
International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

25

Accelerated Method based on Reinforcement Learning

and Case Base Reasoning in Multi agent Systems

Sara Esfandiari
Department of Computer

Engineering, Islamic Azad
University, Qazvin Branch,

Qazvin, Iran.

Behrooz Masoumi

Department of Computer
Engineering, Islamic Azad
University, Qazvin Branch,

Qazvin, Iran.

Abdolkarim Niazi

Department of Manufacturing and
Industrial Engineering, Faculty of

Mechanical Engineering,
Universiti Teknologi Malaysia.

Mohammad Reza
Meybodi

Departments of Computer
Engineering, Amirkabir Industrial

University, Tehran, Iran.

ABSTRACT
In this paper, a new algorithm based on case base reasoning and

reinforcement learning is proposed to increase the rate

convergence of the reinforcement learning algorithms in multi-

agent systems. In the propose method, we investigate how

making improved action selection in reinforcement learning

(RL) algorithm. In the proposed method, the new combined

model using case base reasoning systems and a new optimized

function has been proposed to select the action, which has led to

an increase in algorithms based on Q-learning. The algorithm

mentioned has been used for solving the problem of cooperative

Markov’s games as one of the models of Markov based multi-

agent systems. The results of experiments have shown that the

proposed algorithms perform better than the existing algorithms

in terms of speed and accuracy of reaching the optimal policy.

General Terms

Multi Agent Learning , Machine Learning .

Keywords

Reinforcement Learning, Case Base Reasoning, Multi agent

Systems, Cooperative Markov Games, Machine Learning.

1. INTRODUCTION
Case Based Reasoning (CBR) is a knowledge based problem

solving technique, which is based on reusing on the previous

experiences and has been originated from the researches of

cognitive sciences [1]. In this method, it is assumed that the

similar problems can possess similar solutions. Therefore, the

new problems may be solvable using the experienced solutions

to the previous similar problems. A multi-agent system (MAS)

is comprised of a collection of autonomous and intelligent

agents that interact with each other in an environment to

optimize a performance measure [2]. Multi-agent systems are

applied in a wide variety of domains including robotic teams,

distributed control, resource management, collaborative

decision support systems, data mining, and are useful in the

modeling, analysis and design of systems where control is

distributed among several autonomous decision makers. In

multi-agent system research, two main perspectives are found in

the literature; the cooperative and non-cooperative perspective.

In cooperative MASs, the agents pursue a common goal and the

agents can be built expect benevolent intentions from other

agents. In contrast, a non-cooperative MAS setting has non-

aligned goals, and individual agents try to obtain only to

maximize their own profits. In multi-agent systems, the need for

learning and adaption is essentially caused by the fact that the

environment of an agent is dynamic and just empirically

observable while the environment (the reward functions and the

transition states) is unknown. Noting that the agents in multi-

agent systems face shortage or lack of information about the

environment and there is not a comprehensive knowledge of

environment (the reward functions and the transition states)

and the environment is also usually unknown, using

reinforcement learning algorithms is very important [22].

Hence, the reinforcement learning methods may be applied in

MAS to find an optimal policy in MGs. In addition, agents in a

multi-agent system face the problem of incomplete information

with respect to the action choice. If agents get information

about their own choice of action as well as that of the others,

then we have joint action learning [3], [4]. Joint action learners

are able to maintain models of the strategy of others, and the

explicitly takes into account the effects of joint actions. In

contrast, independent agents only know their own action which

is often a more realistic assumption since distributed multi-

agent applications are typically subject to limitations such as

partial observability, communication costs, and stochastic.

 There are several models proposed in the literature for multi

agent systems MASs based on Markov models. One of these

models is the Markov Game (also called Markov Games-MG).

which is the Markov games are extensions of Markov Decision

Process (MDP) to multiple agents. In an MG, actions are the

result of joint action selection of all agents, while rewards and

the state transitions depend on these joint actions. In a fully

cooperative MG called a multi-agent MDP (or MMDP), all

agents share the same reward function and they should learn to

agree on the same optimal policy [5].

There are several methods for finding an optimal policy in

MMDPs. In [6], an algorithm is proposed for learning

cooperative MMDPs, but it is only suitable for deterministic

environments. In [7], another view on Markov Games is taken,

i.e. The game can be seen as a sequence of normal form games.

