
International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

12

Application of Program Slicing for Aspect Mining

and Extraction – A Discussion

Amogh Katti
Asst. Prof., Dept of CSE

WIT, Solapur.

Maharashtra, India.

Vyankatesh Bingi
Asst. Prof., Dept of IT

WIT, Solapur.

Maharashtra, India.

Vishwanath Chavan
Asst. Prof., Dept of CSE

WIT, Solapur.

Maharashtra, India.

ABSTRACT

Aspect Orientation removed the code scattering and tangling

drawback of Object Orientation by encapsulating the cross

cutting concerns into their own modules called Aspects. It is

gaining popularity these days as lot of languages, frameworks,

programming and modeling tools already support aspects and

developers have started to embrace these. But there exists lot

of legacy object oriented code that needs to be moved to

aspects as this makes cross cutting concerns easy to change

(localized changes would be enough), test, extend, more

comprehensible, etc. Converting it manually is tedious and

there exist different techniques that semi automate the process

making the maintenance engineer‟s job easier. Another

approach to the automation process using program slicing is

also possible. In this paper, we discuss aspect mining and

extraction from program slicing point of view.

General Terms

Software Engineering, Software Evolution, Aspect

Orientation, Program Analysis, Refactoring.

Keywords

Aspect Mining using Program Slicing, Refactoring to

Aspects, Program Slicing for Refactoring, Untangling.

1. INTRODUCTION
Cross-cutting concerns are aspects of a program which affect

(crosscut) the main concerns. These concerns often cannot be

cleanly decomposed from the rest of the system in both the

design and implementation and result in either scattering or

tangling of the program or both. Here the code is scattered or

tangled, making it harder to understand and maintain. It is

scattered when one concern (like logging) is spread over a

number of modules (e.g., classes and methods). That means to

change logging can require modifying all affected modules.

Modules end up tangled with multiple concerns (e.g., account

processing, logging, and security). That means changing one

module entails understanding all the tangled concerns. This

increases the system complexity and makes evolution

considerably more difficult.

Aspect Oriented Programming (AOP) [8] attempts to solve

this problem by allowing the programmer to express cross-

cutting concerns in stand-alone modules called aspects.

Aspects can contain advice (code joined to specified points in

the program) and inter-type declarations (structural members

added to other classes). For example, a security module can

include advice that performs a security check before accessing

a bank account. The pointcut defines the times (join points)

that a bank account can be accessed, and the code in the

advice body defines how the security check is implemented.

That way, both the check and the places can be maintained in

one place. Further, a good pointcut can anticipate later

program changes, so if another developer creates a new

method to access the bank account, the advice will apply to

the new method when it executes.

The industrial adoption of the aspect-oriented paradigm needs

migration of legacy software systems (object-oriented) to

aspect oriented ones and a subsequent boost in research on

software refactoring [2]. The reasons to migrate a legacy

system to an aspect-oriented solution are multiple. Using

aspect-oriented technology, the cross-cutting concerns can be

modularized using language features like pointcuts and

advices inside an aspect. In the resulting system, the different

concerns are cleanly separated making the system easier to

maintain and extend.

A program slice is a subset of program statements concerning

a subset of program variables. It separates a subset of program

behavior. Weiser [18] says it as the mental abstraction people

make when debugging a program. Program slicing is used in

applications like debugging, parallelization, program

differencing and integration, software maintenance, testing,

reverse engineering, and compiler tuning [7].

Existing aspect mining techniques [1,5,9-14,16,17,20,23-27]

are based on pattern matching, formal concept analysis,

natural language processing on source code, software metrics

and heuristics, clone detection and fan-in analysis. All the

techniques follow specific assumptions for deciding a concern

to be cross cutting (shown in the table below). We can say

that the knowledge inference regarding when is a concern said

to be cross-cutting is poorly developed. We think an

intelligent analysis technique along with program slicing can

accomplish this. There exists no mining technique that uses

program slicing.

Table 1. Various approaches to aspect mining and their

assumptions

Aspect Mining Approach Assumption

Analyzing recurring patterns of

execution traces

Cross cutting concerns follow

certain execution patterns

Natural language processing on

source code

cross-cutting concerns are

often implemented by

rigorously using naming and

coding conventions

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

13

Detecting unique methods

using heuristics

cross cutting concerns are

implemented as “unique

methods” - a method without a

return value which

implements a message

implemented by no other

method

Detecting clones as indicators

of crosscutting concerns

because the cross-cutting

concerns could not be cleanly

modularized, certain parts of

the implementation show high

levels of duplicated code.

