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ABSTRACT 

This paper investigates a method for the state estimation of 

nonlinear systems described by a class of differential-

algebraic equation (DAE) models using the extended Kalman 

filter. The method involves the use of a transformation from a 

DAE to ordinary differential equation (ODE). A relevant 

dynamic power systems model using decoupled techniques 

will be proposed. The estimation technique consists of a state 

estimator based on the EKF technique as well as local stability 

analysis. High performances are illustrated through a real time 

application on 5 buses test system with DSP device (Dspace 

DS1104). 
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Nomenclature 

M Inertia constant of the generator 

D Damping constant of the generator 

δ mechanical rotor angle of the rotating  machine 

ω mechanical angular velocity 

ωs electrical angular velocity 

PM Mechanical power input 

Pj, Qj Nodal active and reactive power 

Pc,d Transit power 

Ybus Nodal  admittance matrix 

,
ij ij
G B

 

real and imaginary terms of bus admittance matrix 

corresponding to ith  row and jth column 

N Total  number  of  system  buses 

ng Number of generator buses 

nl Number of load buses 

PGi Electrical power supplied by the generator 

,i iV  Phase and voltage at bus i 

1. INTRODUCTION 
As the power system becomes larger and more complex, real 

time monitoring and control become very significant in order 

to achieve a reliable operation of the power system. The 

Energy Management System (EMS) functions are responsible 

for this task of monitoring and control. Dynamic State 

estimation forms the backbone of the energy management 

system by providing a database of the real time state of the 

system for using in other EMS functions [1]. Hence, an 

efficient and accurate dynamic state estimation is a 

prerequisite for an efficient and reliable operation of power 

system. 

State estimation in power system has mainly focused on Static 

State Estimation (SSE) from redundant measurement [2] [3]. 

However, to oversee an electrical power system in efficient, 

economic and secure manner, it is most important to be 

acquainted with the different dynamics states and then it’s 

Dynamic State Estimation (DSE) in electric power system, 

which apprises of the aforesaid information.  

In designing a DSE, it is important to consider all algebraic 

and dynamic variables (bus voltages/phases and generators 

variables). The existing models are based on reducing the size 

of the model (linearized DAE) [4], linearization of the model 

[5]. To override the limitations of the existing models, a 

relevant and new model has been considered in this paper to 

model the dynamics of the power system based on the 

nonlinear DAE models proposed in [6]. We show that we can 

always rewrite the system with a nonlinear DAE form with 

explicit ODE to facilitate its implementation and operation. 

After validation of a robust dynamic model, it is extremely 

important to consider a robust estimator which reflects a 

reliable image in the terms of capacity as for estimation, 

robustness and stability. A large number of existing methods 

are based on: 

  The power system is considered as a quasi-static 

variables (voltages magnitudes and angles at network 

buses) and then applying a tracking estimator [7]. 

  Definition of spaces of linear combinations and their 

algebraic complement for the calculation of the observer 

gains [8]. 

  The Kalman filter (by linearizing the DAE or ODE 

model [9]) [1] [10] with different resolution techniques 

(by varying the algorithm of resolution such as Square 

Root Filter Algorithm [11] or changing the weight vector 

[12]). 
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Most methods are based on the Kalman Filter for the reason 

of the complexity of the model [13] [14]. The advantages of 

the EKF are its simplicity, the fact that it is a recursive 

algorithm and so its computational load is modest [15] [16]. 

The EKF is suitable for real-time industrial-scale applications 

[17] with the development of the Digital Signal Processor 

devices.  

The aim of this work is to show how a simple extended 

Kalman filter algorithm can solve the real time dynamic state 

estimation problem for power systems. Indeed, description of 

the network by a dynamic model leads us to have an idea 

about the transient behavior that plays a central role for 

monitoring and control design. We show that the dynamic 

model is always written as a nonlinear DAE. To develop 

useful and simple state estimator, we transform the obtained 

model to an augmented one written as a system of ordinary 

differential equations. Furthermore, to reduce the 

computational requirements and numerical instabilities, we 

show in the proposed decoupled dynamic model that the 

inverse of the Jacobian matrix can be approximated by the 

inverse of a block diagonal matrix using two sub-matrices of 

small dimensions. Thus, we propose a state estimator based 

on the Extended Kalman Filter with a study for stability 

analysis. In the last section, real time application on the 5 

buses test system shows the relevance and efficiency of the 

proposed approaches.  

