
International Journal of Computer Applications (0975 – 8887) 

Volume 38– No.3, January 2012 

1 

Artificial Intelligence Tools Aided-decision for 

Power Transformer Fault Diagnosis  

 
Seifeddine Souahlia 

C3S, ESSTT 
5, Taha Hussein Street – Tunis 

Bab Menara 1008, Tunisia 

 

Khmais Bacha 
C3S, ESSTT 

5, Taha Hussein Street – Tunis 
Bab Menara 1008, Tunisia 

 

Abdelkader Chaari 
C3S, ESSTT 

5, Taha Hussein Street – Tunis 
Bab Menara 1008, Tunisia 

 

 

ABSTRACT 

This paper presents an intelligent fault classification approach 

for power transformer dissolved gas analysis (DGA). Fault 

diagnosis methods by the DGA and artificial intelligence (AI) 

techniques are implemented to improve the interpretation 

accuracy for DGA of power transformers. The DGA 

traditional methods are utilized to choose the most appropriate 

gas signature. AI techniques are applied to establish 

classification features for faults in the transformers based on 

the collected gas data. The features are applied as input data to 

fuzzy logic, artificial neural network (ANN) and support 

vector machine (SVM) classifiers for faults classification. The 

experimental data from Tunisian Company of Electricity and 

Gas (STEG) is used to evaluate the performance of proposed 

method. The results of the various DGA methods are 

classified using AI techniques and the results are compared 

with the empirical test. In comparison to the results obtained 

from the AI techniques, the ratios DGA method has been 

shown to possess the most excellent performance in 

identifying the transformer fault type. The test results indicate 

that the SVM approach can significantly improve the 

diagnosis accuracies for power transformer fault 

classification..   

General Terms 

Key gas, graphical representation, ratios, multi-layer 

perceptron, radial basis function. 

Keywords 

Dissolved gas analysis, support vector machine, artificial 

neural network, fuzzy logic, transformer fault diagnosis. 

1. INTRODUCTION 
Essential devices as power transformers are in a transmission 

and distribution system. The wide varieties of electrical and 

thermal stresses often age the transformers and subject them 

to incipient faults. Being one of the most expensive and 

important elements, a power transformer is a highly essential 

element, whose failures and damage may cause the outage of 

a power system. If an incipient failure of a transformer is 

detected before it leads to a catastrophic failure, predictive 

maintenance can be deployed to minimize the risk of failures 

and further prevent loss of services. To monitor the 

serviceability of power transformers, many devices have 

evolved, such as Buchholz relays or differential relays. But 

the main shortcoming of these devices is that they only 

respond to the severe power failures which require removal of 

equipment from the service. Thus, techniques for early 

detection of the faults would be very valuable to avoid 

outages. 

In industrial practice, dissolved gas analysis (DGA) is a very 

efficient tool for such purposes since it can warn about an 

impendent problem, provide an early diagnosis, and ensure 

transformers’ maximum uptime. 

DGA is a non-invasive technique, which can give valuable 

information on the condition of a transformer. High stresses of 

transformer operations may result in chemical reactions of the 

oil or cellulose molecules constituting the dielectric 

insulation, which may be caused by the dielectric breakdown 

of the oil or hot spots [1]. 

To find out the incipient faults, Dissolved Gas Analysis 

(DGA) is a prevailing method with periodically samples 

which test the insulation oil of transformers to obtain the 

composition of the gases dissolved in the oil due to 

breakdown of the insulating materials inside. The DGA 

methods then ana1yse and interpret the attributes acquired: 

ratios of specific dissolved gas concentrations, their 

generation rates and total combustible gases are used to 

conclude the fault situations. Diverse diagnostic criteria were 

developed for identification of the possible fault types: e.g., 

the conventional key gas method used in [2], ratio method 

presented in [3] and [4], and graphical representation method 

introduced in [5]. 

Recently, artificial intelligence techniques have been 

extensively used with the purpose of developing more 

accurate diagnostic tools based on DGA data. 

In Ref. [6] the authors present a new and efficient integrated 

neural fuzzy approach for transformer fault diagnosis using 

dissolved gas analysis. The proposed approach formulates the 

modelling problem of higher dimensions into lower 

dimensions by using the input feature selection based on 

competitive learning and neural fuzzy model. Then, the fuzzy 

rule base for the identification of fault is designed by applying 

the subtractive clustering method which is efficient at 

handling the noisy input data.  

