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ABSTRACT 
Frequent pattern mining has become one of the most popular 

data mining approaches for the analysis of purchasing 

patterns. There are techniques such as Apriori and FP-Growth, 

which were typically restricted to a single concept level. We 

extend our research to discover cross - level frequent patterns 

in multi-level environments. Unfortunately, little research has 

been paid to this research area. Mining cross - level frequent 

pattern may lead to the discovery of mining patterns at 

different levels of hierarchy. In this study a transaction 

reduction technique with FP-tree based bottom up approach is 

used for mining cross-level pattern. This method is using the 

concept of reduced support. 

Keywords: Data mining, cross – level frequent 

Patterns, FP-tree. 

1. INTRODUCTION 
Association rule mining is as important research subject put 

forward by Agrawal in reference [1]. Association rule mining 

techniques can be used to discover unknown or hidden 

correlation items found in the database of transactions. The 

pattern of mining association rule could be decomposed into 

two sub problems. First, mining of frequent itemsets/patterns 

and generating association rule from frequent patterns is next 

[1 ] [3 ]. Finding frequent patterns becomes the main work of 

mining association rules [2]. However, previous work has 

been focused on mining association rules at a single concept 

level as well as multiple levels. There are applications which 

need to find “cross level” association rule at multiple concept 

levels. For example, besides finding 80% of customers that 

purchase milk may also purchase Bread, it could be 

informative to also show that 75 % of people buy Wheat 

bread if they buy 2% milk or 70% of people buy milk if they 

buy wheat bread. The association relationship in the later 

statement is expressed at a lower level but carries more 

specific and concrete information than that in the former. This 

requires progressively deepening the knowledge mining 

process for finding refined knowledge from data. The 

necessity for mining multiple-level association rules or using 

taxonomy information at mining association rules has been 

observed by other researchers [2, 4, 11, and 12]. 

One approach to multilevel mining would be to directly 

exploit the standard algorithms in this area – Apriori [1] and 

FP-Growth [3] by iteratively applying them in a level by level 

manner to each concept level. In this paper, we introduce a 

new study in discovery of frequent patterns based on the FP-

tree [5]. Our approach is different from FP-Growth algorithm 

[3] which needs to recursively generate conditional FP-trees 

such that a large amount of memory space needs to be used. 
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Our approach minimizes I/O costs by applying transaction 

reduction technique and applying the resulted transactions in 

FP-tree as input to subsequent iterations of the mining 

process. Our method adopts a bottom-up approach, with a leaf 

to root traversal, so as to identify frequent patterns existing 

between arbitrary classification levels. Our method reduces 

the search spaces without losing any patterns. 

This paper looks to mine cross – level frequent patterns from 

mulitdatasets and proposes a continuation and extension work 

of the work in [6]. The paper is organized as follows section 2 

discusses related work. The basics behind multilevel 

association rules are given in section 3. We present the 

description about transaction reduction concept and Bottom-

up cross-level frequent pattern mining in section 4. 

Experiments and results are presented in section 5. Section 6 

concludes the paper and our future work. 

2. RELATED WORK 
Since association rule mining was introduced in [1]. The 

problem of mining frequent pattern has been studied 

extensively by many researchers. As a result, a large number 

of algorithms have been developed in order to efficiently 

solve the problem [2,3]. In practice the number of work has 

been focused on mining association rules at single concept 

level. Thus there has been recent interest in discovering 

multiple level association rules.  A new approach to mine 

frequent patterns for multidatasets has to be considered. Work 

has been done in adopting approaches originally made for 

single level datasets into techniques usable on multilevel 

datasets. The paper in [7] shows one of the earliest approaches 

proposed to find frequent patterns in multilevel datasets and 

later revisited in [4]. This work primarily focused on finding 

frequent pattern at each level in the dataset. The paper in [8] 

proposed a novel method to extract multilevel association rule 

based on different hierarchical levels by organizing and 

extracting frequent patterns. One adaptation of Apriori to 

multilevel datasets is a top-down progressive deepening 

method by Thakur, Jain & Pardasani in [9]. This approach 

was developed to find level – crossing association rules by 

extending existing multilevel mining techniques and uses 

reduced support and refinement of the transaction table at 

every hierarchy level .Due to the refinement of the transaction 

table some cross-level patterns were missed by this method 

and it scans multiple times the table to generate cross-level 

patterns. T.Eavis proposed an algorithm in paper [5] to mine 

cross-level frequent pattern by multiple FP-trees to generate 

cross-level pattern. The paper in [10] has proposed a new 

algorithm for transaction reduction based frequent pattern 

mining in single concept level. 

