 1. A Markov decision process (MDP) is a quadruple 

S, A, R, T ( where S is a finite state space; A is the space of 

actions the agent can take; R: S×A ( is a payoff function (R (s, 

a) is the expected payoff for taking action an in state s); and T: 

S×A×S ([0,1] is a transition function (T (s, a, s’) is the 

probability of ending in state s’, given that action a  is taken in 

state s). 

  
In a Markov decision process, an agent’s objective is to find a 

strategy (policy) π: S A so as to maximize the sum of 

discounted expected rewards. 

 

V (s, 𝜋) = 𝛾𝑡𝐸 𝑟𝑡  𝜋, 𝑠0 = 𝑠       ∞
𝑡=0     (1) 

 
Where s is a particular state, s0 indicates the initial state, rt is the 

reward at time t, and  𝛾 [0,1) is the discount factor. There 

exists an optimal policy π* such that for any state s, the 

following equation holds: 

 

V (s, 𝜋 *)  = 

𝑚𝑎𝑥𝑎  𝑟 𝑠, 𝑎 + 𝛾  𝑃 𝑠′  𝑠,  𝑣 𝑠′ , 𝜋∗ 𝑠′   
        

(2) 

where r(s, a) is the reward for taking action a at state s, and 

v(s,*) is called optimal value for  that  state while  P(s0|s, a) is 

the probability of transiting to state 𝑠 ′ After taking action an in 

state s. If the agent knows the reward and state transition 

functions, it can solve * by iterative search method, otherwise 

this method cannot be used while an algorithm called Q is 

employed [15], [16]. 

Decentralized Q-learning algorithm pseudo-code is shown in 

Figure 2. In these algorithms, for every action an in each state S 

the value of that action (Q (s, a)) is used according to Equation 

3. Each state S the value of that action (Q (s, a)) is used 

according to Equation 3. In Equation1, α is the rate of learning 

and γ  [0, 1] is the discount factor. The algorithm ends when 

the optimum policy doesn’t change for a definite while.  

 

𝑄 𝑆, 𝑎 =  1 − 𝛼 𝑄 𝑆, 𝑎 + 𝛼 𝑟 +
𝛾 max𝑏 𝑄

′ 𝑆, 𝑎    
(3) 

To select an action in every state, the Boltzmann’s distribution 

method (EQ 4) is usually used. 

 

 State 

Transition 

Reward 

Generation 

 

 Value 
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Environment Agent 

Action  a determine 
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Initialize ),( aSQt  arbitrarily 

Repeat ( for  each  episode) 

   Initialize  S  randomly 

   Repeat ( for  each  step) 

        Select an action 𝑎i  using  π1 𝑆 = arg max⁡(
𝑒
𝑄(𝑆,𝑡)

𝜏

 𝑒
𝑄(𝑆,𝑡)

𝜏𝑚
𝑖=1

)  (EQ)4() 

       Execute the action  a , observe   r(s,a) , s’ 

        Update  the  Value of ),( aSQt   according   to  𝑄 𝑆, 𝑎 =

 1 − 𝛼 𝑄 𝑆, 𝑎 + 𝛼 𝑟 + 𝛾 max𝑏 𝑄
′ 𝑆, 𝑎   (EQ)3(  ) 

       'SS   
   Until S is theTerminal state 

Until   Some   Stopping   Criterion   Criteria   is  reached. 

 

π1 𝑆 = arg max⁡(
𝑒
𝑄(𝑆,𝑡)

𝜏

 𝑒
𝑄(𝑆,𝑡)

𝜏𝑚
𝑖=1

)  
(4) 

 

Fig 2. Decentralized Q-Learning Algorithm 
 

In which, m is the number of allowable actions for state S and 

𝜏 is a constant. Q (S, a) shows the value of evaluation function 

of state S while action a is done. 

