
International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

30

A Novel Algorithm for Cross Level Frequent Pattern

Mining in Multidatasets

B. Jayanthi
Associate Professor in MCA

Kongu Arts and Science College
Erode, Tamilnadu, India

ABSTRACT
Frequent pattern mining has become one of the most popular

data mining approaches for the analysis of purchasing

patterns. There are techniques such as Apriori and FP-Growth,

which were typically restricted to a single concept level. We

extend our research to discover cross - level frequent patterns

in multi-level environments. Unfortunately, little research has

been paid to this research area. Mining cross - level frequent

pattern may lead to the discovery of mining patterns at

different levels of hierarchy. In this study a transaction

reduction technique with FP-tree based bottom up approach is

used for mining cross-level pattern. This method is using the

concept of reduced support.

Keywords: Data mining, cross – level frequent

Patterns, FP-tree.

1. INTRODUCTION
Association rule mining is as important research subject put

forward by Agrawal in reference [1]. Association rule mining

techniques can be used to discover unknown or hidden

correlation items found in the database of transactions. The

pattern of mining association rule could be decomposed into

two sub problems. First, mining of frequent itemsets/patterns

and generating association rule from frequent patterns is next

[1] [3]. Finding frequent patterns becomes the main work of

mining association rules [2]. However, previous work has

been focused on mining association rules at a single concept

level as well as multiple levels. There are applications which

need to find “cross level” association rule at multiple concept

levels. For example, besides finding 80% of customers that

purchase milk may also purchase Bread, it could be

informative to also show that 75 % of people buy Wheat

bread if they buy 2% milk or 70% of people buy milk if they

buy wheat bread. The association relationship in the later

statement is expressed at a lower level but carries more

specific and concrete information than that in the former. This

requires progressively deepening the knowledge mining

process for finding refined knowledge from data. The

necessity for mining multiple-level association rules or using

taxonomy information at mining association rules has been

observed by other researchers [2, 4, 11, and 12].

One approach to multilevel mining would be to directly

exploit the standard algorithms in this area – Apriori [1] and

FP-Growth [3] by iteratively applying them in a level by level

manner to each concept level. In this paper, we introduce a

new study in discovery of frequent patterns based on the FP-

tree [5]. Our approach is different from FP-Growth algorithm

[3] which needs to recursively generate conditional FP-trees

such that a large amount of memory space needs to be used.

Dr. K. Duraiswamy
Dean

K.S.Rangasamy College of Technology
Tiruchengode, Tamilnadu, India

Our approach minimizes I/O costs by applying transaction

reduction technique and applying the resulted transactions in

FP-tree as input to subsequent iterations of the mining

process. Our method adopts a bottom-up approach, with a leaf

to root traversal, so as to identify frequent patterns existing

between arbitrary classification levels. Our method reduces

the search spaces without losing any patterns.

This paper looks to mine cross – level frequent patterns from

mulitdatasets and proposes a continuation and extension work

of the work in [6]. The paper is organized as follows section 2

discusses related work. The basics behind multilevel

association rules are given in section 3. We present the

description about transaction reduction concept and Bottom-

up cross-level frequent pattern mining in section 4.

Experiments and results are presented in section 5. Section 6

concludes the paper and our future work.

2. RELATED WORK
Since association rule mining was introduced in [1]. The

problem of mining frequent pattern has been studied

extensively by many researchers. As a result, a large number

of algorithms have been developed in order to efficiently

solve the problem [2,3]. In practice the number of work has

been focused on mining association rules at single concept

level. Thus there has been recent interest in discovering

multiple level association rules. A new approach to mine

frequent patterns for multidatasets has to be considered. Work

has been done in adopting approaches originally made for

single level datasets into techniques usable on multilevel

datasets. The paper in [7] shows one of the earliest approaches

proposed to find frequent patterns in multilevel datasets and

later revisited in [4]. This work primarily focused on finding

frequent pattern at each level in the dataset. The paper in [8]

proposed a novel method to extract multilevel association rule

based on different hierarchical levels by organizing and

extracting frequent patterns. One adaptation of Apriori to

multilevel datasets is a top-down progressive deepening

method by Thakur, Jain & Pardasani in [9]. This approach

was developed to find level – crossing association rules by

extending existing multilevel mining techniques and uses

reduced support and refinement of the transaction table at

every hierarchy level .Due to the refinement of the transaction

table some cross-level patterns were missed by this method

and it scans multiple times the table to generate cross-level

patterns. T.Eavis proposed an algorithm in paper [5] to mine

cross-level frequent pattern by multiple FP-trees to generate

cross-level pattern. The paper in [10] has proposed a new

algorithm for transaction reduction based frequent pattern

mining in single concept level.

