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ABSTRACT 

In this paper, feature level fusion of finger knuckle prints 

(FKP‟s) is implemented. To overcome the curse of 

dimensionality, feature selection using the triangular norms is 

proposed. There has been no effort on feature selection using 

the t-norms in the literature. In this paper we address the 

problem of feature selection on the finger knuckle print using 

the t-norms. An unknown parameter in t-norms is learnt using 

Reinforced Hybrid evolutionary technique. Feature level 

fusion is performed by combining the significant features of 

all FKP‟s. Results show an improvement in the accuracy 

when the features are selected by a divergence function 

derived from the new entropy function using t-norms on two 

pairs of training features taken at a time. Results of both 

identification and verification rates show a significant 

improvement in the performance with feature level fusion. 

Keywords 
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Finger knuckle print. 

 

1. INTRODUCTION 
Feature selection has been a dominant area of research in 

biometrics, image retrieval, data mining, health care, and text 

categorization. The main idea of feature selection is to select 

a set of features, by discarding the insignificant as well as the 

redundant features that are strongly correlated. Many 

practical pattern classification tasks (e.g., medical diagnosis) 

require that a given input pattern (typically represented by a 

feature vector) be categorized into one of the given set of 

classes by a classifier. The choice of features affects the 

accuracy of the classifier and the time required for 

classification. The goal is to select the minimum subset of 

features to enhance the classification accuracy and also to 

shorten the training and execution times. 

In this paper, we study the feature selection on FKP‟s. In 

[12], an acquisition device is developed to capture the FKP 

images, and a region of interest is cropped for feature 

extraction. A feature extraction scheme which amalgamates 

both the orientation and magnitude information due to Gabor 

filtering is developed. The local convex direction map of the 

FKP image is extracted in [12] based on which a local 

coordinate system is established to align the images. In [13], 

both local and global information for the FKP verification is 

exploited, where the orientation information extracted by the 

Gabor filters is treated as the local feature and by increasing 

the scale of Gabor filters to infinite, the Fourier transform of 

the image is obtained, and hence the Fourier transform 

coefficients of the image can be taken as the global features. 

The final matching distance of two FKPs is a weighted 

average of local and global matching distances. In [14], the 

SIFT (Scale invariant feature transform) is applied after the 

Gabor enhancement to improve the performance.  The finger 

knuckle identification is undertaken in [15] using the 

orientation features from the finite Radon transform. 

Techniques for feature subset selection can be classified into 

the following categories: wrapper, embedded, filter and 

hybrid.  The wrapper approach requires one classification 

model and it selects features with the aim of improving the 

generalization performance of that model. An algorithm in 

[1] uses a constructive approach involving correlation 

information while selecting features and determining Neural 

Network architectures. A wrapper method is presented in [2] 

for feature selection, namely IAFN-FS (Incremental Analysis 

Of Variance and Functional Networks-for Feature Selection). 

The method uses an induction algorithm called ANOVA and 

Functional Networks. It follows a backward non-sequential 

strategy on the complete set of features (thus allowing to 

discard several variables in one step, and so reducing 

computational time); and is able to consider “multivariate” 

relations between features. A new feature selection in [3] for 

binary classification uses SVM. A wrapper feature selection 

is presented is presented in [4] with multilayer perceptron and 

the sequential backward selection (SBS) procedure. Filter 

models utilize an evaluation function that relies only on the 

characteristics of the data, and it is independent of any 

particular learning algorithm. A stochastic algorithm in [5] 

based on the Greedy Randomized Adaptive Search Procedure 

(GRASP) uses the well-known filter algorithms such as 

Relief and FCBF for the constructive phase, and also the 

classical wrapper feature subset selection algorithms. 