In Ref. [7] the authors describe how mapping a neural 

network into a rule-based fuzzy inference system leads to 

knowledge extraction. This mapping makes explicit the 

knowledge implicitly captured by the neural network during 

the learning stage, by transforming it into a set of rules. This 

method is applied to transformer fault diagnosis using 

dissolved gas-in-oil analysis. 

The back propagation (BP)-based artificial neural nets (ANN) 

described in Ref. [2] can identify complicated relationships 

among dissolved gas contents in transformer oil and 

corresponding fault types. The BP determines the optimal 

connection weights and bias terms to achieve the most 

accurate diagnosis model for DGA. 



International Journal of Computer Applications (0975 – 8887) 

Volume 38– No.3, January 2012 

2 

In Ref. [1] the authors present an intelligent fault 

classification approach to power transformer dissolved gas 

analysis (DGA), dealing with highly versatile or noise-

corrupted data. Bootstrap and genetic programming (GP) are 

implemented to improve the interpretation accuracy for DGA 

of power transformers. Bootstrap pre-processing is utilized to 

approximately equalize the sample numbers for different fault 

classes to improve subsequent fault classification with GP 

feature extraction. GP is applied to establish classification 

features for each class based on the collected gas data. The 

features extracted with GP are then used as the inputs to 

artificial neural network (ANN), support vector machine 

(SVM) and K-nearest neighbour (KNN) classifiers for fault 

classification. 

The aim of this paper is to present a new method for detection 

and classification of power transformers faults by using a 

dissolved gas analysis and an artificial intelligence technique 

for decision with a maximal classification rate. 

This paper is organized as follows: Section 2 introduces the 

faults types and DGA methods. Section 3 presents the 

regression arithmetic of artificial intelligence techniques. The 

proposed tools and the test of this performance are presented 

in Section 4. Finally, the conclusion is provided in Section 5.  

2. DISSOLVED GAS IN THE 

TRANSFORMER OIL 

2.1 Transformer Fault Types 
IEC Publication 60599 [8] provides a coded list of faults 

detectable by dissolved gas analysis (DGA): 

• Partial discharge (PD):  

PD occurs in the gas phase of voids or gas bubbles. It is 

usually easily detectable by DGA, however, because it is 

produced over very long periods of time and within large 

volumes of paper insulation. It often generates large amounts 

of hydrogen [5].  

• Low energy discharge (D1):  

D1 such as tracking, small arcs, and uninterrupted sparking 

discharges are usually easily detectable by DGA, because gas 

formation is large enough [5]. 

• High energy discharge (D2):  

D2 is evidenced by extensive carbonization, metal fusion and 

possible tripping of the equipment [9]. 

• Thermal faults T <300 ° C (T1):  

T1 evidenced by paper turned brownish. 

• Thermal faults 300 <T< 700 ºC (T2) :  

T2 evidenced when paper carbonizes. 

• Thermal faults T > 700 ºC (T3) :  

T3 evidenced by oil carbonization, metal coloration or fusion. 

2.2 Diagnosis and Interpretation Methods 
The DGA methods have been widely used by the utilities to 

interpret the dissolved gas. According to the pattern of the 

gases composition, their types and quantities, the 

interpretation approaches below for dissolved gas are 

extensively followed [10]: 

    - Gas key method; 

    - Ratios method; 

    - The graphical representation method. 

 key gas method 

In this key gas method, we need five key gas concentrations 

H2, CH4, C2H2, C2H4 and C2H6 available for consistent 

interpretation of the fault. Table 1 shows the diagnostic 

interpretations applying various key gas concentrations. The 

results are mainly adjectives and provide a basis for further 

investigation [11].  

Table 1. Interpretation gas dissolved in the oil [8] 

Gas Detected Interpretation 

Oxygen (O2) Transformer seal fault 

Oxide and Dioxide 

Carbon (CO and CO2) 

Cellulose decomposition 

Hydrogen (H2) Electric discharge (corona 

effect, low partial discharge) 

Acetylene (C2H2) Electric fault (arc, spark) 

Ethylene (C2H4) Thermal fault (overheating 

local) 

Ethane (C2H6) Secondary  indicator of 

thermal fault 

Methane(CH4) Secondary indicator of an arc 

or serious overheating 

 

The ppm concentration typical values range observed in 

power transformers according to IEC 60599 are given in 

Table 2.  