The algorithm called as Nash-Q is proposed which under

restrictive conditions converges to Nash equilibrium policy. In

[8] MMDPs are approximated as a sequence of intermediate

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

26

games. The authors present optimal adaptive learning and prove

convergence to Nash equilibrium of the game. In [9] Song et al.

Recommended an algorithm called Pareto-Q which used Pareto

optimization based on social rules. In [10], an algorithm called

FQM has been introduced that changes the Q values of each

action in Boltzmann’s function strategy through an initiative

function and this way, causes an earlier convergence to

optimally answer, in [10], an algorithm named Hysteretic Q-

learning has been introduced which by adding a new parameter

by FMQ method causes an improved performance of this

algorithm. In [11], an algorithm called CAQL has been

introduced, which acts through a Q - learning algorithm. In

[12], a Q-learning- algorithm based method has been proposed.

Reinforcement learning algorithms at every time stage allow the

agent do one action based on its observations from the

environment and enter a new status, then a reward signal

showing the quality of selected action is given to the agent. In

Reinforcement Learning (RL), learning is carried out online,

through trial-and-error interactions of the agent with the

environment. Unfortunately, convergence of any RL algorithm

may only be achieved after extensive exploration of the state-

action space, which can be very time consuming. However, the

rate of convergence of an RL algorithm can be increased by

using heuristic functions for selecting actions in order to guide

the exploration of the state-action space in a useful way. In [13],

[14] investigates how to make improved action selection

functions based on heuristics in on-line policy learning for

robotic scenarios. These functions have been applied to select

the action in every state. Although these methods have been

successfully used to find the optimal policy in Markov games,

the problem of using the previous experiences of agents for

solving the new problem is still disregarded in these methods.

Since in the environment is unknown in multi-agent systems,

and the agent should upgrade its knowledge of environment

through observation, so the problem of keeping and reusing the

previously- acquired knowledge causes an increase in learning

rate. In this paper, to increase the speed of learning rate to get

the optimal policy for Markov’s games in the independent

agent’s state, a hybrid algorithm called Case based Best

Heuristically Accelerated Decentralized Q-learning (CB-

BHADQL) is proposed in which, a modified function is used to

select the action and the Case Base Reasoning technique and a

special Q-Function called Decentralized Q-learning has been

used to increase the learning rate. To evaluate the proposed

methods, they have been applied to an example of MMDP

called Grid Game. The results of computer simulations have

shown that these algorithms outperform the previous

approaches from both cost and speed perspective. In the next

part of the paper, at first fundamental concepts are explained in

section 2 and in section 3, the proposed algorithm is presented.

Simulation results, and discussions evaluation of the

algorithm’s behavior and its analysis is done are reported in

section 4, and section 5 is the conclusion.

2. REINFORCEMENT LEARNING

In this section, we first review some basic principles of Markov

decision Process (MDP) and then present the basic formulation

of the Q-learning algorithm, a well-known reinforcement

learning technique for solving MDPs. A reinforcement learning

agent defines its behavior through interaction with an unknown

environment and observation of the results of its behavior [14].

The idea of reinforcement learning is shown in figure 1. In

figure 1, at first the agent receives the current status of the

system (S). Function a is defined using a deciding function

(Policy) and after exerting the action a on the environment, the

agent receives reward r. Then, using the values of a, s and r, the

value of reinforcement learning function is updated by Value

Function. The algorithms of reinforcement learning try to find

policies for registering the states to actions in which each agent

must act in that state.

Fig 1. Reinforcement Learning Model

2.1 Markov Decision Process

Markov decision process is formally defined as follows:

Definition 1. A Markov decision process (MDP) is a quadruple

S, A, R, T (where S is a finite state space; A is the space of

actions the agent can take; R: S×A ( is a payoff function (R (s,

a) is the expected payoff for taking action an in state s); and T:

S×A×S ([0,1] is a transition function (T (s, a, s’) is the

probability of ending in state s’, given that action a is taken in

state s).

In a Markov decision process, an agent’s objective is to find a

strategy (policy) π: S A so as to maximize the sum of

discounted expected rewards.