However, the majority of work has proposed on finding

frequent patterns as efficiently as possible, but it relies on

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

31

using standard algorithms. The previous work in [6] has

implemented to find large 1 frequent pattern for all levels

using new method CCB-tree. In this work, we attempt to

reduce the unwanted patterns and transactions using

transaction reduction technique and applying the resulted

transactions in FP-tree as input to subsequent iterations of the

mining process. Our method adopts a bottom-up approach,

with a leaf to root traversal with single FP-tree generation, so

as to identify frequent patterns existing between arbitrary

classification levels. Our method reduces the I/O costs and

search spaces without losing any patterns.

3. MULTILEVEL ASSOCIATION RULE
We assume that the database contain 1) an item dataset which

contain the description of each item in I in the form of (Ai,

description), where Ai € I and 2) a transaction dataset, T,

which consist of a set of transaction (Ti { Ap,…. Aq,}),

where Ti is a transaction identifier and Ai € I for (for I =

p….q).

To find relatively frequent occurring patterns and reasonably

strong rule implications, a user or an expert may specify two

thresholds: minimum support, σ‟ and minimum confidence, φ.

For finding multiple-level association rule, different minimum

support and/or minimum confidence can be specified at

different levels.

Definition 1: The support of an item A in a set S, σ(A/S), is

the number of transactions(in S) which contain A versus the

total number of Transactions in S.

Definition 2: The confidence of A→B in S, φ(A→B/S), is the

ratio of σ(AUB/S) versus σ(A/S), i.e., the probability that item

B occurs in S when item A occurs in S.

The definition implies a filtering process which confines the

pattern to be examined at lower level to be only those with

large support at their corresponding high level. Based on this

definition, the idea of mining multiple- level association rules

is illustrated below.

Table1: A sales transaction table

transaction_id Bar_code_set

351428 {17325, 92108, 55349…}

982510 {92458, 77451, 60395…}

---- ----

Example 1: Let the query to be to find multiple-level

association rule in the database in Table 1 for the purchase

patterns related to Category, Content and Brand of the food

which can only be stored for less than three weeks.

Table 2: A sales_item (description) relation

Bar_co

de

Categ

ory

Bra

nd

Content Siz

e

Storag

e_pd

price

17325 Milk For

emo

st

2% 1(g

a)

14(day

s)

$3.89

---- ---- ---- --- ---- ---- ----

Table 3: A generalized sales_item description table

GID Bar_Code_Set Categ

ory

Conte

nt

Brand

112 {17325, 31414,

91265}

Milk 2% Foremos

t

---- ---- ---- --- ----

The relevant part of the sales item description relation in

Table 2 is fetched and generalized into a generalized

Sales_item description table, as shown in Table 3, in which is

tuple represent a generalized item which is the merge of a

group of a tuples which share the same values in the interested

attributes. For example, the tuple with the same category,

content and brand in Table 2 are merged into one, with their

bar codes replace by a bar-code set. Each group is then treated

as an atomic item in the generation of lowest level association

rules. For example, the association rule generated regarding to

milk will be only in relevance to (at the low concept levels)

brand (such as Dairyland) and Content (such as 2%) but not to

size, producer, etc.

The taxonomy information is provided in table 3. Let

Category (such as “milk”) represent the first-level concept,

content (such as “2%”) for the second level one and brand

(such as “Foremost”) for the third level one. The table implies

a concept tree like Fig.1.