 

2.2. Markov Games 
Markov games are a generalization of MDPs to multiple agents 

and can be used as a framework for investigating multi-agent 

learning. In the general case (general-sum games), each player 

would have a separate payoffs. A standard formal definition 

follows: 

 

Definition 2.  A stochastic game (Markov game) is a tuple n, 

S, A1..n, T, R1..n  , where n is the number of agents, s is a set of 

states, Ai is the set of actions available to agent i (and A is the 

joint action space A1× A2×. . . ×An ), T is a transition function 

S×A×S [0,1] ), and r is a reward function for the ith agent 

S×A.  

 
In a discounted Markov game, the objective of each player is to 

maximize the discounted sum of rewards, with a discount factor 

𝛾 [0,1). Let 𝜋 i be the strategy of the player i. For a given 

initial state s, player i tries to maximize:  

𝑣 𝑠, 𝜋1, 𝜋2, … , 𝜋𝑛 =
  𝛾𝑡𝐸 𝑟𝑡  𝜋

1, 𝜋2, … , 𝜋𝑛 , 𝑠0 = 𝑠  ∞
𝑡=0   

(5) 

 
Markov games are categorized based on the agent’s rewards 

into cooperative and non-cooperative games. Non-cooperative 

games may be classified as competitive games and general-sum 

games. Strictly competitive games, or zero-sum games, are two-

player games where one player’s reward is always the negative 

of the others. General-sum games are ones where the reward 

sum is not restricted to zero or any constant, and allow the 

agents’ rewards to be arbitrarily related.  However, in full 

cooperative games, or team games, rewards are always 

positively related. In a fully cooperative MG (or team MG) 

called a multi-agent MDP (or MMDP), all agents share the 

same reward function. Nevertheless, in general MG (or general-

sum MG) there is no constraint on the sum of the agents’ 

rewards and the agents should learn to find and agree on the 

same optimal policy. However, in a general Markov Game, an 

equilibrium point is sought; i.e. a situation in which no agent 

alone can change its policy to improve its reward when all other 

agents keep their policy fixed [17], [18]. 

2.3. Grid Game Environment as a Markov 

Game 

One of the Markov’s games used for multi-agent Markov’s 

games is the Grid World game, which is introduced in [7]. In 

this game, two agents start from a corner of the page and try to 

reach a goal with the least possible number of moves. Players' 

actions are defined as four actions in four different directions, 

namely Up, Down, Left, Right. A state space set is defined 

as 𝑆 =  {𝑠|𝑠 =  𝑙1 , 𝑙2 }, In which each state s= 𝑙1, 𝑙2  Indicates 

the coordinates of agents 1 and 2. Agents cannot take the same 

coordinates at the same time. In other words, if both agents try 

to move to the same square, both of their moves will fail. If 

agents move to two different non-goal positions, both receive 

zero rewards and if one reaches the goal position, it receives 

100 units of reward. However, if they collide with each other 

both receive one unit of punishment and stay in their previous 

position. In this game, the state transition is deterministic, i.e. 

The next state is uniquely determined by the current state and 

the joint action of the agents. In this game, agents are assumed 

not to know the goal position and the other agent's reward 

functions. Agents choose their actions simultaneously and can 

only know about the previous moves of the other agents and 

their own current state.  

A path in these games represents sequences of actions from the 

starting to the end position. In game terminology, such a path is 

called a policy or strategy. The shortest path, not interfering the 

path taken by the other agent, is called the optimal policy or 

Nash path. Figure 3 is an example of this game. The optimal 

policy in Figure 3 includes 9 movements.  

 

 

 

 

 

 

 

 

 

 

Fig3 . An example of Grid World Game 

 
 

2.4. Case Base Reasoning 
Case Based Reasoning (CBR) technique uses the previous 

experiences (Case) to solve the new problems [19], [20]. In the 

case base reasoning systems, the experiences gained from 

solving the problems are saved in case base (CB). In these 

systems, for solving the new problem (Cnew), the most similar 

cases to Cnew are extracted from the case base (CB) and the 

solutions presented by the extracted cases are used to solve the 

new problem C new. If a similar case is not found, Cnew is 

inserted is inserted to the case base as a new case. Unlike the 

classical knowledge-based methods, CBR focuses on a 

particular problem-solving experience, which is originated from 

the cases collected in the case base. These cases show a 

particular experience on a problem solving domain. It must be 

noted that CBR doesn’t recommend a definite solution, but 

presents hypothesis and theories pass the solution space.  