V (s, 𝜋) = 𝛾𝑡𝐸 𝑟𝑡 𝜋, 𝑠0 = 𝑠 ∞
𝑡=0 (1)

Where s is a particular state, s0 indicates the initial state, rt is the

reward at time t, and 𝛾 [0,1) is the discount factor. There

exists an optimal policy π* such that for any state s, the

following equation holds:

V (s, 𝜋 *) =

𝑚𝑎𝑥𝑎 𝑟 𝑠, 𝑎 + 𝛾 𝑃 𝑠′ 𝑠, 𝑣 𝑠′ , 𝜋∗ 𝑠′

(2)

where r(s, a) is the reward for taking action a at state s, and

v(s,*) is called optimal value for that state while P(s0|s, a) is

the probability of transiting to state 𝑠 ′ After taking action an in

state s. If the agent knows the reward and state transition

functions, it can solve * by iterative search method, otherwise

this method cannot be used while an algorithm called Q is

employed [15], [16].

Decentralized Q-learning algorithm pseudo-code is shown in

Figure 2. In these algorithms, for every action an in each state S

the value of that action (Q (s, a)) is used according to Equation

3. Each state S the value of that action (Q (s, a)) is used

according to Equation 3. In Equation1, α is the rate of learning

and γ  [0, 1] is the discount factor. The algorithm ends when

the optimum policy doesn’t change for a definite while.

𝑄 𝑆, 𝑎 = 1 − 𝛼 𝑄 𝑆, 𝑎 + 𝛼 𝑟 +
𝛾 max𝑏 𝑄

′ 𝑆, 𝑎
(3)

To select an action in every state, the Boltzmann’s distribution

method (EQ 4) is usually used.

 State

Transition

Reward

Generation

 Value

Function
Policy

Reward r

Environment Agent

Action a determine

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

27

Initialize),(aSQt arbitrarily

Repeat (for each episode)

 Initialize S randomly

 Repeat (for each step)

 Select an action 𝑎i using π1 𝑆 = arg max⁡(
𝑒
𝑄(𝑆,𝑡)

𝜏

 𝑒
𝑄(𝑆,𝑡)

𝜏𝑚
𝑖=1

) (EQ)4()

 Execute the action a , observe r(s,a) , s’

 Update the Value of),(aSQt according to 𝑄 𝑆, 𝑎 =

 1 − 𝛼 𝑄 𝑆, 𝑎 + 𝛼 𝑟 + 𝛾 max𝑏 𝑄
′ 𝑆, 𝑎 (EQ)3()

 'SS 
 Until S is theTerminal state

Until Some Stopping Criterion Criteria is reached.

π1 𝑆 = arg max⁡(
𝑒
𝑄(𝑆,𝑡)

𝜏

 𝑒
𝑄(𝑆,𝑡)

𝜏𝑚
𝑖=1

)
(4)

Fig 2. Decentralized Q-Learning Algorithm

In which, m is the number of allowable actions for state S and

𝜏 is a constant. Q (S, a) shows the value of evaluation function

of state S while action a is done.

2.2. Markov Games
Markov games are a generalization of MDPs to multiple agents

and can be used as a framework for investigating multi-agent

learning. In the general case (general-sum games), each player

would have a separate payoffs. A standard formal definition

follows:

Definition 2. A stochastic game (Markov game) is a tuple n,

S, A1..n, T, R1..n  , where n is the number of agents, s is a set of

states, Ai is the set of actions available to agent i (and A is the

joint action space A1× A2×. . . ×An), T is a transition function

S×A×S [0,1]), and r is a reward function for the ith agent

S×A.

In a discounted Markov game, the objective of each player is to

maximize the discounted sum of rewards, with a discount factor

𝛾 [0,1). Let 𝜋 i be the strategy of the player i. For a given

initial state s, player i tries to maximize:

𝑣 𝑠, 𝜋1, 𝜋2, … , 𝜋𝑛 =
 𝛾𝑡𝐸 𝑟𝑡 𝜋

1, 𝜋2, … , 𝜋𝑛 , 𝑠0 = 𝑠 ∞
𝑡=0

(5)

Markov games are categorized based on the agent’s rewards

into cooperative and non-cooperative games. Non-cooperative

games may be classified as competitive games and general-sum

games. Strictly competitive games, or zero-sum games, are two-

player games where one player’s reward is always the negative

of the others. General-sum games are ones where the reward

sum is not restricted to zero or any constant, and allow the

agents’ rewards to be arbitrarily related. However, in full

cooperative games, or team games, rewards are always

positively related. In a fully cooperative MG (or team MG)

called a multi-agent MDP (or MMDP), all agents share the

same reward function. Nevertheless, in general MG (or general-

sum MG) there is no constraint on the sum of the agents’

rewards and the agents should learn to find and agree on the

same optimal policy. However, in a general Markov Game, an

equilibrium point is sought; i.e. a situation in which no agent

alone can change its policy to improve its reward when all other

agents keep their policy fixed [17], [18].