 A feature selection algorithm in [6] is based on dynamic 

mutual information wherein, mutual information of each 

candidate feature is recalculated on unlabeled instances, 

rather than the whole sampling space. Here it can exactly 

measure the relevance between candidate features and the 

class labels by following the selection procedure. A rough set 

approach for feature selection based on Ant Colony 

Optimization is proposed in [7], which adopts mutual 

information based feature significance as heuristic 

information. The theoretical analysis is presented in [19] on 

class-augmented principal component analysis (CA-PCA), 

which is composed of processes for encoding the class 

information, augmenting the encoded information to data, 

and extracting features from class-augmented data by 

applying PCA. In [20], feature selection method based on 

fuzzy entropy measures is introduced and it is tested together 

with similarity classifier. A model is implemented in [21] to 

hybridize the particle swarm optimization and support vector 

machines to improve the classification accuracy with an 

appropriate feature subset 
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This paper is organized as follows: Section 2 describes the 

feature extraction method for the FKP‟s.  Section 3 discusses 

about the feature selection method using the t-norms. Section 

4 presents the Reinforced PSO-BF hybrid and its utility to the  

feature selection. Section 5 is devoted to the experimental 

results. Finally the conclusions are given in Section 6. 

2. FEATURE EXTRACTION 
The Finger Knuckle Prints (FKP‟s) are utilized for extracting 

the features and for the subsequent authentication of persons. 

The Region of interest (ROI) of FKP is operated on in eight 

directions using the Sobel compass operator to find edges. 

The Sobel masks used are shown in Fig. 1 and the results of 

application of Sobel operator are displayed in Fig. 2.                                  
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Fig. 1 3x3  Sobel operators in the eight directions. 
 

 
Fig. 2: An example of directional responses derived using 

Sobel operator in the eight different directions and the 
centered image is the original ROI of FKP. 

 

2.1 Local Binary Pattern                              
The original LBP operator by Ojala [9] is employed here for 

the texture analysis of FKP‟s. This operator assigns a label to 

every pixel in an image by thresholding the eight 

neighborhood pixels with respect to the gray value of its 

center. The feature vector is formed by concatenating the 

thresholded binary bits in the anti-clockwise direction, shown 

in Fig. 3.  

 

The LBP code is invariant to any monotonic transformation  

on the pixel values. Therefore, it is very appropriate for 

representing the knuckles which are illuminated from a fixed 

distance but with varying light intensity. An extension to 

LBP code can be made using a subset of LBP string. An LBP 

string is called uniform if it consists of at most 2 bit-wise 

transitions from 0 to 1 or vice-versa. For example, the 

                            
LBP strings 1111110 and 11101111 are uniform whereas 

11101011 and 10110101 are non-uniform. There are 58 

possible labels of uniform patterns and the rest 198 are non-

uniform, which are stored under the 59th label. The operations 

one of which is shown in Fig. 3 result in 59 labels.  A 

histogram of these labels can be constructed as:          
 

 ( , ) , 1,2....59lH L i j l l      (1)           

      

The histogram of labels is treated as a texture descriptor of 

the image. Following the approach in [10] the images are 

divided into N equal sub-windows and the texture descriptor 

is extracted from each sub-window in eight directions by the 

application of the Sobel operator. The local texture 

descriptors are then averaged out to get an average descriptor 

for each sub-window of the image. These descriptors are then 

concatenated to form the global texture descriptor. Thus, the 

texture descriptor for a given FKP will have a size of {59(No. 

of labels) x N (No. of sub-windows)}. 

 

3. FEATURE SELECTION 

3.1 T-Norms 
As we want to make use of t-norms [11] for their ability to 

accentuate the differences between two feature vectors; 

which is useful in the feature selection, a brief description of 

t-norms is given here. 

A t-norm is a function T: [0, 1] × [0, 1] → [0, 1] that satisfies 

the following properties:  

 Commutativity : T(a, b) = T(b, a) 

 Monotonicity:  T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d 

 Associativity:  T(a, T(b, c)) = T(T(a, b), c) 

 Identity:   T(a, 1) = a 

  Table 1 gives the three t-norms specially suited for 

the feature selection and classification.  As seen 

from this table these norms contain a parameter, 

which can be found either by experimentation   or 

by learning. However, we resort to learning in this 

work.  

Table 1 Different t-norms 

t-norm 

 

Formulation T(x,y) 
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Fig. 3 Obtaining a Binary label for a pixel 
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3.2  Feature Selection based on t-norms 

We concatenate the features of all the FKP‟s resulting in a 

single feature vector. As we have a large number of features 

for the representation of FKP‟s, we are faced with the 

problem of dimensionality. To mitigate this problem of 

dimensionality, we go in for the feature selection based on t-

norms of    divergence.  