 

 

   A1    A2 

   G1    G2 
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3. THE PROPOSED METHOD 

In this section, a new algorithm named CB-BHADQL is 

proposed to increase the rate of convergence in Markov’s 

games. In the proposed algorithm, the case base reasoning and 

also a new function are used to select the action in each state to 

increase the convergence rate toward the optimal policy. We 

know that solving a problem using CBR includes the steps: 

creating a description of the problem, evaluating the similarity 

of the current problem to the previously-solved problems saved 

in case base, and trying to reuse the solutions presented by the 

detected cases to solve the current problem. The structure of the 

cases used in the recommended algorithm is a duplex in the 

form of Case=<Prob, Sol> in which, Prob describes the 

problem and Sol is the solution presented to solve the problem. 

The problem describer (Prob) includes the properties in each 

state. In the proposed algorithm, the problem describer is 

defined as Prob (S) = {m, <Up, Down, Right, Left>, index} in 

which, m is the number of actions for each state and the set 

<Up, Down, Right, Left> are the actions allowable for each 

action and index is the index for each state. The solution 

recommended for the problem is Sol (S) = <E, V>, in which 

vector 𝐸   In the form of 𝐸  = (𝐸  [1], 𝐸   [2], …, 𝐸   [m]) is a list of 

experiences collected from the environment by the agent for 

state S and each vector 𝐸   includes a tuple <Ai, Ni, Qi, πi> where 

Ai is the space of actions for state S and Ni is the number of 

times that ai Ai has been updated and Qi is the value estimated 

by Equation 3 and πi is the possibility of occurrence of action ai 

, which is estimated by EQ(6).  

 

π2 𝑆 = arg max  
𝑒𝑛 𝑆,𝑎 𝑄 𝑆,𝑎 

 𝑒𝑛 𝑆,𝑎 𝑄 𝑆,𝑎 𝑚
𝑖=1

            
(6) 

Where m is the number of allowable actions for state S and n (S, 

a) is the number of times that so far the action a has been 

selected. Q (S, a) shows the value of evaluation function of state 

S while action  a  is done.  To select the action in every status 

(Policy part), the Boltzmann’s distribution method (Equation 4) 

is usually used. In the actual applications, determination of the 

exact value of  𝜏   for converging to the optimal policy is 

difficult; so in this paper, to select the action in every state, 

Equation 6 is recommended. In the Equation 6, since there isn’t 

any variable of 𝜏, determining of  the optimal action in each 

state using internal variables  of  problem can be done and  

don’t need to determining  the exact and optimal value of  𝜏. 

  

V is the justification of using the solution recommended by the 

detected agent and if each of the actions of state S at least has 

been selected once, the solution of the detected agent can be 

used for solving the new problem. In the recommended 

algorithm, once the agent enters a new state, extracts the most 

similar case to the new state of the case base and if the 

justification is available (V = True), the detected case is used to 

determine the next state. 

 

To detect the similar cases of current state, the nearest neighbor 

algorithm is used. Euclidean distance of the new case to each of 

the cases available in case base is calculated according to EQ(7) 

and the most similar case (c) is detected and if the justification 

is available (V = True), the solution of detected case is used to 

solve the new problem. The proposed algorithm is shown in 

Figure 4. 