2.3. Grid Game Environment as a Markov

Game

One of the Markov’s games used for multi-agent Markov’s

games is the Grid World game, which is introduced in [7]. In

this game, two agents start from a corner of the page and try to

reach a goal with the least possible number of moves. Players'

actions are defined as four actions in four different directions,

namely Up, Down, Left, Right. A state space set is defined

as 𝑆 = {𝑠|𝑠 = 𝑙1 , 𝑙2 }, In which each state s= 𝑙1, 𝑙2 Indicates

the coordinates of agents 1 and 2. Agents cannot take the same

coordinates at the same time. In other words, if both agents try

to move to the same square, both of their moves will fail. If

agents move to two different non-goal positions, both receive

zero rewards and if one reaches the goal position, it receives

100 units of reward. However, if they collide with each other

both receive one unit of punishment and stay in their previous

position. In this game, the state transition is deterministic, i.e.

The next state is uniquely determined by the current state and

the joint action of the agents. In this game, agents are assumed

not to know the goal position and the other agent's reward

functions. Agents choose their actions simultaneously and can

only know about the previous moves of the other agents and

their own current state.

A path in these games represents sequences of actions from the

starting to the end position. In game terminology, such a path is

called a policy or strategy. The shortest path, not interfering the

path taken by the other agent, is called the optimal policy or

Nash path. Figure 3 is an example of this game. The optimal

policy in Figure 3 includes 9 movements.

Fig3 . An example of Grid World Game

2.4. Case Base Reasoning
Case Based Reasoning (CBR) technique uses the previous

experiences (Case) to solve the new problems [19], [20]. In the

case base reasoning systems, the experiences gained from

solving the problems are saved in case base (CB). In these

systems, for solving the new problem (Cnew), the most similar

cases to Cnew are extracted from the case base (CB) and the

solutions presented by the extracted cases are used to solve the

new problem C new. If a similar case is not found, Cnew is

inserted is inserted to the case base as a new case. Unlike the

classical knowledge-based methods, CBR focuses on a

particular problem-solving experience, which is originated from

the cases collected in the case base. These cases show a

particular experience on a problem solving domain. It must be

noted that CBR doesn’t recommend a definite solution, but

presents hypothesis and theories pass the solution space.

 A1 A2

 G1 G2

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

28

3. THE PROPOSED METHOD

In this section, a new algorithm named CB-BHADQL is

proposed to increase the rate of convergence in Markov’s

games. In the proposed algorithm, the case base reasoning and

also a new function are used to select the action in each state to

increase the convergence rate toward the optimal policy. We

know that solving a problem using CBR includes the steps:

creating a description of the problem, evaluating the similarity

of the current problem to the previously-solved problems saved

in case base, and trying to reuse the solutions presented by the

detected cases to solve the current problem. The structure of the

cases used in the recommended algorithm is a duplex in the

form of Case=<Prob, Sol> in which, Prob describes the

problem and Sol is the solution presented to solve the problem.

The problem describer (Prob) includes the properties in each

state. In the proposed algorithm, the problem describer is

defined as Prob (S) = {m, <Up, Down, Right, Left>, index} in

which, m is the number of actions for each state and the set

<Up, Down, Right, Left> are the actions allowable for each

action and index is the index for each state. The solution

recommended for the problem is Sol (S) = <E, V>, in which

vector 𝐸 In the form of 𝐸 = (𝐸 [1], 𝐸 [2], …, 𝐸 [m]) is a list of

experiences collected from the environment by the agent for

state S and each vector 𝐸 includes a tuple <Ai, Ni, Qi, πi> where

Ai is the space of actions for state S and Ni is the number of

times that ai Ai has been updated and Qi is the value estimated

by Equation 3 and πi is the possibility of occurrence of action ai

, which is estimated by EQ(6).