2. DYNAMIC POWER SYSTEM MODEL 
The dynamics of a power system can be modeled with a 

combination of nonlinear differential equations and nonlinear 

algebraic equations. These sets of equations are often solved 

separately in different analysis techniques. The solution is 

accomplished in an iterative way, with the important feature 

that all the desired system characteristics are included. The 

general form of the DAE model is given as: 

( ) ( ( ), ( ), ( ))

0 ( ( ), ( ))

( ) ( ( ), ( ))

d d d a

d a

d a

t F t t t

g t t

t h t t





 

x x x u

x x

y x x
 

(1) 

With: dn
dx (t) and ( ) an

ax t  are respectively dynamic 

and algebraic states,  ( ) dn
dF t   a function representing the 

nonlinear differential equations,  (.) an
g   represents the 

nonlinear algebraic constraints (equations),  ( ) pu t  the 

control and ( ) my t   the output system. The problem with 

the system (1) is that ( )ax t does not appear explicitly. 

2.1 Problem Formulation 
We consider these assumptions [6]: 

-  The internal field currents are constant, providing 

the representation of the machine as a constant 

voltage behind the direct axis transient reactance. 

-  The mechanical power provided by the prime mover 

is constant and all dynamics of the prime mover are 

neglected. 

-  All generators are rotating at synchronous speed 

(steady state) and are round rotors. 

-  All generators in the system are identical, and 

therefore the inertia constant (Mi) along with the 

damping constant (Di) of each generator have the 

same value. 

-  The mechanical rotor angle is the same as the 

electrical phase angle of the voltage therefore δ now 

refers to the electrical angle.  To further simplify the 

notation, the transient reactance is incorporated into 

the system Ybus, resulting in θi as generator terminal 

voltage phase and Vi as the terminal voltage 

magnitude. 

If we take node 1 as reference, the set of equation of this 

network is given by [6]: 

˙

, ,

: 0

: ( ( , , ) )
2

: ( , , ) 0

: ( , , ) 0

: ( , , )

i i

I
i i s

II s
i i M G i

I
i j j

II
i j j

q c d c d

f

f P P V D
M

g P P V

g Q Q V

y P P V

  


   

 

 

 

   

   


  

  

 



 (2) 

 

With:

1... 1; ( 1)...( ); 1... ; , 1...g g g li n j n n n q m c d N       , 

the node 1 is taken as the reference and : 

1

| || | [ cos( ) sin( )]
i

N

G i j ij i j ij i j

j

P V V G B   


     

Therefore the model (2) can  be rewritten under  this form: 

( , , )

( , )

F x x u

y h x










 

with: 

[ , , , ] , , { }, (.) [ , ]iMT T
i i i i bus i j

P
x V u Y F f g

M
        

and ,c dy P  where u and y will be respectively the control 

and the output of the system. 

2.2 Semi-explicit DAE index 1 
If at an equilibrium point, the system (1) is called semi-

explicit [18], index-1 property requires that ( , )d ag x x is 

solvable for ax and det( ( , )) 0
ax d ag x x   (to 

simplify ( ) , ( )d d a ax t x x t x  ): 

0 ( , ) ( , )

0 ( , ) ( , , ) ( ,

 

 )dF

 

 





 


d a

d a

x d a d x d a a

x d a d a x d a a

g x x x g x x x

g x x x x u g x x x
 

(3) 

Where
( , )

( , )
a

d a
x d a

a

g x x
g x x

x





and 

( , )
( , )

d

d a
x d a

d

g x x
g x x

x





  In other words, the differentiation 

index is 1, if, by differentiation of the algebraic equations with 

respect to time, an implicit ODE system results: 

1

( , , )

( , ) ( , ) ( ,

 

, ) 

d

d

F

F



 








a d

d d a

a x d a x d a d a

x x x u

x g x x g x x x x u
 

(4) 

Where
1( , ) a a

a

n n
x d ag x x

  and ( , ) a d

d

n n
x d ag x x


 .  

A study of nature and stability of DAE system is given by 

[19]. It should be noted that: 
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( , )
( , ) [ ]

g  
   

   


a a

a

a a

x 1 x 2d a
x d a

x 3 x 4a

g gx x
g x x J

g gx
 

(5) 

With J is the Jacobian matrix used in the Load Flow 

calculation excepted for generators terms, which allows us to 

verify that this det( ( , )) 0d ag x x   and g is solvable for any 

ax  (the elements of this matrix are the components of the 

diagonal Jacobean matrix used in load flow). 