The process of mining Multiple-level association rules is

actually will be starting from top-most concept level. Let the

minimum support at this level be 5% and the minimum

confidence is 50%. One may fine the Large 1-itemset: “bread

(25%), meat (10%), and milk (20%), Vegetable (30%).

At the second level, only the transactions which contain the

large items at the first level are examined. Let the minimum

support at this level be 2% and the minimum confidence is

40%. One may find frequent 1-itemsets: “lettuce (10%),

Wheat bread (15%), white bread (10%, 2% milk (10%)...”

The process repeats at even lower concept level until no large

patterns can be found.

Fig. 1: Taxonomy for the relevant data items.

4. MINING FREQUENT PATTERNS
From the beginning of association rule mining in [1], the first

step has always been to find the frequent patterns or itemsets.

Here in this section we first introduce transaction reduction

technique in multilevel datasets and then our work to mining

cross-level frequent pattern using FP-tree based bottom up

method.

4.1.Proposed Transaction Reduction

Technique
This algorithm is based on reducing non candidate patterns

and transactions. The idea is based on the theorem described

in next subsection.

4.2.Theorem and proof
Theorem: If c € Fk and c.support < min.support, Titems ≤ k, k

= 1, then c is useless in Fk+1 where Fk is Frequent pattern, c

is an itemset in each transaction and Titems is total item count

in each transactions.

Proof 1: [For c € Fk]

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

32

Consider a transaction Ti = {T1, T2, T3… Tm}. Let T1 = {a1,

a2, a3… an}, T2 = {a1}. Since c is a hierarchy data.

Whenever the lower-level items of c achieve a support count,

the higher –level items should be added into the reduced

transaction table. For Example data c is 111, 211... Satisfies

support count, therefore the higher –level items of 11*, 21*…

and the next higher-level also 1**, 2** should be added into

the reduced transaction table. If lower-level items of c does

not satisfy the min.support, then lower-level items of c is

removed from the reduced transaction table. Hence the proof.

Proof 2: [For Titems ≤ k where k = 1]

Now consider the same transaction Ti = {T1, T2, T3… Tm}.

Let T1 = {a1, a2, a3… an}, T2 = {a1}. During frequent k+1

pattern generation transaction T2 requires at least 2 as item

count and if not then, Ti can be rejected from the transaction

table. Hence the proof.

Let us consider the following Example with sample database.

Table4: Sample Database

TID Items

T1 {111, 121, 211, 221}

T2 {111, 211, 222, 323}

T3 {112, 122, 221, 411}

T4 {111, 121}

T5 {111, 122, 211, 221, 413}

T6 {113, 323, 524}

T7 {131, 231}

T8 {323, 411, 524, 713}

CCB – Tree Algorithm [6] has been used to find multilevel

frequent 1 pattern.

Fig. 2: CCB-tree

CCB-Tree Mining Process:

Minimum support for all levels is 4, 3, and 3:

Mining starts from the left most initial node i.e., from 1**: 7 >

min.support and its descendents 11*:6>3 and 111>3. But

112,113<3 so it‟s considered to be a large 1 frequent pattern.

Finally frequent 1 pattern for level 1: 1**, 2** Level 2: 11*,

12*, 21*, 22* Level 3:111,211,221.

Table5: Reduced Transaction Table - TRD

TID Items

T1 {111, 12*, 211, 221}

T2 {111, 211, 22*}

T3 {11*, 12*, 221}

T4 {111, 12*}

T5 {111, 12*, 211, 221}

T7 {1**, 2**}

By the proposed transaction reduction technique T6 contain

11* i.e., 1 item count so it is removed from the table4 and

reduced transaction table is produced.

4.3.FP-tree Generation
In this section we introduce and describe our approach in

details and given a running example to illustrate our algorithm

for mining cross-level frequent pattern by traversing a FP-

tree. We employ the frequent pattern tree structure to

compress a larger database into a highly condensed much

small data structure which avoids costly, repeated database

scans. If two access data share a common prefix according to

some sorted order of frequent patterns, the shared parts can be

merged using one prefix structures as long as the count is

registered properly. If the frequent items are sorted in

descending order of their frequency, there is better chance that

more prefix strings can be shared.