π2 𝑆 = arg max
𝑒𝑛 𝑆,𝑎 𝑄 𝑆,𝑎

 𝑒𝑛 𝑆,𝑎 𝑄 𝑆,𝑎 𝑚
𝑖=1

(6)

Where m is the number of allowable actions for state S and n (S,

a) is the number of times that so far the action a has been

selected. Q (S, a) shows the value of evaluation function of state

S while action a is done. To select the action in every status

(Policy part), the Boltzmann’s distribution method (Equation 4)

is usually used. In the actual applications, determination of the

exact value of 𝜏 for converging to the optimal policy is

difficult; so in this paper, to select the action in every state,

Equation 6 is recommended. In the Equation 6, since there isn’t

any variable of 𝜏, determining of the optimal action in each

state using internal variables of problem can be done and

don’t need to determining the exact and optimal value of 𝜏.

V is the justification of using the solution recommended by the

detected agent and if each of the actions of state S at least has

been selected once, the solution of the detected agent can be

used for solving the new problem. In the recommended

algorithm, once the agent enters a new state, extracts the most

similar case to the new state of the case base and if the

justification is available (V = True), the detected case is used to

determine the next state.

To detect the similar cases of current state, the nearest neighbor

algorithm is used. Euclidean distance of the new case to each of

the cases available in case base is calculated according to EQ(7)

and the most similar case (c) is detected and if the justification

is available (V = True), the solution of detected case is used to

solve the new problem. The proposed algorithm is shown in

Figure 4.

 𝑁𝑁 𝑆 = arg𝑚𝑎𝑥𝑐∈𝐶𝐵 𝑆𝑖𝑚 𝐶. 𝑝𝑟𝑜𝑏, 𝐶. 𝑠𝑜𝑙
= arg𝑚𝑎𝑥

𝑐∈𝐶𝐵
 𝑑𝑖𝑠𝑡 𝐶. 𝑝𝑟𝑜𝑏, 𝐶. 𝑠𝑜𝑙 (7)

4. EXPERIMENTS AND DISCUSSION

In order to evaluate the performance of the proposed algorithm

several experiments have been conducted whose results are

reported below. The environment of the experiment is a Grid-

world game that includes a 5 ×6 grid according to Figure 3.

These experiments are conducted to study the improvement

obtained by the proposed algorithm (CB-BHADQL) in

comparison with two CBR and QL algorithms. So, CB-

BHADQL algorithm is compared with two algorithms: 1)

Decentralized Q-Learning algorithm, and 2) Boltzmann’s CBR

algorithm, which its pseudo-code is similar to Figure 4 and the

only difference is in the selection of the actions which is based

on the Boltzmann’s distribution (Equation 4). In all

experiments, each reported value is obtained by averaging over

500 runs and the average results are gained for the algorithms.

Parameter given are 𝜏 = 0.05.

Experiment 1. In this experiment, we run three algorithms

over 500 times and convergence rate of the optimal policy , are

obtained. The objective is to compare three algorithms in the

highest condition efficiency. Experimental results are given in

Table 1. Table 1 shows that when γ = 0.7 convergence rate of

the optimal policy in three algorithms is more. So, in all the

experiments we use 0.7 for variable of 𝛾.

Table 1. Convergence to the optimal policy for different

values of γ at 500 times the running of three algorithms

γ = 0.9 γ = 0.7 γ = 0.5

68% 69.87% 22% Boltzmann-CBR

85.67% 88.93% 87.06% Decentralized Q-

Learning

95.76% 97.45% 96.76% CB-BHADQL

Experiment 2. In this experiment, we compare the proposed

algorithm (CB-BHADQL) with the other algorithms in terms of

the number of movements made by agent 1 to reach the optimal

path in 2000 episode. Figure 5 illustrates the results of this

experiment. Figure 6 shows the average results after 500 runs.

From the result, it is evident that the CB-BHADQL algorithm

has lower numbers of moves in comparison with the other

algorithms.

Experiment 3. In this experiment, we compare the proposed

algorithm (CB-BHADQL) with the other algorithms in terms of

the averaged reward received by agent 1during an episode.

Figure 7 shows the result of this experiment. As it is seen (CB-

BHADQL) algorithm outperforms the other algorithms in terms

the average reward received during an episode.