 𝑁𝑁 𝑆 = arg𝑚𝑎𝑥𝑐∈𝐶𝐵 𝑆𝑖𝑚 𝐶. 𝑝𝑟𝑜𝑏, 𝐶. 𝑠𝑜𝑙   
= arg𝑚𝑎𝑥

𝑐∈𝐶𝐵
 𝑑𝑖𝑠𝑡 𝐶. 𝑝𝑟𝑜𝑏, 𝐶. 𝑠𝑜𝑙                                 (7) 

4. EXPERIMENTS AND DISCUSSION 

In order to evaluate the performance of the proposed algorithm 

several experiments have been conducted whose results are 

reported below. The environment of the experiment is a Grid-

world game that includes a 5 ×6 grid according to Figure 3. 

These experiments are conducted to study the improvement 

obtained by the proposed algorithm (CB-BHADQL) in 

comparison with two CBR and QL algorithms. So, CB-

BHADQL algorithm is compared with two algorithms: 1)  

Decentralized Q-Learning algorithm, and 2) Boltzmann’s CBR 

algorithm, which its pseudo-code is similar to Figure 4 and the 

only difference is in the selection of the actions which is based 

on the Boltzmann’s distribution (Equation 4). In all 

experiments, each reported value is obtained by averaging over 

500 runs and the average results are gained for the algorithms. 

Parameter given are 𝜏 = 0.05. 

 

Experiment 1. In this experiment, we run three algorithms 

over 500 times and convergence rate of the optimal policy , are 

obtained. The objective is to compare three algorithms in the 

highest condition efficiency. Experimental results are given in 

Table 1. Table 1 shows that when γ = 0.7 convergence rate of 

the optimal policy in three algorithms is more. So, in all the 

experiments we use 0.7 for variable of 𝛾. 

 

Table 1. Convergence to the optimal policy for different 

values of  γ  at 500 times the running of three algorithms 

γ = 0.9 γ = 0.7 γ = 0.5  

68% 69.87% 22% Boltzmann-CBR 

85.67% 88.93% 87.06% Decentralized Q-

Learning 

95.76% 97.45% 96.76% CB-BHADQL 

 

Experiment 2. In this experiment, we compare the proposed 

algorithm (CB-BHADQL) with the other algorithms in terms of 

the number of movements made by agent 1 to reach the optimal 

path in 2000 episode.  Figure 5 illustrates the results of this 

experiment. Figure 6 shows the average results after 500 runs.  

From the result, it is evident that the CB-BHADQL algorithm 

has lower numbers of moves in comparison with the other 

algorithms. 

 

Experiment 3. In this experiment, we compare the proposed 

algorithm (CB-BHADQL) with the other algorithms in terms of 

the averaged reward received by agent 1during an episode. 

Figure 7 shows the result of this experiment. As it is seen (CB-

BHADQL) algorithm outperforms the other algorithms in terms 

the average reward received during an episode.  
 

1. Let t be the global time, n be the number of agents,   the 

      Discount   factor,CBi=  an empty case base for each Agent,  

Set Sss  '  to the initial state of the system. 

2.  Repeat 

3.    (a)  Set s=s’ 

4.    (b)  For all agents i=1 to n  do 

                if  (Case basei is Null or add case(s) is true) then 
                       CCBCB    

                        c. Prob=s  

                        c. Sol=empty_solution (i) 

// Create a Case Base With empty solution part into the Case Base 

5.            For each j=1 to Sol (s). m do 

                     a. Compute Sol (s). E [j].
i  According  to EQ (6) 

                          And Set index 
ix  the Maximum value of them. 

6.             Select elementary action   
ii axEsSol ].[).( . 

7.             Observe Successor state Ss'  and  receive reward 

               Rr  . 

8.             For all agents i=1 to n  do 
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                   a. Retrieve nearest neighbor according to 

                         EQ (7) of state s’. 

                     b. Set Learning Rate 

ii

i
nxEsSol ].[).(1

1


   

                     c. Set 
ii QxEsSol ].[).(  according to EQ(3). 

                     d. 1].[).(].[).(  iiii nxEsSolnxEsSol  

                   e. Resort detrimentally the experience list Q in 

                         Sol (s). E    
     Until Stop_Criterion becomes true. 