Algorithm 1 (FP-tree construction)

Input: Reduced Transaction Table – TRD

Output: Its frequent pattern tree, FP-tree

Method: The FP-tree is constructed in the following steps.

1. Create the root of an FP-tree, T, and label it as null. For

each access data in reduced transaction table do the following.

1.1 Sort the frequent patterns F in the reduced transaction

table with their support (lower- level to higher level) in

descending order. i.e. F is a hierarchy data.

1.2 Let the sorted frequent pattern list in TRD be [p│P],

where p is the first element and P is the remaining list. Call

insert_tree ([p│P],T).

1.3 Function insert_tree ([p│P],T) is performed as follows. If

T has a child N so that N.item-name = p.item-name, then

increment N‟s count by 1; otherwise create a new node N and

let its count be 1, its parent link be linked to T, and its node-

link be linked to the nodes with the same item-name. If P is

not empty, call inset_tree(P,N) recursively.

Table6: Reduced Transaction Table – TRD with sorted

items

TID Items

T1 {111, 211, 221, 12*}

T2 {111, 211, 22*}

T3 { 221, 11*, 12*}

T4 {111, 12*}

T5 {111, 211, 221, 12*}

T7 {1**, 2**}

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

33

Fig. 3: Cross-Level FP-tree

4.4.Frequent Pattern Generation
After generating a FP-tree, the next phase is to generate

candidate itemsets and find frequent patterns. Cross-level

frequent pattern with bottom up approach starts from the leaf

nodes of an existing FP-tree and traverses each branch

upwards until it reaches its root. We begin by scanning the

tree and identifying its leaf nodes. A pointer to each leaf is

then inserting into the leaf node array. We now perform a

bottom up scan of each leaf node until we reach the root.

Meanwhile each node visited is conserved into temporary

buffer for recording the passing path when a node with

support count is visited. Candidate Generation keeps the path

from starting node i.e. leaf node to the current node and

generate all combinations of candidate 2-itemset. Thus when

it comes to generate cross-level itemsets, we use a single

global cross-level threshold. Only items from all levels that

are above this threshold can be considered as frequent. The

candidate itemset which satisfies the minimum support count

that candidate can be used for next level processing, the node

which does not satisfy minimum .support can be ignored and

candidate generation does nothing for this. After finding

frequent 2-itemsets from all sub trees. Next traversal is

Candidate generation for frequent 3 itemsets. The supports for

all the candidate k-itemsets (k≥3) can be computed and the

frequent k-itemset can be obtained. This process proceeds

until to find frequent k patterns.

Fig. 4: Cross-Level FP-tree with pointers to the Leaf node.

For example, from Fig. 4 we start from the first pointer P1,

candidate 2 itemsets are 12*, 111:1, 12*, 11*:1, 12*, 1**:1.

Since 1** is the ancestor of 12* so 12* , 1** is eliminated.

For the next pointer, (22*,211,111:1) i.e., 22*,211: 1,

22*,21*:1, 22*,111 :1, 22*,11*:1,22*,1**:1, 211,111:1,

211,11*:1, 211*1**:1, 2**,1**:1.

Algorithm2 - MCLFPT (Frequent Pattern Generation)

Input: FP-tree, minimum support count.

Output: Frequent 1 to k pattern.

Method: Bottom up mining method with candidate generation

process

1. Find the leaf node for all sub trees and insert a pointer to

each leaf i.e. leaf node array.

2. For leaf node array 1 to n perform the following process

2.1 Perform the bottom up tree traversal for each leaf node to

the root and generate all

 Combinations of candidate itemset using the function

candidate_Generation (Lnode, Item.Lnode) example, from

figure3 we start from the first

 Pointer P1, candidate 2 itemsets are 12*, 111:1, 12*,

11*:1, 12*, 1**:1.

2.2 Function candidate_Generation (Lnode Arrays 1...N

perform as follows. If Lnode is the leaf node and Lnode.item

is the item in the leaf node and Cnode is the current node. And

cnode.item is the item in current node and SC is the support

count in the nodes and SC stores the minimum support count

of their parameters.