Divergence: When the two features are used to represent the 

same pattern, the absolute difference between the features is 

termed as the divergence. We will now see how the t-norms 

can be used for the feature selection by the procedure 

outlined here. 

The data needs to be normalized first. The min-max criterion 

for normalization is initiated here. It is very convenient to 

form the data matrix consisting of all sample features of a 

user. Let the data matrix of lth user be denoted by
lX  

 

 

 

 

 

        

 (2) 

  

         

where each row of the matrix represents a training sample. 

The number of normalized features is n and the number of 

training samples is s.  The superscript l denotes the lth user.  

The divergence is computed between the two samples of the 

same user. As we need two such divergences for applying t-

norms, these are computed from two pairs of samples as  

(3)
l l l l l l

mkj mj kj hgj hj gje x x e x x   
 

Note that the t-norm of l l

mkj hgje and e in the jth feature gives the 

spread between the divergences, which bestows the 

discriminating power. If the jth feature is significant, then 

both l

mkje and
l

hgje will be small and so the t-norm of these 

divergences will still be smaller. It is now intended to tap this 

discriminating power of the features by way of the above 

normed divergences for feature selection.  There are two 

ways of accomplishing this task: One, directly using the 

normed divergences and second using the entropy of the 

normed divergences. The uncertainty in the t-normed 

divergences is necessitated for the sheer discrimination of 

how important are these from the point of view of feature 

selection. We will now use Hanman - Anirban entropy [18] to 

find the uncertainty. The non normalized Hanman-Anirban 

entropy is defined as:  
 
                                                

3 2( )
( ) i i iap bp cp d

i

i

H p p e
   

                  (4)
 

By taking ( , )l

i mkj hgjp T e e , a=0, b=0, and summing over all 

the users, we get the divergence function for the  jth feature 

denoted by 
jS  as 

  , , ,

( , )exp( ( , ) )

1,2,....., (5)

l l l l

j jmk jhg jmk jhg

l m k h g

S T e e cT e e d

j n

  

 

 
    

   

 

To avoid learning and for the ease of computation, we choose 

c=1 and d=0 in (5).   The power of the feature selection 

comes from the use of this divergence function. If Sj is very 

low, it means that the corresponding jth feature is significant. 

So the procedure for the feature selection lies in arranging   Sj 

(j=1,2,…,n)  in the ascending order  and then taking the 

leading features by specifying a threshold. The features of all 

FKP‟s are concatenated/ fused. Fig.4 depicts the block 

diagram for the feature level fusion. 

 

Fig. 4 Block diagram for feature level fusion 

3.3 Algorithm for feature level fusion 

1.  Form the data matrix as in (2),   TnXXXX ,.......,, 21  ,  

where n is the total number of features after concatenation. 

 

Each row represents one training sample consisting of the 

features of  all the knuckles (LI, RI, LM, RM). 

2.  Normalize the data X with n features and m training                                             

samples using the min-max criterion. 

3.  Evaluate the divergence between two jth features using:  

 

where the subscripts m, k, h, and g denote the four          

samples of the same lth user, 
l

mkje
denotes the divergence in 

the  jth feature between the mth and the kth sample of  the lth 

user.  Here we calculate all possible t-norm combinations of 

divergences. For example, if we have 4 training samples then 

we obtain 4

2 6C   divergences. While taking t-norms of these 

divergences we get 6

2C  combinations.                    

4.  Find the divergence function S=[S1,….Sj,….Sn]. 

5.  Arrange Sj’s in the ascending order by taking the leading    

     features.  

 

3.4 Estimation of parameters of t-norms  
T-norms contain an unknown parameter „p‟ in the t-norm 

which needs to be estimated. An optimal value of „p‟ can be 

learned using the Reinforced hybrid BF-PSO, which requires 

an objective function, which is taken as the identification 

accuracy. The main aim of this function is to maximize the 

recognition rate (RR). Given a test sample features the 

Euclidean distance is computed with respect to the features of 

all the samples in the training set. The lowest value of this 

distance associated with the training sample gives the identity 

of the test sample (i.e. its user). This is repeated for all the 

test samples and the counts of the number of both successes 

(6)l l l l l l

mkj mj kj hgj hj gje x x e x x   
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and failures are made. The objective function (J) is defined as 

follows: 

2)1( RRJ                                        (7)                            

Where ,      .