 

Fig 4. Pseudo-code for the Proposed Algorithm CB-

BHADQL 

 

 

Fig5. Comparison of different methods in terms of the 

number of movements Needed for reaching to the optimal 

path. 

 

 

Fig6. Comparison of Three Algorithms in terms of average 

of the number of moves to reaching optimal path in 500 

runs. 

 

 

  

 

Figure 7. Comparison of Three Algorithms in term of the 

average of rewards gained in 500 runs 
 

4.1. Examination of the Behavior of the Proposed 

Algorithms  

In this section, an analysis of the performance the proposed 

algorithm is conducted in which the advantage of the function 

π2 (S) (EQ 6) is compared with π1 (S) (EQ 4). We want to show 

that in the proposed method, π2 (S) in comparison with π1 (S) 

converges to the optimum solution with a higher rate. In other 

words, the rate of variation for π2 (S) in relation to Q, is more 

than the rate of variation for π1 (S) in relation to Q.  

To show the advantage of the behavior of the proposed action 

selection function, the CB-BHADQL algorithm was evaluated 

for state S0 and action a1 regarding to different values of n and 

the results below were gained: 

 

Experiment 4. In this experiment, variations of π2 (S) were 

evaluated in comparison with π1 (S). Figures 8-10 show these 

variations As it is seen, we note that regarding to the increase in 

n, the growth of π2 (S) is much more than π1 (S).  

 

Experiment 5. In this experiment, we study evaluation of 

variations for function Q (S, a) regarding to the increase in n. 

The results of this analysis are shown in Figures 9-11. As it is 

seen, we conclude that with increasing n, the value of function 

Q (S, a) also increases in Equation 3.  

 

Experiment 6. In this experiment, we study evaluation of 

variations for π1 (S) and π2 (S) based on values for Q (S, a). The 

results of this evaluation are shown in Figure 12. Looking at the 

diagram we note that with increasing value of Q (S, a), the 

value of π1 (S) increases. Since always limt→∞ not (S, a) = ∞, 

according to the result of Experiment 5, value of Qt (S, a) 

increases and according to the result of Experiment 4, with 

increasing n, the function π2 (S) grows faster than π1 (S). Based 

on the previous subjects, it is concluded that with increasing 

value of Qt (S, a), the function π2 (S) must grow faster than π1 

(S).  Figure 13 shows the results. 

  

4.2. Mathematical Analysis of the Functions 

Behavior 

To facilitate the calculations, we rewrite functions π1 (S) and π2 

(S) as EQ (8) and EQ (9)  respectively.  

 

𝜋1 𝑆 =  
𝑒
𝑄
𝜏

 𝑒

𝑄𝑗
𝜏𝑚

𝑗=1

                                                    (8) 

 

𝜋2 𝑆 =  𝑒𝑛𝑄                                                           (9) 

 
The variable rate of π1 (S) in relation to Q with parameter t = 

0.05, is shown in  EQ (10). 

   
Δ𝜋1(𝑆)

Δ𝑄
=

1

𝜏
𝑒

1

𝜏 =
1

0.05
𝑒

1

0.05 =

20𝑒20𝑄                              

(10) 

The variable rate of π1 (S) in relation to Q is shown in EQ ( 11). 

 
Δ𝜋2 𝑆 

Δ𝑄
=

𝑑𝜋2 𝑆 

𝑑𝑛
×

𝑑𝑛

𝑑𝑄
  

          =   𝑄𝑒𝑛𝑄 ×
𝑑𝑛

𝑑𝑄
                           

(11) 
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Through the comparison of the EQ(10) and EQ(11), we 

conclude that the growth of the rate 
△𝜋1(𝑆)

△𝑄
  Is less than

△𝜋2 (𝑆)

△𝑄
. 

In Equation 10, because Q is positive, the value of function 
△𝜋1 (𝑆)

△𝑄
  is always positive. According to Equation 3 and the 

diagram in Figure 11, with increasing n, the value of Q (S, a) 

always increases. Thus, 
𝑑𝑛

𝑑𝑄
 > 0 and from the other hand, n> 0 

and Q> 0. So, 
△𝜋2 (𝑆)

△𝑄
 is always positive. 