2.3 Proposed dynamic model 
The basic idea is to extend the principle of decoupled 

algorithm used in Load Flow [3] and in SSE [2] to the dynamic 

model (and consequently to the DSE), but it apply only to the 

matrix ( , )
ax d ag x x . In the dynamic model (4), matrix 

( , )
ax d ag x x  is formed by the differentiation of the algebraic 

constraints to the algebraic states and formed by the same 

elements of Jacobean matrix which are used for load flow 

calculation. In an equilibrium point (or around), we assume 

that the variation of ax  is very small and can be 

approximated, with the same methodology used in Newton's 

algorithm to load flow calculation (same principle), by 

( 1) ( ) ( )a a ax n x n x n    where: 

  

1( )
[ ( )] ( , ) ( , )

( ) ( )a da x d a x d a

n
x n g x x g x x

V n P n

     
      

    
 

(6) 

and ( ) ( ) ( )M GP n P n P n    and s     . The 

solution ( )ax t  should always verify that calculated by load 

flow (in permanent mode ax  must be equal to 0 to verify the 

algebraic constraints). So we have the same formulation as that 

used for the load flow calculation and we can apply the 

principle of decoupled algorithms.  

With the same reasoning, we applied a change only to the 

matrix ( , )
ax d ag x x  in a similar way to that of the decoupled 

algorithm ( ( , ) |
ax d a Decg x x ): 

1

1

( , ) ( , ) ( , , )

( , ) | ( , ) ( , , )

a d

a d

a x d a x d a d d a

x d a Dec x d a d d a

x g x x g x x F x x u

g x x g x x F x x u





 

 


 (7) 

We present in what follows the principle of decoupled 

algorithm used for load flow and SSE. Let us consider an 

electrical line model given at Fig. 1: 

 

 

 

 

 

 

 

 

 

 

Fig 1. Schema of electrical line. 

 

where the voltage 1V  is supposed to be constant and the 

voltage 2V  is taken as the origin of phase with r and x are 

respectively resistance and inductive reactance of line . We 

have: 2 2

2

rQ xP

V



   and 2 2

2

rP xQ
V

V


  . In a high 

voltage network, it is obvious that the phase ( ) depend 

primarily on the circulation of the active powers and that the 

modules of the nodal voltage (V) are mainly dependent on the 

circulation of the reactive powers because r x . In these 

conditions, we can approximate  and V  by 2

2

xP

V
 and 

2

2

xQ

V
 respectively. These approximations allow us to cancel 

sub matrix 2[ ]
axg  and 3[ ]

axg  , therefore obtaining a 

reduced dimensions system [20]. We can thus write this 

matrix in the following simplified form: 

 

1

4

1

4

0( , ) |
( , ) |

0

0
    [ ]

0

a

a

a

x
d a Dec

x d a Dec
xa

Dec

gg x x
g x x

gx

j
J

j

 
  
 
 

 
  
 



 (8) 

To validate the proposed dynamic decoupled model, we tested 

the OM and proposed DM for 100 simulations while varying 

the initial values in a random way (variation of 20%  with 

respect to the actual initial values) in IEEE 3 buses test system. 

We put on Table 1 the relative error given by (9) where realx  

is generated by using the Toolbox SimPowerSystems of 

MATLAB®. 

/real OM DM

real

x x

x

‖ ‖

‖ ‖
 (9) 

 

Table 1. Relative error (%) and computing time with       

random initial 

 OM DM 

Relative error 4.133 % 2.679% 

Computing Time 1.72 s 1.24s 

As we can see (line 2 of Table 1), the proposed decoupled 

model (DM) converge with an accurate precision than ordinary 

model (OM). Moreover, the results show that the computing 

time is better using DM which permits to implement more 

effectively this model for real time application.  

For the calculation of ax , the mathematical expression are 

given in (10.a) for DM and in (10.b) for OM. 