Candidate_Generation (LNode.Arrays 1..N)

{

 Gen_Freq2 (Lnode.Arrays 1...N);

 For Each {cand,SC}€ Cand2

 If SC< Min.Support then Remove (cand, SC) from

Cand2

 Gen_Freqk (Lnode.Arrays 1...N)

 2.3 Gen_Freq2 (Lnode.Arrays 1..N)

 Lnode.Arrays = 1

 While(Lnode.Arrays ≤ N)

 {

 While (Lnode!=Null)

 {

 Cnode = LNode +1

 SC = minimum (Lnode.SC,Cnode.SC)

 Insert to Cand2 ({Lnode.Item,Cnode.item},SC)

Ans_des(Lnode.Item,Cnode.item)

 Lnode = Lnode +1

 }

 Lnode.Arrays = Lnode.Arrays + 1

 }

2.4 Function Ans_des(Lnode.Item,Cnode.item) check the

Lnode and Cnode for its ancestor. If Lnode has ancestor then

generate candidate itemset with ancestor.Lnode.item with

Cnode.item and insert it into cand2

({ancestor.Lnode.item,cnode.item},SC) repeat the same for

Cnode. If Cnode has ancestor then generate itemset with

Lnode.item and ancestor.Cnode.item and insert them into

cand2 ({Lnode.item,ancestor.Cnode.item},SC).

Cand2(Cand, SC)

{

 If {cand, SC) € Cand2 then Cand2 = Cand2 U

{Cand: SC}

Null

111:4

211:3

221:2

12*:2

12*:1

221:1

11*:1

12*:1

2**:1

1**:1

22*:1

Null

111:4

211:3

221:2

12*:2

12*:1

221:1

11*:1

12*:1

2**:1

1**:1

22*:1

 P1 P2 P3 P4 P5 Pointer to leaf nodes

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

34

 Else

 Add SC to the count of the Cand

 }

Eliminate the candidate pattern if an item has ancestor and

descendent relationship i.e. for Example 1** is the ancestor

of 12* so 12*, 1**:1 is eliminated.

 Candk(Cand, SC)

{

 If {cand, SC) € Candk then Candk = Candk U

{Cand: SC}

 Else

 Add SC to the count of the Cand

 }

2.7 Repeat the algorithm for generating candidate k pattern

with support count and stop the process. While generating

candidate 3 to k pattern, each node visited will be conserved

into buffer for recording the passing path.

For Example the frequent pattern generated through this

algorithm is and minimum support count to be satisfied is 3.

 2-itemsets 3-itemsets

1**,2** 1**,21**,22*

1**,21* 2**,11*12*

1**,22* 11*,12*,22*

2**,11* 11*,21*,22*

2**,12* 1**,21*,22*

11*,12* 11*211,22*

11*,21* 11*,221,12*

11*,22* 21*,111,22*

12*,22* 22*,111,211

21*,22*

1**,211

1**,221

2**,111

11*,211

11*,221

12*,111

12*,221

21*,111

22*,111

22*,211

111,211

The Frequent itemsets derived from this algorithm is similar

to ML_T2L1 approach. Since the Frequent 1 pattern is

derived through CCB-tree concept which produces the same

result as in ML_T2L1.

The advantage of our method over a Level-Crossing [9] and

CLFPM [5] is again the minimization of dataset scanning and

it generates frequent pattern with single FP-tree and without

generating conditional FP-trees. Specifically we can do cross-

level construction after building an FP-tree, and then using the

bottom up technique to generate the cross-level frequent

pattern.