Table 2. Concentration typical values observed in 

transformers [8] 

H2 CH4 C2H6 C2H4 C2H2 CO CO2 

60-

150 

40-

110 

50-90 60-

280 

3-50 540-

900 

5100-

13000 

 

 Ratios method 

Rogers, Dornenberg and IEC are the most commonly used 

ratio methods. They employ the relationships between gas 

contents. The key gas ppm values are used in these methods to 

generate the ratios between them. The IEC method uses gas 

ratios that are combinations of key-gas ratios C2H2/C2H4, 

CH4/H2 and C2H4/C2H6.  

Table 3 shows the IEC standard for interpreting fault types 

and gives the values for the three key-gas ratios corresponding 

to the suggested fault diagnosis. When key-gas ratios exceed 

specific limits, incipient faults can be expected in the 

transformer.  

Table 3. Diagnosis using the ratio method (IEC 599) [8] 

Fault 

type 

C2H2 / C2H4 CH4 / H2 C2H4 / C2H6 

PD < 0.1 < 0.1 < 0.2 

D1 > 1 0.1 – 0.5 > 1 

D2 0.6 – 2.5 0.1 – 1 > 2 

T1 < 0.1 > 1 < 1 

T2 < 0.1 > 1 1 – 4 

T3 < 0.1 > 1 > 4 
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 The graphical representation  

The graphical representation method is used to visualize the 

different cases and facilitate their comparison. The 

coordinates and limits of the discharge and thermal fault 

zones of the Triangle are indicated in Figure 1. Zone DT in 

Figure 1 corresponds to mixtures of thermal and electrical 

faults. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Coordinates and fault zones of the Triangle 

The Triangle coordinates corresponding to DGA results in 

ppm can be calculated as follows: 

% C2H2 = 100x / (x + y + z), % C2H4 = 100y / (x + y + z) and 

% CH4=100z / (x + y + z), where x = (C2H2), y = (C2H4) and z 

= (CH4).  

You can translate the previous figure in a painting that gives 

the limits of each fault which are summarized in Table 4.  

 

Table 4. Graphical representation method zone limits [8] 

PD 98 % CH4 100 % CH4   

D1 23 % C2H4 13 % C2H2 100 % C2H2  

D2 23 % C2H4 13 % C2H2 38 % C2H4 29 % C2H2 

T1 4 % C2H2 10 % C2H4   

T2 4 % C2H2 10 % C2H4   

T3 15 % C2H2 50 % C2H4 100 % C2H4  

 

3. BASIC CONCEPTS OF ARTIFICIAL 

INTELLIGENCE 

3.1 Fuzzy Logic Approach 
In the standard set, an element either belongs to or does not 

belong to a set; so the range of the standard set is  , which can 

be used to solve a two-valued problem. In contrast to the 

standard set, the fuzzy set enables the description of concepts 

where the boundary is not explicit. It concerns not only 

whether an element belongs to the set but also to what degree 

it belongs to. The range of a fuzzy set is [0, 1]. The 

comparisons of the standard sets and fuzzy sets are shown in 

Table 5 [12].  

 

 

 

 

 

Table 5. Two different sorts of mathematical sets 

 

Mathematical 

sets 

Standard set Fuzzy set 

Research 

objects 

Data variables Linguistic variables 

Model Mathematics 

model 

Fuzzy mathematics 

model 

Descriptive 

function 

Transfer function Membership function 

Descriptive 

property 

Precision Ambiguity 

Range of set 
CA(x)  0,1  μA(x)  0,1  

 

The fuzzy logic analysis consists of three parts: fuzzification, 

fuzzy inference and defuzzification. 

Fuzzification is the process of transforming crisp input values 

into grades of membership for linguistic terms of fuzzy sets. 

The membership function is used to associate a grade to each 

linguistic term. A chosen fuzzy inference system (FIS) is 

responsible for drawing conclusions from the knowledge-

based fuzzy rule set of If (X is A) then (Y is B) linguistic 

statements.  