 

 

However, the majority of work has proposed on finding 

frequent patterns as efficiently as possible, but it relies on 
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using standard algorithms. The previous work in [6] has 

implemented to find large 1 frequent pattern for all levels 

using new method CCB-tree. In this work, we attempt to 

reduce the unwanted patterns and transactions using 

transaction reduction technique and applying the resulted 

transactions in FP-tree as input to subsequent iterations of the 

mining process. Our method adopts a bottom-up approach, 

with a leaf to root traversal with single FP-tree generation, so 

as to identify frequent patterns existing between arbitrary 

classification levels. Our method reduces the I/O costs and 

search spaces without losing any patterns.  

3. MULTILEVEL ASSOCIATION RULE 
We assume that the database contain 1) an item dataset which 

contain the description of each item in I in the form of (Ai, 

description), where Ai € I and 2)  a transaction dataset, T, 

which consist of a set of transaction   (Ti { Ap,…. Aq,}), 

where Ti is a transaction identifier and Ai € I for (for I = 

p….q). 

To find relatively frequent occurring patterns and reasonably 

strong rule implications, a user or an expert may specify two 

thresholds: minimum support, σ‟ and minimum confidence, φ. 

For finding multiple-level association rule, different minimum 

support and/or minimum confidence can be specified at 

different levels. 

Definition 1: The support of an item A in a set S, σ(A/S), is 

the number of transactions(in S) which contain A versus the 

total number of Transactions in S. 

Definition 2: The confidence of A→B in S, φ(A→B/S), is the 

ratio of σ(AUB/S) versus σ(A/S), i.e., the probability that item 

B occurs in S when item A occurs in S. 

The definition implies a filtering process which confines the 

pattern to be examined at lower level to be only those with 

large support at their corresponding high level. Based on this 

definition, the idea of mining multiple- level association rules 

is illustrated below. 

Table1: A sales transaction table 

transaction_id Bar_code_set 

351428 {17325, 92108, 55349…} 

982510 {92458, 77451, 60395…} 

---- ---- 

 
Example 1: Let the query to be to find multiple-level 

association rule in the database in Table 1 for the purchase 

patterns related to Category, Content and Brand of the food 

which can only be stored for less than three weeks. 

Table 2: A sales_item (description) relation 

Bar_co

de 

Categ

ory 

Bra

nd 

Content Siz

e 

Storag

e_pd 

price 

17325 Milk For

emo

st 

2% 1(g

a) 

14(day

s) 

$3.89 

---- ---- ---- --- ---- ---- ---- 

 
Table 3: A generalized sales_item description table 

GID Bar_Code_Set Categ

ory 

Conte

nt 

Brand 

112 {17325, 31414, 

91265} 

Milk 2% Foremos

t 

---- ---- ---- --- ---- 

   

The relevant part of the sales item description relation in 

Table 2 is fetched and generalized into a generalized 

Sales_item description table, as shown in Table 3, in which is 

tuple represent a generalized item which is the merge of a 

group of a tuples which share the same values in the interested 

attributes. For example, the tuple with the same category, 

content and brand in Table 2 are merged into one, with their 

bar codes replace by a bar-code set. Each group is then treated 

as an atomic item in the generation of lowest level association 

rules. For example, the association rule generated regarding to 

milk will be only in relevance to  (at the low concept levels) 

brand (such as Dairyland) and Content (such as 2%) but not to 

size, producer, etc. 

The taxonomy information is provided in table 3. Let 

Category (such as “milk”) represent the first-level concept, 

content (such as “2%”) for the second level one and brand 

(such as “Foremost”) for the third level one. The table implies 

a concept tree like Fig.1. 

The process of mining Multiple-level association rules is 

actually will be starting from top-most concept level. Let the 

minimum support at this level be 5% and the minimum 

confidence is 50%. One may fine the Large 1-itemset: “bread 

(25%), meat (10%), and milk (20%), Vegetable (30%). 

At the second level, only the transactions which contain the 

large items at the first level are examined. Let the minimum 

support at this level be 2% and the minimum confidence is 

40%. One may find frequent 1-itemsets: “lettuce (10%), 

Wheat bread (15%), white bread (10%, 2% milk (10%)...” 

The process repeats at even lower concept level until no large 

patterns can be found. 

 
Fig. 1: Taxonomy for the relevant data items. 

4. MINING FREQUENT PATTERNS 
From the beginning of association rule mining in [1], the first 

step has always been to find the frequent patterns or itemsets. 