5. PERFORMANCE EVALUATION
We evaluate the performance of our proposed algorithm

MCLFPT, Level-crossing [9] and CLFPM [5]. All our

experiments were conducted on Intel CPU using Visual Basic

Programming Language running in Microsoft windows XP

environment. We used Synthetic transactional databases

generated by IBM Quest Market-Basket Synthetic Data

Generator. We see a comparison between MCLFPT, Level-

crossing [9] and CLFPM with short simple transactions. The

execution time decreases with MCLFPT, when comparing

with Level-crossing and CLFPM

Execution Times on Dataset

0

2

4

6

8

10

12

1000 2000 3000 4000 5000

No. of Transactions

E
x
e
c
u

ti
o

n
 i

n
 S

e
c
s

MCLFPT

CLFPM

Level-crossing

Fig. 5: Performance Evaluation

First, the relative performance of the MCLFPT algorithms

under any setting is relatively independent of the number of

transactions used in the testing, which indicates that the

performance is highly relevant to threshold setting. Second,

the MCLFPT algorithm have relatively good „scale-up‟

behavior since the increase of the number of the transactions

in the database will lead to approximately the linear growth of

the processing of large transaction databases. From our

experiments, we conclude that MCLFPT is most efficient and

stable among all the algorithms based on FP-tree structure. It

reduces the I/O Costs.

6. CONCLUSIONS & FUTURE WORK
Transaction databases in many applications contain data that

has built-in hierarchy information. In such databases, users

may be interested in finding association among items only at

the same level and we extended the scope of study of mining

level-crossing association rules from large databases. A

transaction reduction technique based method is used to

reduce the unwanted candidates and transactions and applying

the resulted transactions in FP-tree as input to subsequent

iterations of the mining process. We adopted a bottom-up

approach, with a leaf to root traversal with single FP-tree

generation, so as to identify frequent patterns existing

between arbitrary classification levels. Our method reduces

the I/O costs and search spaces without losing any patterns.

Performance Evaluation demonstrates the viability of our new

method. In future, an efficient algorithm can be generated to

reduce the redundancy in cross-level association rules.

7. REFERENCES
[1] Agrawal R,Imienlinski T,Swami A,(1993).Mining

association rules between sets of items in large

databases. In Proc. Of the ACM SIGMOD Int. Conf. on

Management of Data, Pages 207-216.

[2] Agrawal R, and Srikant R, (1994). Fast algorithms for

mining association rules. In Proc. Of the 20th Int. Conf.

on very Large Databases. Pages 487-499.

[3] Han .J ,Pei .J, and Yin .Y,(2000) Mining Frequent

patterns without candidate generation. In Proc. Of ACM-

SIGMOD Int. Conf. on Management of Data, pages 1-

12.

[4] Han, J., Fu, Y., Mining Multiple-Level Association

Rules in Large Databases, in IEEE Transactions on

Knowledge and Data Engineering, Vol. 11, No. 5,

September/October 1999.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

35

[5] T.Eavis and XI Zheng, Multi-Level Frequent Pattern

Mining, in Springer-Verlag Berlin Heidelberg 2009, pp.

369 – 383.

[6] Dr.K.Duraiswamy and B.Jayanthi, a Novel preprocessing

Algorithm for Frequent Pattern Mining in Mutidatasets,

International Journal of Data Engineering,Vol. 2, No. 3,

Aug 2011.

[7] Han, J., Fu, Y., Discovery of Multiple-Level Association

Rules from Large Databases, in Proceedings of the 21st

Very Large Data Bases Conference, Morgan Kaufmann,

P. 420-431, 1995.

[8] Yinbo WAN, Yong LIANG, Liya DING, “Mining

Multilevel Association Rules from Primitive Frequent

Itemsets”, Journal of Macau University of Science and

Technology, Vol.3 No.1, 2009

[9] Thakur, R. S., Jain, R. C., Pardasani, K. R., Mining

Level-Crossing Association Rules from Large Databases,

in the Journal of Computer Science 2(1), P. 76-81, 2006.

[10] R.E.Thevar, R.Krishnamoorthy, A New Approach of

Modified Transaction Reduction Algorithm For mining

Frequent Itemset, proceedings of IEEE Workshop on

Data mining and Artificial Intelligence, 2008.

[11] Rajkumar.N, Karthik.M.R, Sivanada.S.N, “Fast

Algorithm for mining multilevel Association

Rules,”IEEE Trans. Knowledge and Data Engg., Vol.2

pp. 688-692, 2003.

[12] Pratima Gautham, Pardasani, K. R., “Algorithm for

Efficient Multilevel Association Rule Mining”,

International Journal of Computer Science and

Engineering, Vol.2 pp. 1700-1704, 2010