.

No of successes
RR

Total no of tests


                             

     

The above function in (7) is evaluated in the proposed  

Reinforced BF-PSO hybrid described now. 

. 

 

4. REINFORCED HYBRID BF-PSO  
The hybrid of Bacterial Foraging (BF) and Particle Swarm 

Optimization (PSO) in [17] aims at tapping the ability of PSO 

in exchanging the social information and that of BF in 

finding a new solution during the elimination and dispersal 

step. Further, the incorporation of reinforced learning permits 

us to use the past information. In the BF-PSO hybrid, the 

velocity term in PSO algorithm becomes the direction for BF. 

In this hybrid the step size is one of the determining factors 

for the convergence of the global optima. Because of the 

fixed step size the hybrid algorithm has several problems 

[16]:  

i) If the step size is very small then it requires a large    

number   of iterations to attain the optimum solution.    

 

ii) If the step size is very high then the bacteria reach the 

optimum value quickly but the solution suffers    from low   

accuracy. 

 

 iii) Bacteria may get stuck up around the initial positions or 

the local optima, because the dispersion event happens after 

the specified number of reproduction processes.   

These problems are removed in the selection of step size by 

the reinforcement learning (RL). RL facilitates any algorithm 

to learn its behavior based on the feedback from the 

environment. In the case of hybrid BF-PSO, it adjusts the 

direction of movement of bacteria.  The actions performed by 

an organism become feedback, which in turn is translated 

into a negative or positive reward for that action.  When the 

bacterium moves to the non-favorable environment it 

encounters meager source of food.  This negative feedback 

will force the bacterium to change the direction (tumble). In 

the case of favorable situation the bacterium ventures to 

move in the same direction (swim) compelled by the positive 

feedback.  Reward of this positive feedback is the right 

stimulant for the optimal solution.   

 Reinforcement is a way to exploit the reuse policy of the past 

information, i.e. the error. It helps accelerate the process of 

exploitation. Exploitation is still possible without recourse to 

the reinforcement but is not definitely effective. Any policy 

utilizing the past information is bound to enhance the 

exploitation since the current information provides a local 

view whereas the accumulated information provides a global 

view. However, how best the accumulated information is 

made use of is the concern of this investigation. To bring the 

reinforcement into effect, the past information in the form of 

error is accumulated for each bacterium. An exploitation 

mechanism through RL by way of the past information makes 

the updating strategies of the variables involved in PSO-BF 

hybrid adaptive. This will be elaborated now. 

 If ( , , , )P i j k l denotes position of the ith bacterium in jth 

chemotactic step, kth reproduction step, and ellth elimination 

and dispersal step, the updating strategy in BF-PSO is given 

by: 

Tumble: ( , 1, , ) ( , , , ) ( ) ( )  P i j k l P i j k l c i V i               (8)   

Swim: ( , , , ) ( , , , ) ( ) ( ) P i j k l P i j k l c i V i
           

 (9)        

where c(i) is the step size and  V(i) is the velocity of ith 

bacterium given by:  

1 1

2 2

( ) * ( ) * *( ( ) ( ))

* *( ( ) ( ))

V i w V i C R Plbest i Pcurrent i

C R Pgbest i Pcurrent i

  

 
     

(10) 

where Plbest is the local best position, Pgbest  is the global 

best position and Pcurrent  is the current position, C1,C2 :the 

fixed parameters of PSO,  R1,R2 : the random numbers in 

PSO. 

The error is taken as the accumulated average of the absolute 

difference of the objective functions in the consecutive 

chemotaxis steps of BF. The step size in the chemotaxis steps 

is taken as the sigmoid function of the error. The bacteria 

take the step size depending on the nutrients they get hold of. 

This is determined by the difference of the current and the 

previous chemotaxis steps, which leads to the converged 

optimum solution. When the reinforcement concept is 

incorporated in the hybrid BF-PSO, the equations of swim 

and tumble get modified to:  

Tumble:    

( )
( , 1, , ) ( , , , )

1 exp( ( ))

V i
P i j k l P i j k l

error i

 
    

  

    (11)                              

 Swim: ( )
( , 1, , ) ( , 1, , )

1 exp( ( ))

V i
P i j k l P i j k l

error i

 
     

  

               

                                       (12) 

Where the step size ( )c i is replaced by the sigmoid function 

of the error,  

( , , , ) ( , 1, , )

( )
.

j

J i j k ell J i j k ell

error i
Total no of chemotaxis steps so far

 




  (13)                 

where the summation is taken over the chemotaxis steps. 