Here in this section we first introduce transaction reduction 

technique in multilevel datasets and then our work to mining 

cross-level frequent pattern using FP-tree based bottom up 

method. 

4.1.Proposed Transaction Reduction 

Technique 
This algorithm is based on reducing non candidate patterns 

and transactions. The idea is based on the theorem described 

in next subsection. 

4.2.Theorem and proof 
Theorem: If c € Fk and c.support < min.support, Titems ≤ k, k 

= 1, then c is useless in Fk+1 where Fk is Frequent pattern, c 

is an itemset in each transaction and Titems is total item count 

in each transactions. 

Proof 1: [For c € Fk ]  
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Consider a transaction Ti = {T1, T2, T3… Tm}. Let T1 = {a1, 

a2, a3… an}, T2 = {a1}. Since c is a hierarchy data. 

Whenever the lower-level items of c achieve a support count, 

the higher –level items should be added into the reduced 

transaction table. For Example data c is 111, 211... Satisfies 

support count, therefore the higher –level items of 11*, 21*… 

and the next higher-level also 1**, 2** should be added into 

the reduced transaction table. If lower-level items of c does 

not satisfy the min.support, then lower-level items of c is 

removed from the reduced transaction table. Hence the proof. 

Proof 2: [For Titems ≤ k where k = 1] 

Now consider the same transaction Ti = {T1, T2, T3… Tm}. 

Let T1 = {a1, a2, a3… an}, T2 = {a1}. During frequent k+1 

pattern generation transaction T2 requires at least 2 as item 

count and if not then, Ti can be rejected from the transaction 

table. Hence the proof. 

Let us consider the following Example with sample database.  

Table4: Sample Database 

TID  Items 

T1 {111, 121, 211, 221} 

T2 {111, 211, 222, 323} 

T3 {112, 122, 221, 411} 

T4 {111, 121} 

T5 {111, 122, 211, 221, 413} 

T6 {113, 323, 524} 

T7 {131, 231} 

T8 {323, 411, 524, 713} 

 
CCB – Tree Algorithm [6] has been used to find multilevel 

frequent 1 pattern. 

 
 

Fig. 2: CCB-tree 

CCB-Tree Mining Process: 

Minimum support for all levels is 4, 3, and 3: 

Mining starts from the left most initial node i.e., from 1**: 7 > 

min.support and its descendents 11*:6>3 and 111>3. But 

112,113<3 so it‟s considered to be a large 1 frequent pattern. 

Finally frequent 1 pattern for level 1: 1**, 2** Level 2: 11*, 

12*, 21*, 22* Level 3:111,211,221. 

 

Table5: Reduced Transaction Table - TRD 

TID  Items 

T1 {111, 12*, 211, 221} 

T2 {111, 211, 22*} 

T3 {11*, 12*, 221} 

T4 {111, 12*} 

T5 {111, 12*, 211, 221} 

T7 {1**, 2**} 

By the proposed transaction reduction technique T6 contain 

11* i.e., 1 item count so it is removed from the table4 and 

reduced transaction table is produced. 

4.3.FP-tree Generation  
In this section we introduce and describe our approach in 

details and given a running example to illustrate our algorithm 

for mining cross-level frequent pattern by traversing a FP-

tree. We employ the frequent pattern tree structure to 

compress a larger database into a highly condensed much 

small data structure which avoids costly, repeated database 

scans. If two access data share a common prefix according to 

some sorted order of frequent patterns, the shared parts can  be 

merged using one prefix structures as long as the count is 

registered properly. If the frequent items are sorted in 

descending order of their frequency, there is better chance that 

more prefix strings can be shared. 

Algorithm 1 (FP-tree construction) 

Input: Reduced Transaction Table – TRD 

Output: Its frequent pattern tree, FP-tree 

Method: The FP-tree is constructed in the following steps. 

1. Create the root of an FP-tree, T, and label it as null. For 

each access data in reduced transaction table do the following.  

1.1 Sort the frequent patterns F in the reduced transaction 

table with their support (lower- level to higher level) in 

descending order. i.e. F is a hierarchy data. 

1.2 Let the sorted frequent pattern list in TRD be [p│P], 

where p is the first element and P is the remaining list. Call 

insert_tree ([p│P],T). 

1.3 Function insert_tree ([p│P],T) is performed as follows. If 

T has a child N so that N.item-name = p.item-name, then 

increment N‟s count by 1; otherwise create a new node N and 

let its count be 1, its parent link be linked to T, and its node-

link be linked to the nodes with the same item-name. If P is 

not empty, call inset_tree(P,N) recursively. 