Fan-in analysis many of the well-known

cross-cutting concerns are

implemented using a

technique which exhibits a

high fan-in. fan-in of a method

„m‟ is the number of distinct

method bodies which can

invoke „m‟.

The slicing process consists of identifying the statements that

form the slice, slice identification, and isolating these

statements into an independent program, slice extraction.

Thus slicing seems very much similar to the Aspect Mining

and Refactoring process. Our broad goal is to apply and test

slicing for aspect mining and refactoring in the following

directions:

1. A program slice isolates a subset of program

statement concerning a subset of program variables

and aspect extraction deals with isolating a tangled

concern into its own abstraction. Both seem to have

considerable similarity. We wish to analyze all the

similarities between slice identification/extraction

and aspect identification/extraction in detail. The

similarities will decide if the slicing techniques be

used as aspect extraction techniques and would

minimize the work towards aspect extraction as

slicing techniques can be customized to suit aspects.

2. There are different types of cross-cutting concerns

like logging, exception handling, authentication and

authorization, etc. Do the similarities remain the

same across different types of cross-cutting

concerns?

3. In the slice extraction literature there exist many

different slicing techniques based on both static and

dynamic analysis [3,4,6,15,18,19,21,22]. Can these

techniques be used for aspect

identification/extraction or new one‟s need to be

designed?

4. Do Different types of cross-cutting concerns require

different types of slice identification/extraction

approaches?

5. Characterizing the slicing technique that suits aspect

isolation/extraction.

6. Developing new slicing techniques for aspect

mining/extraction, if required, considering different

cross-cutting concerns or customizing the existing

techniques.

7. Comparison of slicing based aspect

mining/extraction technique with other approaches

in detail.

In this paper we discuss the above questions and use the

decisions we make at various stages to outline an algorithm

for aspect mining and refactoring using slicing.

2. QUESTIONS AND DISCUSSION
Can slicing be used for aspect extraction?

Aspect mining involves identification of cross-cutting

concerns. It can be split into two steps namely identifying

different concerns and finding which of them are cross

cutting, which are potential aspects. Slicing can be used to

identify different concerns. Once different concerns are

identified next step is to determine if the concerns are cross-

cutting. We can use some program analysis techniques like

Java Debugger Architecture, Aspects, Byte Code

Instrumentation, Source Code Instrumentation, etc. [28] and

the analysis results can be used to find the cross cutting

concerns. And finally, aspect extraction is syntax and

semantic preserving program transformation which is same as

slice extraction.

In a programming language like java, which is purely object

oriented (i.e. no code is present outside a class), aspect

extraction involves extracting methods as advice and instance

or static variables as type declarations. That means it is

predominantly method extraction. Since Program Slicing has

been used for method extraction [3,4,6,19,21,22] and we can

say that it can be used for aspect extraction as well.

Do the similarities between program slicing and aspect

mining/extraction remain the same across different cross

cutting concerns (and application specific cross cutting

concerns)? If there is any difference, how does it affect the

slicing technique required?

Aspect Mining and Slice Identification seem very much

similar but there exists some difference between Slice

Extraction and Aspect Extraction. If we extract a method

using slicing, the entire slice will become a new method

whereas if we extract an aspect the slice will be distributed

among multiple advices, which will be triggered by different

joinpoints. For example, if we extract logging messages from

a method, some message will become a before advice,

something else will become an after advice, etc.

And during aspect extraction, the number of advices the slice

gets distributed to is dependent on the type of cross cutting

concern involved. For example, If the cross cutting concern

involved is Logging the slice needs to be divided among a

number of advices equivalent to the different levels of logging

supported in the application. And for the Exceptions cross

cutting concern, it is dependent on the different types of

exceptions used in the application, application as well as

general exceptions. So we can say that the cross cutting

concern involved influences the slice extraction algorithm.

And while designing a slice extraction algorithm we need to

take care that it is generic enough to handle the variability of

different cross cutting concerns and it can handle application

specific cross cutting concerns as well.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

14

What are the characteristics of the slicing technique

required for aspect mining and refactoring?

Properties of Program Slicing are:

 There are two varieties of program slicing: Static

and Dynamic. In static slicing, static analysis of the

source code is carried out to compute the slice.

Whereas in dynamic slicing, we execute the source

code for a particular input and compute the slice

that is valid only for this particular execution.

Slicing criterion for dynamic slicing includes a

specific input for which the slice is valid along with

other components in static slicing criterion.