1. Let t be the global time, n be the number of agents,  the

 Discount factor,CBi= an empty case base for each Agent,

Set Sss  ' to the initial state of the system.

2. Repeat

3. (a) Set s=s’

4. (b) For all agents i=1 to n do

 if (Case basei is Null or add case(s) is true) then
 CCBCB 

 c. Prob=s

 c. Sol=empty_solution (i)

// Create a Case Base With empty solution part into the Case Base

5. For each j=1 to Sol (s). m do

 a. Compute Sol (s). E [j].
i According to EQ (6)

 And Set index
ix the Maximum value of them.

6. Select elementary action
ii axEsSol].[).(.

7. Observe Successor state Ss' and receive reward

 Rr .

8. For all agents i=1 to n do

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

29

 a. Retrieve nearest neighbor according to

 EQ (7) of state s’.

 b. Set Learning Rate

ii

i
nxEsSol].[).(1

1




 c. Set
ii QxEsSol].[).(according to EQ(3).

 d. 1].[).(].[).( iiii nxEsSolnxEsSol

 e. Resort detrimentally the experience list Q in

 Sol (s). E
 Until Stop_Criterion becomes true.

Fig 4. Pseudo-code for the Proposed Algorithm CB-

BHADQL

Fig5. Comparison of different methods in terms of the

number of movements Needed for reaching to the optimal

path.

Fig6. Comparison of Three Algorithms in terms of average

of the number of moves to reaching optimal path in 500

runs.



Figure 7. Comparison of Three Algorithms in term of the

average of rewards gained in 500 runs

4.1. Examination of the Behavior of the Proposed

Algorithms

In this section, an analysis of the performance the proposed

algorithm is conducted in which the advantage of the function

π2 (S) (EQ 6) is compared with π1 (S) (EQ 4). We want to show

that in the proposed method, π2 (S) in comparison with π1 (S)

converges to the optimum solution with a higher rate. In other

words, the rate of variation for π2 (S) in relation to Q, is more

than the rate of variation for π1 (S) in relation to Q.

To show the advantage of the behavior of the proposed action

selection function, the CB-BHADQL algorithm was evaluated

for state S0 and action a1 regarding to different values of n and

the results below were gained:

Experiment 4. In this experiment, variations of π2 (S) were

evaluated in comparison with π1 (S). Figures 8-10 show these

variations As it is seen, we note that regarding to the increase in

n, the growth of π2 (S) is much more than π1 (S).

Experiment 5. In this experiment, we study evaluation of

variations for function Q (S, a) regarding to the increase in n.

The results of this analysis are shown in Figures 9-11. As it is

seen, we conclude that with increasing n, the value of function

Q (S, a) also increases in Equation 3.

Experiment 6. In this experiment, we study evaluation of

variations for π1 (S) and π2 (S) based on values for Q (S, a). The

results of this evaluation are shown in Figure 12. Looking at the

diagram we note that with increasing value of Q (S, a), the

value of π1 (S) increases. Since always limt→∞ not (S, a) = ∞,

according to the result of Experiment 5, value of Qt (S, a)

increases and according to the result of Experiment 4, with

increasing n, the function π2 (S) grows faster than π1 (S). Based

on the previous subjects, it is concluded that with increasing

value of Qt (S, a), the function π2 (S) must grow faster than π1

(S). Figure 13 shows the results.

4.2. Mathematical Analysis of the Functions

Behavior

To facilitate the calculations, we rewrite functions π1 (S) and π2

(S) as EQ (8) and EQ (9) respectively.

𝜋1 𝑆 =
𝑒
𝑄
𝜏

 𝑒

𝑄𝑗
𝜏𝑚

𝑗=1

 (8)

𝜋2 𝑆 = 𝑒𝑛𝑄 (9)

The variable rate of π1 (S) in relation to Q with parameter t =

0.05, is shown in EQ (10).

Δ𝜋1(𝑆)

Δ𝑄
=

1

𝜏
𝑒

1

𝜏 =
1

0.05
𝑒

1

0.05 =

20𝑒20𝑄

(10)

The variable rate of π1 (S) in relation to Q is shown in EQ (11).