 

Table6: Reduced Transaction Table – TRD with sorted 

items 

TID  Items 

T1 {111,  211, 221, 12*} 

T2 {111, 211, 22*} 

T3 { 221, 11*, 12*} 

T4 {111, 12*} 

T5 {111, 211, 221, 12*} 

T7 {1**, 2**} 
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Fig. 3: Cross-Level FP-tree 

4.4.Frequent Pattern Generation 
After generating a FP-tree, the next phase is to generate 

candidate itemsets and find frequent patterns. Cross-level 

frequent pattern with bottom up approach starts from the leaf 

nodes of an existing FP-tree and traverses each branch 

upwards until it reaches its root. We begin by scanning the 

tree and identifying its leaf nodes. A pointer to each leaf is 

then inserting into the leaf node array. We now perform a 

bottom up scan of each leaf node until we reach the root. 

Meanwhile each node visited is conserved into temporary 

buffer for recording the passing path when a node with 

support count   is visited. Candidate Generation keeps the path 

from starting node i.e. leaf node to the current node and 

generate all combinations of candidate 2-itemset. Thus when 

it comes to generate cross-level itemsets, we use a single 

global cross-level threshold. Only items from all levels that 

are above this threshold can be considered as frequent. The 

candidate itemset which satisfies the minimum support count 

that candidate can be used for next level processing, the node 

which does not satisfy minimum .support can be ignored and 

candidate generation does nothing for this. After finding 

frequent        2-itemsets from all sub trees. Next traversal is 

Candidate generation for frequent 3 itemsets. The supports for 

all the candidate k-itemsets (k≥3) can be computed and the 

frequent k-itemset can be obtained. This process proceeds 

until to find frequent k patterns. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4: Cross-Level FP-tree with pointers to the Leaf node. 

For example, from Fig. 4 we start from the first pointer P1, 

candidate 2 itemsets are 12*, 111:1, 12*, 11*:1, 12*, 1**:1. 

Since 1** is the ancestor of 12* so 12* , 1** is eliminated. 

For the next pointer, (22*,211,111:1) i.e., 22*,211: 1, 

22*,21*:1, 22*,111 :1, 22*,11*:1,22*,1**:1, 211,111:1, 

211,11*:1, 211*1**:1, 2**,1**:1. 

 

Algorithm2 - MCLFPT (Frequent Pattern Generation) 

Input: FP-tree, minimum support count. 

Output: Frequent 1 to k pattern. 

Method: Bottom up mining method with candidate generation 

process 

 

1. Find the leaf node for all sub trees and insert a pointer to 

each leaf   i.e. leaf node array. 

 

2. For leaf node array 1 to n perform the following process 

 

2.1 Perform the bottom up tree traversal for each leaf node to 

the root and generate all   

 Combinations of candidate itemset using the function 

candidate_Generation (Lnode, Item.Lnode) example, from 

figure3 we start from the first   

   Pointer P1, candidate 2 itemsets are 12*, 111:1, 12*, 

11*:1, 12*, 1**:1. 

2.2 Function candidate_Generation (Lnode Arrays 1...N 

perform as follows. If Lnode is the leaf node and Lnode.item 

is the item in the leaf node and Cnode is the current node. And 

cnode.item is the item in current node and SC is the support 

count in the nodes and SC stores the minimum support count 

of their parameters. 

Candidate_Generation (LNode.Arrays 1..N) 

{ 

       Gen_Freq2 (Lnode.Arrays 1...N); 

       For Each {cand,SC}€ Cand2 

            If SC< Min.Support then Remove (cand, SC) from 

Cand2 

       Gen_Freqk (Lnode.Arrays 1...N) 

        

  2.3 Gen_Freq2  (Lnode.Arrays 1..N) 

   Lnode.Arrays = 1 

   While(Lnode.Arrays ≤ N) 

    { 

     While (Lnode!=Null) 

        { 

       Cnode = LNode +1 

  SC = minimum (Lnode.SC,Cnode.SC)  

   Insert to Cand2 ({Lnode.Item,Cnode.item},SC) 

Ans_des(Lnode.Item,Cnode.item) 

  Lnode = Lnode +1  

   } 

      Lnode.Arrays = Lnode.Arrays + 1 

     } 

  

2.4 Function Ans_des(Lnode.Item,Cnode.item) check the 

Lnode and Cnode for its ancestor. If Lnode has ancestor then 

generate candidate itemset with ancestor.Lnode.item with 

Cnode.item and insert it into cand2 

({ancestor.Lnode.item,cnode.item},SC) repeat the same for 

Cnode. If Cnode has ancestor then generate itemset with 

Lnode.item and ancestor.Cnode.item and insert them into 

cand2 ({Lnode.item,ancestor.Cnode.item},SC). 