 

1

1

0
( , , )

0

j i

j iV

a d d a

P P
x F x x u

V Q Q

 








         
 





 (10.a) 

where 
i

j

i

P
P







 and 
i

j

i

Q
Q







. 

r+jx 

V1 V2 
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1
1

1
2 3

( ) 0
( , , )

0

j i i i

j i

a d d a

V

P P T P Q
x F x x u

Q Q T T

   







   
 
   
 

  (10.b) 

Where: 
1 1 1

1

1 1
2

1 1 1 1 1
3 /2

1 1

( )

( ) ·

      · ( )

j j j j j j

j j j i

a j j j j j j j

j j j j i i

U U U

U

n U U U

U U

T P P Q Q P P

T Q Q P P

T I Q Q P P Q Q P

P Q Q P P Q

  

  

   

   

  

 

    

 

  



 



 

We note though, according to the equations (10.a) and (10.b), 

that DM neglects several terms (T1, T2 and T3) used by OM 

(which reduces the computation time). These neglected terms 

can lead the system (during transient mode) to large values 

which decrease the response time (these terms can cause 

numerical instabilities). 

 

Finally, the complete model in form ODE is according to: 

1

( , , )

( , , )

( , ) ( , ) ( , , )

( , )0
( , )

( , )

a d

d
d a

a

d d a

x d a x d a d d a

d a
d a

d a

x
x f x x u

x

F x x u

g x x g x x F x x u

g x x
y h x x

h x xy



 
  
 

 
  
  

  
     
   






 

(11) 

In the expression of ( , )d ah x x , the purpose of adding the 

algebraic constraint ( , )adg x x  is to check it permanently 

(with OM:
axg  and DM: |

ax Decg ). It should be noted that the 

assumptions and the propositions given can be generalized for 

the other forms of dynamic power system models (models 

including a characteristic of the static/dynamic loads [21] and 

generators with exciter model [6]). 

 

3. DYNAMIC STATE ESTIMATION 
The main problem in dynamic state estimation of power 

system is that few methods are applicable. Effectively, the 

numerous and strong nonlinearities in presence lead generally 

to the use of Extended Kalman Filter to resolve the state 

estimation problem. We propose here the Extended Kalman 

Estimator to increase the precision as well as the robustness of 

the estimation. A study of the convergence of E.K.E will be 

presented. 

 

3.1 Extended Kalman Estimator 
The Kalman filter is a recursive estimator. It means that to 

consider the running state, only preceding state and current 

measurements are necessary. The history of the observations 

and the estimates is thus not necessary. In the extended 

Kalman filter (EKF), the state transition and observation 

models need not be linear functions of the state but may 

instead be differentiable functions [22]. The considered 

nonlinear discrete system is given by (12): 

1 ( , )

( , )

k k k k

k k k k

x f x u v

y h x u w

  


 
 (12) 

Where kv  and kw  are the system and observation noises 

which are both assumed to be zero mean multivariate Gaussian 

noises with covariance kQ  and kR  respectively. 

Function f  can be used to compute the predicted state from 

the previous estimate and similarly the function h can be used 

to compute the predicted measurement from the predicted 

state. However, f  and h cannot be applied to the covariance 

directly. Instead, a matrix of partial derivatives (the Jacobian) 

is computed. At each time step, the Jacobian is evaluated with 

current predicted states. These matrices can be used in the 

Kalman filter equations. This process essentially linearizes the 

non-linear function around the current estimate. In this paper, 

we used the simplified form of E.K.F (we used Euler 

discretization with a step size Te, 1 ( , )k k e k kx x T f x u    to 

discretize the continuous model (11)) given by: 

 

1

1

1

ˆ ˆ( , )

( )

( )

ˆ( , )

k k k k k

T T
k k k k k k k k

T
k k k k k k k

k k k k

x f x u K e

K F P H H P H R

P F K H P F Q

e y h x u







 

 

  

 

 (13) 

 

where: 

ˆ

( ( , ))
ˆ( , ) |

k k

k e k k
k k k x x

k

x T f x u
F F x u

x


 
 


and   

ˆ

( )

( , )
ˆ( , ) |

( ) k k

k

kk k
k k k x x

kk

k

g x

xh x u
H H x u

h xx

x



 
 

    
 
 

 

. 

 

There are some attempts to apply Kalman Filter on linearized 

D.A.E system [23], but our proposition is to apply the E.K.E in 

the classic general form with some numerical approximations 

that we propose for the Jacobian calculation. 