Defuzzification then converts the fuzzy output values back 

into crisp output actions [13]. 

There are several methods for calculating the output set 

representative value. The main ones are: defuzzification based 

on the sets gravity center and the maximum average methods. 

3.2 Neural Network Approach 
The neural network technique is used to recognize and 

classify complex fault patterns without much knowledge 

about the process, the used trials or the fault patterns 

themselves. A neural network consists of many simple 

neurons which are connected with each other. 

The principal neural networks that we will use for the 

classification are: 

 Multi-Layer Perceptron (MLP): Is a network organized 

in layers. A layer is a uniform neurons group without 

connection with each other and makes a transformation 

vector. 

The architecture of the MLP is composed of an input layer, a 

variable number of hidden layers and by an output layer 

which is fully connected with them. In particular, as outlined 

in Figure 2, a three-level fully connected network, using a 

sigmoid output function, has been considered because it is 

known that this number of levels allows building decision 

regions of any shape. 

 
 

Figure 2: The multi-layer perceptron architecture 

13 

DT 

T1 

50 
38 

PD 

%C2H4 T2 
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%CH4 
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     %C2H2 

23 
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 Radial Basis Function (RBF): RBF nets belong to the 

group of kernel function nets that utilize simple kernel 

functions and that are distributed in different neighborhoods 

of the input space whose responses are essentially local in 

nature. The architecture consists of one hidden and one output 

layer. This shallow architecture has great advantage in terms 

of computing speed compared to multiple hidden layer nets. 

Each hidden node in an RBF net represents one of the kernel 

functions. An output node simply computes the weighted sum 

of the hidden node outputs. A kernel function is a local 

function and the range of its effect is determined by its center 

and width. Its output is high when the input is close to the 

center and it decreases rapidly to zero as the input’s distance 

from the center increases. The Gaussian function is a popular 

kernel function and will be used in this algorithm [14].  

3.3 Support Vector Machine (SVM) 

Approach 
The purpose of SVM is to find an optimal separating hyper-

plane by maximizing the margin between the separating 

hyper-plane and the data (Vapnik, 1995) [15]. 

Applying the Lagrange principle, we obtain the quadratic 

programming problem of dimension m (examples number) as 

follows in Eq. 1: 

       1 ,

1

1
max ( )

2

,   0

0

m

i i j i j i j

i i j

i

m

i i

i

y y x x

i

y

  














 

 


 



     (1)                                                                             

Where x is the input vector,  1;1y   is the output class 

and αi are the Lagrange coefficients.  

We define the supports vectors VS any vector xi as yi.[(w0. xi) 

+ bo ] = 1. This is equivalent to Eq. 2: 

            0   for 1,...,i iVS x i m       (2)                                                                              

The ranking function class(x) is defined by Eq. 3: 

 ( ) ( . ) ( . )
0 0 0

class x sign w x b sign y x x b
i i i

x VS
i



 
        

  

      (3)                                           

If class (x) is less than 0, x is the class -1 else it is a Class 1.  

However for nonlinear cases, there is insufficient space for 

classifying the inputs. So, we need a larger space. We must 

therefore resolve Eq. 4: 

 
1 ,

1

1
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,   0

0
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i i

i

y y x x
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    (4)                                                                             

With C is a margin setting. 

( , ) ( ). ( )i j i jK x x x x   is a positive kernel function 

definite on R. The main kernel functions used for 

classification are given in Eq. 5, 6, 7 and 8: 

 The linear Kernel function : 

                           ( , ') . 'K x x x x          (5)                                                   

 The polynomial  Kernel function:             

d d( , ') ( . ')    or  ( . ') K x x x x c x x   (6)              

 Gaussian radial basis function : 

                    
2

2

'
( , ') exp( )

2    

x x
K x x




 

 (7)                           

 Sigmoïd Kernel Fonction :              

   
0 0( , ') tanh( ( . ') )K x x x x    (8) 

4. TRANSFORMERS FAULTS 

CLASSIFICATION BY ARTIFICIAL 

INTELLIGENCE TECHNIQUES 

4.1 Training and Testing Data  
This study employs dissolved gas content data in power 

transformer oil from chemistry laboratory of the Goulette 

central of Tunisian Company of Electricity and Gas (STEG). 