Δ𝜋2 𝑆

Δ𝑄
=

𝑑𝜋2 𝑆

𝑑𝑛
×

𝑑𝑛

𝑑𝑄

 = 𝑄𝑒𝑛𝑄 ×
𝑑𝑛

𝑑𝑄

(11)

0

20

40

60

80

100

120

140

200 400 600 800 1000 1200 1400 1600 1800 2000

N
u

m
b

er
 o

f
M

o
ve

m
en

ts

Episode

Decentralized Q-Learning

Boltzmann-CBR

CB-BHADQL

0

50

100

150

200

250

300

350

400

200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 o
f

m
o

ve
 t

o
 G

o
al

Episode

Decentralized Q-Learning
Boltzmann-CBR
CB-BHADQL

0

20

40

60

80

100

120

140

160

200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 o
f

R
ew

ar
d

s

Episode

Decentralized Q-Learning

Boltzmann-CBR

CB-BHADQL

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

30

Through the comparison of the EQ(10) and EQ(11), we

conclude that the growth of the rate
△𝜋1(𝑆)

△𝑄
 Is less than

△𝜋2 (𝑆)

△𝑄
.

In Equation 10, because Q is positive, the value of function
△𝜋1 (𝑆)

△𝑄
 is always positive. According to Equation 3 and the

diagram in Figure 11, with increasing n, the value of Q (S, a)

always increases. Thus,
𝑑𝑛

𝑑𝑄
 > 0 and from the other hand, n> 0

and Q> 0. So,
△𝜋2 (𝑆)

△𝑄
 is always positive.

In Equation 10, 𝑒20𝑄 is multiplied by the constant value 20.

This is while in Equation 11, 𝑒𝑛𝑄 is multiplied by variant Q.

With increasing n, the value of Q increases. Thus, the growth

rate of
△𝜋1 (𝑆)

△𝑄
 is less than

△𝜋2(𝑆)

△𝑄
. The diagram in Figure 13 also

supports the result gained.



Fig 8. Examining the growth of π2 (S) and π1 (S) based on

the different n values

Fig 9. Examination of π2(S) variations based on the different

n values.

Fig 10. Examination of π1 (S) Variations based on the

Different n values.



Fig 11. Examination of Q (S, a) Variations based on the

Different n values.

Fig 12. Examination of π1 (S) Growth based on the Different

Q (S, a) values.



Fig 13. Examination of π1 (S) and π2 (S) Growth based on

the Different Q (S, a) values

5. CONCLUSION
In this paper, a new hybrid model named CB-BHDAQL has

been introduced to solve Markov’s games based on

reinforcement learning and case base systems, in which a new

function has been applied to select the action in each state. The

results gained were compared with the current algorithms.

Based on the results gained, in comparison with Decentralized

Q-Learning and Boltzmann’s CBR algorithms, CB-BHADQL

algorithm has a very high efficiency from the perspective of

convergence rate to the optimal policy , average of total reward

gained and the number of the movements needed for

convergence to the optimal policy.

6. REFERENCES
[1] R. A. C. Branchi, R. Raquel, R. L. D. Mantaras, ” Imroving

Reinforcement Learning by using Case Based Heuristics”,

Proceeding of the Int. Conference on Case Based Learning

2009 (ICCBR 2009), Springer , 2009.

[2] N. Vlassis, “A Concise Introduction to Multiagent Systems

and Distributed Artificial Intelligence”, 2007, Morgan and

Claypool Publishers.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

n(S0,a1)


(S

0
,a

1
)

1(S0,a1)

2(S0,a1)

0

0.5

1

1.5

2x 10
14 0 0.5 1 1.5 2 2.5 3 3.5

4 4.5

0

10

20

30

Q(S0,a1)
 2(S0,a1)

n
(S

0
,a

1
)

0.5

0.6

0.7

0.8

0.9

1 0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0

10

20

30

Q(S0,a1)1(S0,a1)

n
(S

0
,a

1
)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

n(t)

Q
(S

0
,a

1
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Q(S0,a1)


1

(S
0

,a
1

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10

Q(S0,a1)


(S

0
,a

1
)

1(S0,a1)

2(S0,a1)

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

31

[3] C. Boutilier, "Sequential optimality and coordination in

multi-agent systems", in: Proceedings of the 16th

International joint conference on Artificial intelligence,

1999 , Vol. 1, Morgan Kaufmann Publishers Inc.,

Stockholm, Sweden.