In Equation 10, 𝑒20𝑄  is multiplied by the constant value 20. 

This is while in Equation 11, 𝑒𝑛𝑄  is multiplied by variant Q. 

With increasing n, the value of Q increases. Thus, the growth 

rate of 
△𝜋1 (𝑆)

△𝑄
  is less than

△𝜋2(𝑆)

△𝑄
. The diagram in Figure 13 also 

supports the result gained.  
 

 

  

Fig 8. Examining the growth of π2 (S) and π1 (S) based on 

the different n values 

  

 

 

Fig 9. Examination of π2(S) variations based on the different 

n values. 

 

 

 

Fig 10. Examination of π1 (S) Variations based on the 

Different n values. 

 

  

Fig 11. Examination of Q (S, a) Variations based on the 

Different n values. 

 

 

Fig 12. Examination of π1 (S) Growth based on the Different 

Q (S, a) values. 

 

  

Fig 13. Examination of π1 (S) and π2 (S) Growth based on 

the Different Q (S, a) values 

 

5. CONCLUSION 
In this paper, a new hybrid model named CB-BHDAQL has 

been introduced to solve Markov’s games based on 

reinforcement learning and case base systems, in which a new 

function has been applied to select the action in each state. The 

results gained were compared with the current algorithms. 

Based on the results gained, in comparison with Decentralized 

Q-Learning and Boltzmann’s CBR algorithms, CB-BHADQL 

algorithm has a very high efficiency from the perspective of 

convergence rate to the optimal policy , average of total reward 

gained and the number of the movements needed for 

convergence to the optimal policy. 

 

6. REFERENCES 
[1] R. A. C. Branchi, R. Raquel, R. L. D. Mantaras, ” Imroving 

Reinforcement Learning by using Case Based Heuristics”, 

Proceeding of the Int. Conference on Case Based Learning 

2009 (ICCBR 2009), Springer , 2009. 

[2] N. Vlassis, “A Concise Introduction to Multiagent Systems 

and Distributed Artificial Intelligence”, 2007, Morgan and 

Claypool Publishers. 

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

n(S0,a1)


(S

0
,a

1
)

 

 

1(S0,a1)

2(S0,a1)

0

0.5

1

1.5

2x 10
14 0 0.5 1 1.5 2 2.5 3 3.5

4 4.5

0

10

20

30

Q(S0,a1)
 2(S0,a1)

n
(S

0
,a

1
)

0.5

0.6

0.7

0.8

0.9

1 0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0

10

20

30

Q(S0,a1)1(S0,a1)

n
(S

0
,a

1
)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

n(t)

Q
(S

0
,a

1
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Q(S0,a1)


1

(S
0

,a
1

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10

Q(S0,a1)


(S

0
,a

1
)

 

 

1(S0,a1)

2(S0,a1)



International Journal of Computer Applications (0975 – 8887) 

Volume 38– No.4, January 2012 

31 

[3] C. Boutilier, "Sequential optimality and coordination in 

multi-agent systems", in: Proceedings of the 16th 

International joint conference on Artificial intelligence, 

1999 , Vol. 1, Morgan Kaufmann Publishers Inc., 

Stockholm, Sweden. 

[4] L. Bosniu, R. Babuska, and B. Schutter, "A Comprehensive 

Survey of Multiagent Reinforcement Learning", IEEE 

Transaction on System, Man, Cybern, 2008 ,vol. 38, pp. 

156-171. 

[5] B. Masoumi, M. R. Meybodi, “Speeding up learning 

automata based multi agent systems using the concepts of 

stigmergy and entropy”, Journal of Expert Systems with 

Applications,  July 2011, Vol 38, Issue 7, PP.  8105-8118. 