The data is divided into two data sets: the training data sets 

(94 samples) and the testing data sets (30 samples). The 

extracted DGA data contain not only the five concentrations 

of key gas, three relatives percentages and three ratios but also 

the diagnosis results from on-site inspections. The training 

data sets have been evaluated using various methods DGA 

and the corresponding judgments related to seven classes have 

been provided: normal unit (46 samples), Partial Discharge (2 

samples), low energy discharge (3 samples), high energy 

discharge (17 samples), low temperature overheating (4 

samples), middle temperature overheating (7 samples) and 

high temperature overheating (15 samples). 

4.2 Classification by Fuzzy Logic 
For The fuzzy logic faults classification is performed using 

several DGA methods as gas signature. 

4.2.1 Fuzzy key gas 

Firstly, we will classify the faults using key gas as input data 

with: 

•5 linguistic variables are the 5 gas: H2, CH4, C2H2, C2H4 and 

C2H6; 

•3 linguistic values: small, medium and high; 

•5 sets of reference: U = [0, 600] for H2, U = [0, 500] for CH4, 

U = [0, 400] for C2H2, U = [0, 700] for C2H4 and U = [0, 310] 

for C2H6; 

•7 outputs, the reference sets are : U = [0, 1] for the non fault, 

U = [0, 2] for the PD, U = [1, 3] for the D1, U = [2, 4] for the 

D2, U = [3, 5] pour for the T1, U = [4, 6] for the T2 and U = 

[5, 7] for the T3 ; 

•3 membership functions: triangular, trapezoidal and 

Gaussian; 

•35 = 243 fuzzy rules; 

•Defuzzification by the centroid method.  

The performance of key gas method is analyzed in terms false 

alarm rate and non-detection rate for triangular, trapezoidal 

and Gaussian membership functions as shown in Table 6.  

According to the results, we find that the triangular 

membership function is more efficient for system fault 

diagnosis, but this method does not give excellent results. So, 

we must propose an alternative method. 
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Table 6. The key gas method classification performance 

Membership  

function 

False alarm rate 

(%) 

Non-detection rate 

(%) 

Gaussian 16.7 (5 / 30) 53.3 (16 / 30) 

Trapezoid 6.7 (2 / 30) 26.7 (8 / 30) 

Triangular 3.3 (1 / 30) 26.7 (8 / 30) 

 

4.2.2 Fuzzy graphical representation 

Secondly, we will classify the faults using graphical 

representation as input data with: 

•3 linguistic variables are the 3 relatives percentages: % CH4, 

% C2H2 and % C2H4; 

•4 linguistic values: very low, low, medium and high; 

•1 set of reference: U = [0, 100] for every linguistic variable; 

•The same 7 outputs; 

•The same 3 membership functions; 

•33 fuzzy rules; 

The test set is again fed to the fuzzy logic in order to verify if 

it classifies and estimates correctly. Table 7 tabulates the 

results by representing the false alarm rate and the non-

detection rate for three membership functions.  

 

Table 7. The key gas method classification performance 

Membership  

function 

False alarm rate 

(%) 

Non-detection rate 

(%) 

Gaussian 20 (6 / 30) 3.3 (1 / 30) 

Trapezoid 16.7 (5 / 30) 6.7 (2 / 30) 

Triangular 16.7 (5 / 30) 3.3 (1 / 30) 

 

From Table 7, we note that the triangular membership 

function is more efficient system fault diagnosis. 

4.2.3 Fuzzy ratios 

Now, we will classify the faults using ratios as input data 

with: 

•3 linguistic variables are the 3 ratios: C2H2/C2H4, CH4/H2 and 

C2H4/C2H6 ; 

•4 linguistic values: very low, low, medium and high ; 

•3 sets of reference: U = [0, 10] for C2H2/C2H4, U = [0, 25] for 

CH4/H2 and U = [0, 12] for C2H4/C2H6 ; 

•The same 7 outputs; 

•The same 3 membership functions; 

•43 = 64 fuzzy rules; 

The diagnosis results for test set with the triangular, 

trapezoidal and Gaussian membership functions are listed in 

Table 8.  

According to test results, we find that the triangular 

membership function gives a better diagnosis compared to the 

Gaussian and trapezoidal membership functions. 