The initial parameters belonging to BF are: 

, , , , , , ,  , ( )(  1,2. . . )c s re ed ed rn S N N N N P S c i i S , and 
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those belonging to PSO are : 
1 2 1 2, , , , .V C C R R  These 

parameters stand for n : Dimension of the search space; S : 

The number of bacteria in the population ; Sr : Half the total 

number of bacteria; Ns : Maximum number of swim length;  

Nc : Chemotaxis steps;  Nre : The number of reproduction 

steps;  Ned : Elimination and dispersal events;  Ped : 

probability of Elimination and dispersal;  , , ,J i j k ell  is the 

fitness value of the ith bacterium, at the jth chemotactic step, 

kth reproduction step, and ellth elimination and dispersal event 

and ( , , )Jbest j k ell is the fitness of best position in jth 

chemotactic and kth reproduction step, ellth elimination and 

dispersal step. 

Algorithm of Reinforced Hybrid BF-PSO  

1. Initialize the random direction V(i), position ( ,1,1,1)P i ,  

error(i) for  i=1 : S 

For ( ell =1 to Ned) 

For ( k  =1 to Nre ) 

For ( j =1 to Nc) 

2. Evaluate the cost function  , , ,J i j k ell
 
for i=1, 2,.,, S 

3. Save the best cost function for ith bacterium in Jlast 

    ( , ) , , ,Jlast i j J i j k ell  

4. The best cost for each bacterium in Step 3 is selected as the 

local best Jlocal 

 Jlocal(i,j)= ( , )Jlast i j  

5. Update the positions using Eq. (11) 

6. Evaluate the cost function J (i, j+1, k,ell).   

    While (m < Ns ) If ( , 1, , )J i j k ell Jlast   

                      ( , ) ( , 1, , )Jlast i j J i j k ell   

7. Update the positions using Eq. (12). 

8. Compute the cost function  ( , 1, , )J i j k ell  

9. Evaluate the current position and local cost of each 

bacterium from: 

( ) ( , 1, , )Pcurrent i P i j k ell   

( , 1) ( , )Jlocal i j Jlast i j   

m=m+1 ;  End  

i=i+1 (the next bacterium) 

10. Obtain the local best position (Plbest) for each bacterium 

and global best position (Pgbest) 

11. Evaluate the new direction for each ith bacterium using 

Eq. (10). 

12. Calculate the accumulated sum of absolute differences of 

cost functions between the consecutive chemotaxis steps for 

each bacterium as: 

( ) ( , , , ) ( , 1, , )
j

sum i J i j k ell J i j k ell  
 

13. Obtain the error averaged over the number of chemotaxis 

steps for each bacterium as 

( )
( )

.

sum i
error i

No of chemotaxis steps so far


 

j=j+1 (the next chemotactic step) 

Evaluate 
1

1

( , , , )
cN

i

health

j

J J i j k ell




   and 

2
r

S
S 

 bacteria 

with the highest cost function values die and other  rS  

bacteria with the best values split. 

 k=k+1 (the next reproduction step) 

14. Eliminate and disperse each bacterium with probability 

Ped. 

 ell =ell + 1 (the next elimination and dispersal step) 

The parameters of Reinforced hybrid learning are specified 

as: No. of bacteria S=20, No. of step sizes Ns= 4, No. of 

chemotaxis steps Nc=10,  No. of reproduction and 

elimination steps Nre=2, No. of elimination and dispersal 

steps Ned= 2, the corresponding probability Ped=0.2. 

5. EXPERIMENTAL RESULTS 

The feature selection using t-norms is tested on PolyU  FKP 

database consisting of 165 users with 12 images each of LI, 

LM, RI, and RM FKP‟s.  LBP features are extracted from 

each of the LI, LM, RI, and RM FKP‟s. The ROI is divided 

into 9 sub windows of equal size and so the texture descriptor 

evaluated using LBP is of the length 531 (=59*9). The length 

of feature vector becomes 2124 (=531*4) after concatenation 

of four FKP‟s. Since the dimensionality becomes large, we 

apply feature selection using t-norms.  