 

Initially, it should be noted that due to the difficulty of finding 

kF  (following the transformation of the algebraic variables in 

ODE model), we will make the following numerical 

approximation: 

 

ˆ

1

( ( , ))
ˆ( , ) |

( ( , , ))

( , )

( ( ( , ) ( , ) ( ,

 

, )))

( , )

k k

k k k

k k

k a k k d k k k k

k k

k e k k
k k k x x

k

d e d d a k

d a

a e x d a x d a d d a k

d a

x T f x u
F F x u

x

x T F x x u

x x

x T g x x g x x F x x u

x x





 
 



 




  



 
 
 
 
 
 
 

 (14) 

The numerical approximation is used on the second term of 

kF   (since it is very difficult to determine) as follows: 
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1

1

( ( ( , ) ( , ) ( , , )))

( , )

( , , )
( ( ( , ) ( , ) ))

( , )

k a k k d k k k k

k k

k k

a a k k d k k

k k

a e x d a x d a d d a k

d a

d d a k

n e x d a x d a

d a

x T g x x g x x F x x u

x x

F x x u
I T g x x g x x

x x





  




  



 (15) 

For ˆ ˆ,
k k k kd d a ax x x x   . The terms 

1

axg
 (or 

1 |
ax Decg

 ) 

and 
dxg are calculated numerically. 

3.2 Convergence Analysis 
In this section, we present a convergence analysis of EKE (13) 

based on the method of [24] [25] and [26] by including an 

unknown diagonal matrix to model linearization errors and a 

Lyapunov function. This is leads to the resolution of a LMI 

which depends on the choice on kR and kQ  . Initially, the 

error vector is defined: ˆk k kx x x   and the candidate 

Lyapunov function: 
1

1 1 1 1
T

k k k kV x P x
      , where : 

1

1 1
1

1 ( )

( )

( )

( ,..., )
d a

k k k k k k k k

T
k k k k k

k k n n k

x F K H x F

P F P F Q

diag

 

  



 




   


 
 


 

  

We have then: 
1

1 1

1

( ) ( )

    ( )

T
k k k k k k k k

T T T
k k k k k k k k k k

V F x P F x

x F F P F Q F x

 

 


 





 

  

   
 (16) 

 

A decreasing sequence 1,...{ }k kV   means that there exists a 

positive scalar 0 1   so that: 1 (1 ) 0k kV V    . 

Therefore, this gives us this LMI: 
1 1( ) (1 ) 0T T

k k k k k k k k kF F P F Q F P          (17) 

With the same reasoning used in [24], we determine domains 

in which (17) is satisfactory. Under the following assumption: 

1

2(1 ) ( )
| | | |

( ) ( ) ( )

T
k k k k

jk k j jk T
k k k

F P F Q
sup

F P F

 
  

  

  
     

 




 (18) 

1,...{ }k kV   is a decreasing sequence. With   and   denoting 

the maximum and minimum singular values respectively, and 

as k  is a diagonal matrix then: 

2

1

1

(1 ) ( )
[ ( )]

( ) ( ) ( )

(1 ) ( )
         

( ) (( ) ) ( )

T
k k k k

k T
k k k

k

T T
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F P F Q

F P F

P

F F P F Q F
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  

 

  





 











  

 (19) 

We have then: 

1

2 1

1

( ( ) )

[ ( )] ( ) (( ) ) ( )

(1 ) ( )

T T
k k k k k k k k

T T
k k k k k k k

k

F F P F Q F

F F P F Q F

P

  

    

 









 

 

  

    (20) 

When (20) is satisfied, kV is a strictly decreasing sequence. 

Consequently, in the same reasoning of [24] and [26], and so 

that the EKE ensures local asymptotic convergence, we must 

verify the following conditions: 

 System (12) is M-locally uniformly rank observable, 

there exists 1k M  where the observability 

matrix: 

 

d arank(O(k-M+1,k))=(n +n )  (21) 

 

where: 

1

2 1

1 1

( 1, )

k M

k M k M

k k k M

H

H F
O k M k

H F F

 

   

  

 
 
   
 
 
 





 

  

In practice, we use a numerical rank test 

on ( 1, )O k M k  . 

 kF , kH  are uniformly bounded matrices and 

1
kF 

exist. 

 The matrices kQ  and kR are chosen as follows: 

d a d a

T
k k k n n n n

T
k k k k m

Q e e I I

R H P H I

 



  

 ò
 (22) 

where   and  have to be chosen large and positive and 

ò and  a positive scalar fixed by the user. 