 

 

Table 8. The ratios method classification performance 

Membership  

function 

False alarm rate 

(%) 

Non-detection rate 

(%) 

Gaussian 16.7 (5 / 30) 53.3 (16 / 30) 

Trapezoid 6.7 (2 / 30) 10 (3 / 30) 

Triangular 6.7 (2 / 30) 10 (3 / 30) 

 

4.2.4 Comparative investigation of fuzzy logic 

classification 

According to test results of the four inputs data classified by 

the fuzzy logic, we conclude that the triangular membership 

function gives the best results.  

To select the most significant gas analysis method, we 

compare the false alarm rate and non-detection rate of four 

inputs data types which are given in Table 9.  

 

Table 9. False alarm rate and non-detection rate of the 

three DGA methods 

Membership  

function 

False alarm rate 

(%) 

Non-detection rate 

(%) 

Key gas 3.3 (1 / 30) 26.7 (8 / 30) 

Graphical 

representation 

16.7 (5 / 30) 3.3 (1 / 30) 

Ratios 6.7 (2 / 30) 10 (3 / 30) 

 

The actual result indicates the classification accuracies 

obtained by using the ratios method is higher than those of gas 

signature for the classification by fuzzy logic.  

To conclude, faults classification by the fuzzy logic technique 

can be achieved by the ratios method using the triangular 

membership function. 

4.3 Classification by Neural Networks 
An ANN-based power transformer fault diagnostic system 

includes input features, network topology, fault outputs as 

well as training patterns. In the current study, we used: 

 Two types of neural networks: the MLP and RBF are 

used for transformers faults classification. 

 Three types of input data: five key gases (key gas 

method), three ratios (ratios method) and three relatives 

percentages(graphical representation  method) are chosen as 

input features; 

 3 binary outputs in order to minimizing the neurons 

number in output layer. The outputs codification are presented 

in the following: 

 0 0 1 : no fault (normal working) ; 

 0 1 0 : partial discharge fault (DP) ; 

 0 1 1 : low energy discharge fault (D1) ; 

 1 0 0 : high energy discharge fault (D2) ; 

 1 0 1 : low temperature overheating (T1) ; 

 1 1 0 : middle temperature overheating (T2) ; 

 1 1 1: high temperature overheating (T3). 
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4.3.1 MLP classification 

Firstly, we will classify the faults by MLP network. After the 

test, with several parameters, we obtained the appropriate 

MLP architecture with the minimal error rate. Then, the 

optimal parameters are utilized to train the MLP model. So, 

we used: 

 Four layers: an input layer, two hidden layers, and an 

output layer; 

 Transfer function tangent sigmoid for 4 layers which is 

given in Figure 3. 

 

 

 

 

 

 

 

 

Figure 3: Tangent sigmoid transfer function 

 

 The neurons and iterations numbers are tabulated in 

Table 10. 

 

Table 10. Neurons and epoch numbers for MLP 

 

Gas signature 

Neurons number Epoch  

number 
Input    

layer 

Hidden  

layers 

Output  

layer 

Key gas 5 4 3 400 

Ratios 3 3 3 400 

Graphical 

representation 

3 3 3 250 

 
The performance of MLP network is analyzed in terms false 

alarm rate and non-detection rate for three gas signature 

methods as can be seen in Table 11.  

 

Table 11. The MLP classification performance 

Gas signature False alarm rate 

(%) 

Non-detection rate 

(%) 

Key gas 0 26.7 (8 / 30) 

Graphical 

representation 

0 26.7 (8 /30) 

Ratios 0 23.3 (7 / 30) 

 
The actual result indicates the superiority of the ratios method 

for the MLP network classification. 

4.3.2 RBF classification 

Now, we will classify the faults by RBF network. The 

parameters of RBF model are optimized by many tests. The 

adjusted parameters with maximal classification accuracy are 

selected as the most appropriate parameters using: 

 Mean squared error goal = 0.01 

 Spread of radial basis functions = 1 

 Maximum number of neurons = 40 

 Number of neurons to add between displays = 1 

The performance of RBF network is analyzed in terms false 

alarm rate and non-detection rate for four gas signature 

methods as shown in Table 12.  