The database is divided into 6 training and 6 testing images.  

The genuine and imposter scores are computed based on the 

Euclidean distance. There are 990 (165*6) genuine scores 

and 162360 (165*164*6) imposter scores. These scores are 

then compared with the threshold (varying with the step size 

of 0.01) and error rates are calculated. If the genuine score 

exceeds the threshold, then it contributes to the false rejection 

rate (FRR) which is the ratio of the number of rejected 

verification attempts to the number of verification attempts 

by a valid user. If the imposter score is less than the 

threshold, then it contributes to the False acceptance rate 

(FAR) which is the ratio of the number of successful fraud 



International Journal of Computer Applications (0975 – 8887) 

Volume 38– No.10, January 2012 

32 

attempts to the total number of fraud attempts by a user. 

These error rates are used to plot the receiver operating 

characteristics (ROC) which depicts the performance of an 

authentication system. The ROC plot is drawn between FAR 

vs. GAR (GAR= 100-FRR is the genuine acceptance rate), 

with varying threshold values. From this plot the threshold 

that yields the highest GAR corresponding to the lowest FAR 

needs to be selected. 

 

The Reinforced hybrid BF-PSO is used to maximize the 

recognition rate with respect to the parameter „p‟ in t-norms. 

Fig. 5 compares the performance of the features of the 

individual knuckles with that of the feature level fusion 

involving four knuckles after discarding 300 features. If we 

remove more than 300 features then the results will 

deteriorate, so we take 1824(531*4-300) significant features 

for the fusion. From Fig. 5, it is evident that significant 

performance improvement in GAR can be achieved as 

compared to that of individual FKP‟s representations. Table 2 

displays the verification results of feature level fusion with 

and without the feature selection. Table 3 gives the 

identification accuracy with the three well known t-norms in 

addition to proving the estimates of parameter „p‟ using 

Reinforced hybrid BF-PSO learning technique. With the 

feature selection, significant performance improvement in the 

verification as well as the identification accuracy can be seen 

from Tables 2 and3. Table 4 compares the performance of 

feature selection using t-norms with the other methods like 

PCA and fuzzy entropy. The t-norms have an edge over other 

methods.  

  
Fig. 5 A comparison of performance of individual knuckle (LI, RI, LM, RM) with the feature level fusion using Frank t-norm 

with 300 features removed. 

 

Table 2 Verification results of feature level fusion with and 

without feature selection. 

 

Method GAR (%)  ( for FAR=10-2 %) 

Without  feature selection 93 

Frank  t-norm  (p=0.12) 97 

Yager t-norm  (p=0.08) 96.5 

Hamacher t-norm (p=1.3) 95 

          

Table 3 Identification results with and without feature 

selection. 

 

Feature level fusion Identification accuracy (%) 

Without feature 

selection 

98 

Frank t-norm 100 

Yager t-norm 100 

Hamacher t-norm 99.71 

 
          

Table 4 Comparison of the performance with other feature 

selection methods 
 

6.  CONCLUSIONS 
As the features contain the raw information about a pattern, its 

utilization in the context of multimodal biometric fusion is of 

utmost importance. But the features are too large to capture 

the effective information. Hence this study focuses on 

reducing the insignificant features with the help of divergence 

function derived from Hanman-Anirban entropy function. The 

concept of the divergence is necessitated to represent the 

difference between the features of the training samples of the 

same user. We need two divergences to be able to apply t-

norms for getting t-normed divergences required in the 

formulation of the divergence function.  
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Fusion with feature selection using Frank t-norm

RM

LM

RI

LI

Feature level fusion GAR (%)  (for FAR=10-

2 %) 

Frank t-norm 97 

PCA [19] 94 

Fuzzy entropy[20] 92 

PSO-SVM [21] 93.65 
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The significance of the features is evaluated using the 

divergence function such that the features with the lower 

values of the divergence function need to be retained.  

 

The implementation of the proposed approach on FKP gives a 

reduction of 15% features with 4% improvement in the 

performance. Beyond 15% reduction in the features, the 

performance is found to deteriorate. Further work is on to link 

the divergence function with notion of roughness for paving a 

way to the rough set theory.  
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