[6] M. Lauer and M. Riedmiller, "An Algorithm for Distributed 

Reinforcement Learning in Cooperative Multi-Agent 

Systems", in The 17th  International Conference on 

Machine Learning San Francisco, CA, USA, 2000: 

Morgan Kaufmann Publishers Inc, pp. 535 – 542. 

[7] J. Hu, M. Wellman, "Nash Q-Learning for General-Sum 

Stochastic Games",  Journal of Machine Learning 

Research, , 2003, vol. 4, pp. 1039-1069. 

[8] X. Wang and T. Sandholm, "Reinforcement Learning to 

Play an Optimal Nash Equilibrium in Team Markov 

Games", in Advances in Neural Information Processing 

Systems, 2002,  vol. 15: MIT Press, pp. 1571-1578, 2002, 

[9] M. Song , G. Gu and G. Zhang , “ Pareto-Q Learning 

Algorithm for Cooperative Agents in General Sum 

Games”, In Multiagent Systems and Applications ,  2005, 

Vol.3690 : Springer, Berlin/Heidelberg , pp.576-578. 

[10] L. Matignon , G. J. Lauent and N. L. Front-part , “ 

Hysteretic Q-Learning: An Algorithm for Decentralized 

Reinforcement Learning in Cooperative Multi-agent 

Teams “ , In Proceedings of IEEE/RSJ International 

Conference on Intelligent Robots and Systems IROS , San 

Diego , CA , USA, Nov. 2007, PP.64-69. 

[11] F. S. Melo, M. I. Ribeiro, “Reinforcement Learning with 

Function Approximation for Cooperative Navigation 

Tasks”, IEEE International Conference on Robotics and A 

Utomation Pasadena, CA, USA, May 2008, pp. 3321-

2237. 

 

 

 

 

 

 

 

 

 

 

 

 

 

[12] M. Lauer and M. Riedmiller, “Reinforcement Learning for 

Stochastic cooperative Multi-agent Systems”, In 

Proceeding of AAMAS 2004, New York, NY, ACM Press, 

pp. 1514-1515. 

[13] R. A. C. Bianchi, C. H. C. Ribeiro, A. H. R. Costa, “ 

Accelerating autonomous learning by using a heuristic 

selection of actions”, Journal of Heuristis , , 2008, Vol. 2, 

pp.135-168. 

[14] R. A. C. Bianchi, C. H. C. Ribeiro, A. H. R. Costa, 

”Heuristic selection of actions in multi agent reinforcement 

learning”, 20th  International conference on Artificial 

Intelligence, India , Jan 2007, pp.690-695. 

[15] L. Puterman, Markov Decision Processes: Discrete 

Stochastic Dynamic Programming, John Wiley  and Sons, 

New York, 1994. 

[16] R. S. Sutton, A. G. Barto, “Reinforcement Learning : An  

Introduction”, MIT Press, 1998.  

[17] J. F. Nash, “Non-cooperative Games”, Annals of 

Mathematics, , 1951, Vol. 54, pp. 286–295. 

[18] A. M. Fink, Equilibrium in a Stochastic N-person Game, 

Journal of Science in Hiroshima University, Series A-I, 

1964, Vol. 28, pp. 89–93. 

[19] A. Aamodt; E. Plaza, "Case-Based Reasoning: 

Foundational Issues", Methodological Variations and 

System Approaches AI  Communications, IOS Press, 

1994, Vol. 7, No. 1, pp. 39-59. 

[20] R. Bergman; "Engineering Applications of Case  Based 

Reasoning", Journal of Engineering Applications of 

Artificial Intelligence, 1999 ,  Vol. 12, pp.805. 

[21] Gabel, T. And Riedmiller, M., “CBR for state value 

function Approximation in Reinforcement Learning”, 

Proceeding of the Inter. Conference on Case Based 

Learning 2005 (ICCBR 2005) , Springer , Chicago, USA. 

[22] Y. Shoham and K. Leyton-Brown , “Multiagent Systems: 

Algorithmic , Game theoretic and Logical Foundation “ 

,2009. 

 
 

 

 

 

 

 

 

 

 

 

 

 