 

Table 12. The RBF classification performance 

Gas signature False alarm rate 

(%) 

Non-detection rate 

(%) 

Key gas 0 23.3 (7 / 30) 

Graphical 

representation 

0 20 (6 / 30) 

Ratios 0 16.7 (5 /30) 

 
From Table 12, the actual result indicates that the ratios as a 

gas signature has higher diagnostic accuracy than two other 

methods for the RBF network classification. 

4.3.3 Comparative investigation of MLP and RBF 

classification 

According to test results of the MLP and RBF networks, we 

conclude that the ratios method present the best performance; 

it can be used as a neural network input vector. 

To select the appropriate neural network between the MLP 

and RBF networks, we compare the false alarm rate and non-

detection rate given in Table 13.  

 

Table 13. The RBF classification performance 

Neural 

network 

False alarm rate 

(%) 

Non-detection rate 

(%) 

MLP 0 23.3 (7 / 30) 

RBF 0 16.7 (5 / 30) 

 

The test samples examined by two neural networks shows that 

the types of faults detected by the RBF network are almost 

identical to the real fault types. The other network MLP 

doesn’t have to correct the faults. The table above shows that 

RBF network has more excellent performance than MLP 

network. In this case, we adopt the RBF network.  

4.4 Classification by SVM 
As shown in Figure 4, the diagnostic model includes six SVM 

classifiers which are used to identify the seven states: normal 

state and the six faults (PD, D1, D2, T1, T2 and T3). With all 

the training samples of the states, SVM1 is trained to separate 

the normal state from the fault state. When input of SVM1 is a 

sample representing the normal state, output of SVM1 is set to 

+1; otherwise -1. With the samples of single fault, SVM2 is 

trained to separate the discharge fault from the overheating 

fault. When the input of SVM2 is a sample representing 

discharge fault, the output of SVM2 is set to +1; otherwise-1. 

With the samples of discharge fault, SVM3 is trained to 

separate the high-energy discharge (D2) fault from the partial 

discharge (PD) and low energy discharge (D1) fault. When 

the input of SVM3 is a sample representing the D2 fault, the 

output of SVM3 is set to +1; otherwise -1. With the samples 

of overheating fault, SVM4 is trained to separate the high 

-1 

+1 
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temperature overheating (T3) fault from the low and middle 

temperature overheating (T1 and T2) fault. When the input of 

SVM4 is a sample representing the T3 fault, the output of 

SVM5 is set to +1; otherwise -1. SVM5 is trained to separate 

the middle temperature overheating (T2) fault from the low 

temperature overheating (T1) fault. When the input of SVM5 

is a sample representing the T2 fault, the output of SVM5 is 

set to +1; otherwise -1. SVM6 is trained to separate the partial 

discharge (PD) fault from the low energy discharge (D1) fault. 

When the input of SVM6 is a sample representing the D1 

fault, the output of SVM6 is set to +1; otherwise -1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Diagnostic model of power transformer based on 

SVM classifier 

All the six SVMs adopt polynomial and Gaussian as their 

kernel function. In SVM, the parameters σ and C of SVM 

model are optimized by the cross validation method. The 

adjusted parameters with maximal classification accuracy are 

selected as the most appropriate parameters. Then, the optimal 

parameters are utilized to train the SVM model. 

So the output codification is presented in Table 14.  

 

Table 14. Codification output of SVM 

 svm1 svm2 svm3 svm4 svm5 svm6 

No 

fault 

+1      

PD -1 +1 -1   -1 

D1 -1 +1 -1   +1 

D2 -1 +1 +1    

T1 -1 -1  -1 -1  

T2 -1 -1  -1 +1  

T3 -1 -1  +1   

Firstly, we will classify the faults by SVM with the 

polynomial kernel. The diagnosis results for test set with four 

gas signature methods are listed in Table 15.  

Table 15. The polynomial kernel classification 

performance 

Gas signature False alarm 

rate (%) 

Non-detection 

rate (%) 

Key gas 0 40 (12 / 30) 

Graphical 

representation 

0 23.3 (7 / 30) 

Ratios 0 20 (6 / 30) 

 

The actual result, which indicates the ratios gas signature, has 

a significantly high degree of diagnosis accuracy for the 

classification by SVM with polynomial kernel. 