 Slice computation can be accomplished in two

ways: using Backward Slicing or using Forward

Slicing. Backward slicing is the one which was

introduced originally by Weiser: a slice contains all

statements and control predicates that may have

influenced a given variable at a given point of

interest. By contrast, forward slices contain all

statements and control predicates that may be

influenced by the variable. Nevertheless, backward

and forward slices are computed in a similar way.

The only difference is the way the flow is traversed.

 Slices can span a single procedure or multiple

procedures and are called Intra-procedural and

Inter-procedural slices respectively. Intra-procedural

slicing computes slices within one procedure. On

the other hand, inter-procedural slicing can compute

slices which span procedures and even different

classes and packages when slicing object-oriented

programs.

Characteristics of a program slicing technique required for

aspect mining and refactoring can be identified to be the

following:

1. If we want to use a static slicing technique, we may

need to represent the entire software system in the

form of a graph. This would be tedious and very

expensive in terms of memory and time. And it is

very expensive to handle polymorphism using static

slicing. We can use dynamic analysis as it

overcomes the above mentioned problems.

Static slicing if used involves analyzing the entire

code whereas if dynamic slicing is used only the

concern related code will be executed for analysis.

If we want inter procedural, inter modular slices

(which are very much necessary for concern

identification) dynamic slicing is the best option as

there is no need to analyze the entire system.

2. If we wish to use dynamic slicing, forward slicing is

the option in contrast to backward slicing.

3. The slicing algorithm should be inter-procedural as

it has to extract concerns spread across different

modules in the application and not just procedures.

4. The slice obtained should fit into a number of

appropriate advices. So a slice splitting technique is

also required.

Can extant slicing techniques be used?

“Program Slicing for Refactoring: Static Slicer Using

Dynamic Analyzer” [3] describes a slicing algorithm for

method extraction using dynamic analysis. It does not use any

alternative program representation, exploits testing performed

during unit testing and hence suits refactoring. The unit

testing performed for method extraction can be replaced by

functionality testing so that we can test the working of a

particular concern. This functionality testing would help in

identifying concerns.

3. ALGORITHM
In this section we present a crude algorithm for aspect mining

and extraction using program slicing. Tasks involved in aspect

mining/extraction using slicing and ways to achieve them are

enumerated below:

1. Identify all the concerns in the system using slicing.

After this step, each concern is a slice.

2. We can use some program analysis techniques like

Java Debugger Architecture, Aspects, Byte Code

Instrumentation, Source Code Instrumentation, etc.

The analysis tool‟s reflection mechanism enables

access to the exact location where an interest is

cross cutting with others. So, we can find out cross

cutting concerns by some analysis (This analysis

algorithm has to be designed).

3. If we want to use dynamic analysis for slicing, the

analysis tools have to be strengthened to include

powerful reflection capabilities and extensive

pointcuts. For example, if we want to use AspectJ

we need local variable get and set pointcuts,

reflection to identify statements instead of line

numbers, etc.

4. Design and execute functionality test cases for each

particular concern so that data analysis required for

slicing happens. Automate this step also using some

test case generation/execution tools.

5. Detect the cross cutting concerns.

Use data collected during testing and analyze this

data to determine cross cutting concerns.

6. Extract the cross cutting concerns, slices, into their

own aspects.

The slice obtained cannot be placed into an

aspect directly. It has to be split into different

advices. Distribute the slice identified, if it is

cross cutting, into different advices and decide

the joinpoints for the execution of these

advices. Encapsulate the advice and pointcuts

for the joinpoints into an aspect.

The slice obtained should make sense

syntactically and should fit into aspect

correctly. Encapsulate all the concern related

data into aspect in the form of inter type

declarations, only if it is related to this concern

alone.

4. CONCLUSION AND FUTURE WORK
We have analyzed the applicability of slicing to aspect mining

and extraction. The similarities found show that the success

possibility of applying slicing principles to aspect mining is

huge. At the same time the dissimilarities demand

customization of the slicing algorithms, especially slice

extraction, for aspect extraction.

International Journal of Computer Applications (0975 – 8887)

Volume 38– No.4, January 2012

15

Our endeavor is still in its infancy and we are working on

building a working aspect mining and extraction algorithm,

according to the previously mentioned, in the algorithm

section, steps/directions. And once the algorithm is ready we

will implement it and test it on some cross cutting concern

rich legacy applications to show its accuracy as an aspect

mining technique.

5. REFERENCES
[1] A. Budanitski. Semantic distance in wordnet: an

experimental, application-oriented evaluation of five

measures., 2001.

[2] A. van Deursen, M. Marin, and L. Moonen. Aspect

Mining and Refactoring. In Proceedings First

International Workshop on REFactoring: Achievements,

Challenges, Effects (REFACE). University of Waterloo,

2003.