 

4. SIMULATION RESULTS  
Studies are carried out on the 5 buses test system to evaluate 

the performance of the dynamic state estimation of the 

proposed model with a DSP device (Dspace DS1104). The 

transit power is considered as measurements. For the 

discretization of the model (11), we used Euler method with a 

step size
310eT s . The network includes: 

 

- 2 generators node: bus 1 and with node 1 is the 

reference bus and 3 static load nodes: 3, 4 and 5. 

- The output is ( 2,3P ) with a state vector composed by 

8 variables: 2 2 3 3 4 4 5 5[ ] [               ]Tx V V V     . All 

variables/sizes are given in p.u). 

The Simulink diagram used for implementation in DSP 

device is given by Fig. 2. 
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Fig 2. Proposed Simulink Diagram. 

 

In this diagram, for the implementation of EKF with OM 

and DM we use the Embedded MATLAB Function.  

First, we consider this values of kQ  and kR (Standard 

version of E.K.F): 
. . 5

8

. .

9.753*10

0.055664

E K F
k

E K E
k

Q I

R




 

Second, we present the evolution of the estimated output 

( 2,3P̂ ) given by Fig. 3. 

Fig 3. Evolution of 2,3P̂  with OM and DM. 

 

 Fig. 3 shows that the OM presents a large variation and don't 

converge exactly to the real one (error of 10%  ). However, 

with the proposed DM the estimated outputs converge to the 

real one without error (small error 1%  ). 

Third, we make the following variations in generators 

parameters (all values are in p.u): 

 Increase of Internal voltage in generator 1 (E1) from 

1.08858 to 1.52 at 12.7ms. 

 Increase of Input mechanical power at generator 2 

(
2MP ) from 0.4 to 1.2 at 15.5ms. 

 Increase of Input mechanical power at generator 1 

(
1MP ) from 1.378644 to 2 between 50ms and 58ms. 

 Decrease of Internal voltage in generator 2 (E2) from 

1.65428 to 1 at 72ms. 

and we present in Fig. 4 the evolution of error estimation: 

 

       Fig 4. Evolution of error estimation with OM and DM. 

 

It is clear, according to Fig. 4 that the error estimation 

converges to 0 (with a small error). While noting that with 

the DM, the variation is more stable because the elimination 

of the added elements PV and Q  with OM which present a 

large value at the time of variation of generators parameters 

(could lead the system to diverge). 

Now, we present the evolution of the norm of error 

estimation by OM and DM, with the previous values of kQ  

and kR  or Standard E.K.F (S-E.K.F)) in Fig. 5 and these 

new values or Modified E.K.F (M-E.K.F) with the proposed 

choice given by (22) in Fig. 6: 
. . 3
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Fig 5. Evolution of error estimation with S-E.K.F. 

 

 

Fig 6. Evolution of error estimation with M-E.K.F. 

 

Concerning the evolution of error estimation, the results show 

that the appropriate choice of matrices kQ  and kR  given by 

(22) insures the convergence of the estimated states to the real 

value. Indeed, this is verified by the reduced interval of 

variation offered by the DM (between -1 and 0.2 with S-E.K.F 

and between 0.01 and -0.03 with M-E.K.F), however, with OM 

is between -1.52 and 0.4 with S-E.K.F and 0.06 and -0.05 with 

the modified version. 

 

Now, we present the evolution of estimated output with an 

increase (value equal to three times the nominal) of internal 

voltage E1 at generator node 1 (with OM and DM): 

 

 

 

 

 

 

 

Fig 7. Evolution of 2,3P̂  with M-E.K.F. 

 

The result in Fig. 7 shows that the estimated output converges 

to the real one with a major advantage of the proposed DM in 

term of stability (without important variation and no increase 

in value or large peaks). 

 

5. CONCLUSION 
An efficient decoupled dynamic power system model has been 

described and investigated while based on introducing a 

transformation of ordinary DAE model using decoupled 

algorithm. We also used the classical method of E.K.F to real 

time dynamic state estimation of power systems while 

including some numerical approximation for the calculation of 

the Jacobian and which was preceded by a convergence 

analysis. The results show well the appropriate choice of the 

dynamic DM in terms of robustness, speed and computing 

time and, in a very clear way, the high quality of estimation 

offered by the Modified EKF.  

 

The remaining open questions are the experimental test of the 

proposed method to large scale power test systems (IEEE 118 

bus test system for example). 
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