Secondly, we will classify the faults by SVM with the 

Gaussian kernel. Table 16 lists the diagnosis results for test 

set with four gas signature methods.  

 

Table 16. The Gaussian kernel classification performance 

Gas signature False alarm 

rate (%) 

Non-detection 

rate (%) 

Key gas 0 26.7 (8 / 30) 

Graphical 

representation 

0 20 (6 / 30) 

Ratios 0 13.3 (4 / 30) 

 

As shown in Table 16, we note that the ratios gas signature 

with Gaussian kernel presents the best result in comparison 

with the other three gas signature. 

According to faults classification test results by the SVM with 

polynomial and Gaussian kernel functions, we find that the 

ratios method is the most appropriate gas signature. 

To select more efficient kernel between the two cores used 

(polynomial and Gaussian), we compare the false alarm rate 

and non-detection rate given in Table 17.  

Table 17. False alarm and non-detection rates of SVM for 

different kernels 

Kernel type False alarm 

rate (%) 

Non-detection 

rate (%) 

Polynomial 0 20 (6/30) 

Gaussian 0 13.3 (4/30) 

 

The results in Table 17 show that the Gaussian kernel gives 

the best performance for the test. This is aided by a proper 

choice of the kernel parameter σ by the cross validation 

method, because this parameter determines the hypersphere 

radius which encloses the data in multidimensional space. 

So, for comparison with other classification techniques, we 

adopt the SVM with Gaussian kernel SVM as the most 

efficient. 

4.5 Comparative investigation of diagnosis 

tools 
After determining the classification tools of transformers 

faults, most processors meet the diagnosis system. In this 

paragraph, we will determine the most appropriate gas 

signature and the most efficient classification technique.  

Regarding the most significant gas analysis method, all the 

three techniques (fuzzy logic with triangular membership 

function, RBF and SVM with Gaussian kernel function) 

indicate that the ratios method is a proper alternative. 

 T1 

SVM6 

 PD  T2  D1 

SVM5 

PD & D1  D2  T3 T1 & T2 

SVM3 SVM4 

DGA method 

SVM1 

 Normal state Fault state 

SVM2 

Discharge fault Overheating fault  
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To choose the best tool possible, we will compare their 

performance using the test samples. Table 18 compares the 

proposed applications performance for identifying the 

transformers faults.  

Table 18. Performance of several classifications tools 

Gas signature False 

alarm rate 

(%) 

Non-

detection 

rate (%) 

Test 

performance 

(%) 

 

Fuzzy logic 

(triangular 

membership 

function) 

6.7 (2 / 30) 10 (3 / 30) 83.3 

Neural 

networks RBF 

0 16.7 (5 / 30) 83.3 

SVM (gaussian 

kernel 

function) 

0 13.3 (4/30) 86.7 

 

The results presented in Table 18 show that the highest 

percentage of performance test is obtained with the SVM 

technique with a Gaussian kernel function (86.7 %). 

The SVM classifiers offer very considerable results and has 

demonstrated its efficiency for power transformers fault 

diagnosis.  

5. CONCLUSION 
In this paper, the artificial intelligence techniques are 

implemented for the faults classification using the dissolved 

gas analysis for power transformers. The DGA methods 

studied are key gas, graphical representation and ratios 

method. The fault diagnosis models performance was 

analyzed with fuzzy logic (using Gaussian, trapezoidal and 

triangular membership functions), neural networks (MLP and 

RBF) and Support Vector Machine (with polynomial and 

Gaussian kernel functions). The real data sets are used to 

investigate the performance of the DGA methods in power 

transformer oil. 

The experimental results show that the fuzzy logic classifier 

with triangular membership presents the best result in 

comparison with the other two membership functions. The 

classification accuracies of RBF are superior to MLP NN and 

the SVM with Gaussian kernel function has more excellent 

diagnostic performance than the SVM with polynomial kernel 

function.  

According to test results, it is found that the ratios method is 

more suitable as a gas signature. The SVM with the Gaussian 

kernel function has a better performance than the other AI 

methods in diagnosis accuracy. The accuracy of the SVM for 

fault detection is comparable to conventional methods due to 

their great facilities for study. The proposed method can be 

applied to online diagnosis of incipient faults in transformers.  
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