 

Cand2(Cand, SC) 

{ 

    If {cand, SC) € Cand2 then Cand2 = Cand2 U 

{Cand: SC} 

Null 

111:4 

211:3 

221:2 

12*:2 

12*:1 

221:1 

11*:1 

12*:1 

2**:1 

1**:1 

22*:1 

Null 

111:4 

211:3 

221:2 

12*:2 

12*:1 

221:1 

11*:1 

12*:1 

2**:1 

1**:1 

22*:1 

  P1                             P2                             P3                             P4                             P5                             Pointer to leaf nodes 
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  Else  

      Add SC to the count of the Cand  

  } 

Eliminate the candidate pattern if an item has ancestor and 

descendent relationship   i.e. for Example 1** is the ancestor 

of 12* so 12*, 1**:1 is eliminated. 

  Candk(Cand, SC) 

{ 

    If {cand, SC) € Candk then Candk = Candk U 

{Cand: SC} 

  Else  

      Add SC to the count of the Cand  

  } 

2.7 Repeat the algorithm for generating candidate k pattern 

with support count and stop the process. While generating 

candidate 3 to k pattern, each node visited will be conserved 

into buffer for recording the passing path. 

 

For Example the frequent pattern generated through this 

algorithm is and minimum support count to be satisfied is 3. 

 

       2-itemsets 3-itemsets 

1**,2** 1**,21**,22* 

1**,21* 2**,11*12* 

1**,22* 11*,12*,22* 

2**,11* 11*,21*,22* 

2**,12* 1**,21*,22* 

11*,12* 11*211,22* 

11*,21* 11*,221,12* 

11*,22* 21*,111,22* 

12*,22* 22*,111,211 

21*,22*  

1**,211  

1**,221  

2**,111  

11*,211  

11*,221  

12*,111  

12*,221  

21*,111  

22*,111  

22*,211  

111,211  

 
The Frequent itemsets derived from this algorithm is similar 

to ML_T2L1 approach. Since the Frequent 1 pattern is 

derived through CCB-tree concept which produces the same 

result as in ML_T2L1. 

The advantage of our method over a Level-Crossing [9] and 

CLFPM [5] is again the minimization of dataset scanning and 

it generates frequent pattern with single FP-tree and without 

generating conditional FP-trees. Specifically we can do cross-

level construction after building an FP-tree, and then using the 

bottom up technique to generate the cross-level frequent 

pattern. 

5. PERFORMANCE EVALUATION 
We evaluate the performance of our proposed algorithm 

MCLFPT, Level-crossing [9] and CLFPM [5]. All our 

experiments were conducted on Intel CPU using Visual Basic 

Programming Language running in Microsoft windows XP 

environment. We used Synthetic transactional databases 

generated by IBM Quest Market-Basket Synthetic Data 

Generator. We see a comparison between MCLFPT, Level-

crossing [9] and CLFPM with short simple transactions. The 

execution time decreases with MCLFPT, when comparing 

with Level-crossing and CLFPM 

Execution Times on Dataset
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Fig. 5: Performance Evaluation 

First, the relative performance of the MCLFPT algorithms 

under any setting is relatively independent of the number of 

transactions used in the testing, which indicates that the 

performance is highly relevant to threshold setting. Second, 

the MCLFPT algorithm have relatively good „scale-up‟ 

behavior  since the increase of the number of the transactions 

in the database will lead to approximately the linear growth of 

the processing of large transaction databases. From our 

experiments, we conclude that MCLFPT is most efficient and 

stable among all the algorithms based on FP-tree structure. It 

reduces the I/O Costs. 

6. CONCLUSIONS & FUTURE WORK 
Transaction databases in many applications contain data that 

has built-in hierarchy information. In such databases, users 

may be interested in finding association among items only at 

the same level and we extended the scope of study of mining 

level-crossing association rules from large databases. A 

transaction reduction technique based method is used to 

reduce the unwanted candidates and transactions and applying 

the resulted transactions in FP-tree as input to subsequent 

iterations of the mining process. We adopted a bottom-up 

approach, with a leaf to root traversal with single FP-tree 

generation, so as to identify frequent patterns existing 

between arbitrary classification levels. Our method reduces 

the I/O costs and search spaces without losing any patterns. 

Performance Evaluation demonstrates the viability of our new 

method. In future, an efficient algorithm can be generated to 

reduce the redundancy in cross-level association rules. 
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