[4] L. Bosniu, R. Babuska, and B. Schutter, "A Comprehensive

Survey of Multiagent Reinforcement Learning", IEEE

Transaction on System, Man, Cybern, 2008 ,vol. 38, pp.

156-171.

[5] B. Masoumi, M. R. Meybodi, “Speeding up learning

automata based multi agent systems using the concepts of

stigmergy and entropy”, Journal of Expert Systems with

Applications, July 2011, Vol 38, Issue 7, PP. 8105-8118.

[6] M. Lauer and M. Riedmiller, "An Algorithm for Distributed

Reinforcement Learning in Cooperative Multi-Agent

Systems", in The 17th International Conference on

Machine Learning San Francisco, CA, USA, 2000:

Morgan Kaufmann Publishers Inc, pp. 535 – 542.

[7] J. Hu, M. Wellman, "Nash Q-Learning for General-Sum

Stochastic Games", Journal of Machine Learning

Research, , 2003, vol. 4, pp. 1039-1069.

[8] X. Wang and T. Sandholm, "Reinforcement Learning to

Play an Optimal Nash Equilibrium in Team Markov

Games", in Advances in Neural Information Processing

Systems, 2002, vol. 15: MIT Press, pp. 1571-1578, 2002,

[9] M. Song , G. Gu and G. Zhang , “ Pareto-Q Learning

Algorithm for Cooperative Agents in General Sum

Games”, In Multiagent Systems and Applications , 2005,

Vol.3690 : Springer, Berlin/Heidelberg , pp.576-578.

[10] L. Matignon , G. J. Lauent and N. L. Front-part , “

Hysteretic Q-Learning: An Algorithm for Decentralized

Reinforcement Learning in Cooperative Multi-agent

Teams “ , In Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems IROS , San

Diego , CA , USA, Nov. 2007, PP.64-69.

[11] F. S. Melo, M. I. Ribeiro, “Reinforcement Learning with

Function Approximation for Cooperative Navigation

Tasks”, IEEE International Conference on Robotics and A

Utomation Pasadena, CA, USA, May 2008, pp. 3321-

2237.

[12] M. Lauer and M. Riedmiller, “Reinforcement Learning for

Stochastic cooperative Multi-agent Systems”, In

Proceeding of AAMAS 2004, New York, NY, ACM Press,

pp. 1514-1515.

[13] R. A. C. Bianchi, C. H. C. Ribeiro, A. H. R. Costa, “

Accelerating autonomous learning by using a heuristic

selection of actions”, Journal of Heuristis , , 2008, Vol. 2,

pp.135-168.

[14] R. A. C. Bianchi, C. H. C. Ribeiro, A. H. R. Costa,

”Heuristic selection of actions in multi agent reinforcement

learning”, 20th International conference on Artificial

Intelligence, India , Jan 2007, pp.690-695.

[15] L. Puterman, Markov Decision Processes: Discrete

Stochastic Dynamic Programming, John Wiley and Sons,

New York, 1994.

[16] R. S. Sutton, A. G. Barto, “Reinforcement Learning : An

Introduction”, MIT Press, 1998.

[17] J. F. Nash, “Non-cooperative Games”, Annals of

Mathematics, , 1951, Vol. 54, pp. 286–295.

[18] A. M. Fink, Equilibrium in a Stochastic N-person Game,

Journal of Science in Hiroshima University, Series A-I,

1964, Vol. 28, pp. 89–93.

[19] A. Aamodt; E. Plaza, "Case-Based Reasoning:

Foundational Issues", Methodological Variations and

System Approaches AI Communications, IOS Press,

1994, Vol. 7, No. 1, pp. 39-59.

[20] R. Bergman; "Engineering Applications of Case Based

Reasoning", Journal of Engineering Applications of

Artificial Intelligence, 1999 , Vol. 12, pp.805.

[21] Gabel, T. And Riedmiller, M., “CBR for state value

function Approximation in Reinforcement Learning”,

Proceeding of the Inter. Conference on Case Based

Learning 2005 (ICCBR 2005) , Springer , Chicago, USA.

[22] Y. Shoham and K. Leyton-Brown , “Multiagent Systems:

Algorithmic , Game theoretic and Logical Foundation “

,2009.