[3] Amogh Katti and Sujatha Terdal. Article: Program

Slicing for Refactoring: Static Slicer using Dynamic

Analyzer. International Journal of Computer

Applications 9(6):36–43, November 2010. Published By

Foundation of Computer Science. BibTeX

[4] Arun Lakhotia, Jean-Christophe Deprez. Restructuring

programs by tucking statements into functions.

Information & Software Technology 40(11-12): 677-689

(1998).

[5] D. Shepherd, T. Tourw´e, and L. Pollock. Using

language clues to discover crosscutting concerns. In

Workshop on the Modeling and Analysis of Concerns,

2005.

[6] Filippo Lanubile, Giuseppe Visaggio. Extracting

Reusable Functions by Flow Graph-Based Program

Slicing. IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 23, NO. 4, APRIL 1997.

[7] Frank Tip. A survey of program slicing techniques.

Journal of programming languages, 3:121-189, 1995.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.

Lopes, J. Loingtier and J. Irwin. Aspect Oriented

Programming. Proceedings of the 11th annual European

Conference for Object-Oriented Programming, vol.1241

of LNCS, pp.220-242(1997).

[9] J. Krinke and S. Breu. Control-flow-graph-based aspect

mining. In 1st Workshop on Aspect Reverse

Engineering, 2004.

[10] J. Krinke. Identifying similar code with program

dependence graphs. In 8th Working Conference on

Reverse Engineering, pages 301–309. IEEE Computer

Society Press, 2001.

[11] J. Morris and G. Hirst. Lexical cohesion computed by

thesaural relations as an indicator of the structure of text.

Comput. Linguist., 17(1):21–48, 1991.

[12] K. Gybels and A. Kellens. An experiment in using

inductive logic programming to uncover pointcuts an

experiment in using inductive logic programming to

uncover pointcuts. In First European Interactive

Workshop on Aspects in Software, 2004.

[13] K. Gybels and A. Kellens. Experiences with identifying

aspects in smalltalk using ‟unique methods‟. In

Workshop on Linking Aspect Technology and Evolution,

2005.

[14] K. Mens and T. Tourw´e. Delving source-code with

formal concept analysis. Elsevier Journal on Computer

Languages, Systems & Structures, 2005. To appear.

[15] Karl J. Ottenstein, Linda M. Ottenstein. The program

dependence graph in a software development

environment. Software Development Environments

(SDE), pages 177-184, 1984.

[16] M. Marin, A. van Deursen, and L. Moonen. Identifying

aspects using fan-in analysis. In Working Converence on

Reverse Engineering (WCRE), 2004.

[17] M. P. Robillard and G. C. Murphy. Concern graphs:

Finding and describing concerns. In Proc. Int. Conf. on

Software Engineering (ICSE). IEEE, 2002.

[18] Mark Weiser. Program slicing. IEEE Transactions on

Software Engineering, 10(4):352-357, 1984.

[19] Mathieu Verbaere. Program Slicing for Refactoring.

Master‟s thesis, 2003.

[20] P. Tonella and M. Ceccato. Aspect mining through the

formal concept analysis of execution traces. In 11th

IEEE Working Conference on Reverse Engineering,

2004.

[21] Raghavan Komondoor, Susan Horwitz. Semantics-

Preserving Procedure Extraction. In Proc. of 27th ACM

Symp. on Principles of Programming Languages

(POPL), (Boston, Massachusetts, January 2000).

[22] Ran Ettinger. Refactoring via Program Slicing and

Sliding. Ph D thesis 2006.

[23] S. Breu and J. Krinke. Aspect mining using dynamic

analysis. In Workshop on Software- Reengineering, Bad

Honnef, 2003.

[24] S. Breu and J. Krinke. Aspect mining using event traces.

In Conference on Automated Software Engineering

(ASE), September 2004.

[25] S. Breu. Towards hybrid aspect mining: Static extensions

to dynamic aspect mining. In 1st Workshop on Aspect

Reverse Engineering, 2004.

[26] T. Tourw´e and K. Mens. Mining aspectual views using

formal concept analysis. In Source Code Analysis and

Manipulation Workshop (SCAM), 2004.

[27] Tonella, P., Ceccato, M., Migrating Interface

Implementation to Aspects, ICSM'04, Chicago, USA,

September 2004.

[28] A. Cain, J.-G. Schneider, D. Grant, and T. Y. Chen.

Runtime data analysis for Java programs. In Proceedings

of ECOOP 2003 Workshop on Advancing the State-of-

the-Art in Runtime Inspection (ASARTI 2003), July

2003.

