
International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

20

Component Replacement Strategies for Information

Systems Reengineering

Malleswara Talla, Ph.D.

John Molson Business School, Concordia
University, Montreal, Canada

Raul Valverde, Ph.D.

John Molson Business School, Concordia
University, Montreal, Canada

ABSTRACT
Recent trend in systems architecture and design is component-

based. A system is designed as a set of mutually supporting

components that provide the intended services. The

requirements models such as business type models and use

case models are often used for deriving the targeted

component-based architecture. The component interfaces are

derived via sequence diagrams, collaboration diagrams and

context diagrams. As the business model evolves, it becomes

vital that the system also needs to match the business

evolution whether it involves changing business rule set or

growth in volume of business transactions. Timely

reengineering of systems is profitable to any organization. The

systems reengineering can be conducted in a pragmatic

manner via component by component or a selected set of

components; it becomes manageable and cost-effective to

maintain the system and to train only a smaller sample of

affected users. This paper offers a methodology for system

reengineering via component replacement and model-view-

control framework for component refinement and evolution in

order to achieve a reengineered system that reflects upon the

latest requirements in business domain.

Keywords

Information System, Reengineering, Business Type model,

Use Case, Component-based model, Interface model, Context

model, MVC framework.

1. INTRODUCTION
Contemporary methodology for software systems engineering

is component-based. Current enterprise systems modeling

often use technologies such as Common Object Request

Broker Architecture (CORBA), Component Object Model

(COM), Easy Java Simulations (EJS), etc. An information

system as a component-based model is a set of mutually

supporting software components that provide the intended

services. A component provides a service as a modular piece

of a software system that communicates with other

components via interfaces. A component model

unambiguously specified interfaces and enables interactions

among the participating components [10]. Component-based

systems architecture allows a pragmatic system development

or system reengineering as only few components can be

focused. The system reengineering is in fact analyzing and

adapting the system to current business rules and performance

requirements. When component interfaces are not well

documented, reverse engineering is the only tool to

understand and remodel the system components [2]. The

component models leave enough scope for adaptation to

changing needs and business rules [3].

The component-based systems modeling provides an

opportunity to expedite the systems development via Open

Source or Commercial Off-The-Shelf (COTS) components

that are readily available [4]. The component based software

modeling allows an incremental system specification that can

adapt to a distributed component information systems [5]. An

information system should efficiently evaluate and store

information for better decisions in an organization,

considering its suppliers, customers, and other collaborating

organizations. The component-based software models can

support real time decisions via component selection at runtime

[6]. Similarly, the component based systems modeling allows

an efficient system design, development, implementation, and

subsequent reengineering. The component based methodology

allows a legacy information system to be migrated to a

modern distributed information system via reengineering [11].

This paper proposes few component replacement strategies

and methodology for system reengineering an information

system, taking into account the complexity of components.

The following sections detail the methodology and component

reengineering strategies to achieve targeted reengineering of

an information system.

2. COMPONENT-BASED

ARCHITECTURE
A component is a piece of software that offers a specific

service. An information system can be designed as a set of

mutually supporting components that provide the intended

services. The component-based systems development

methodology uses business type and use case models for

developing the requirements for its system components. The

business type requirements modeling can be performed in the

following steps [7]:

 Gather information of interest, type of information, and

limitations such as maximum and minimum values,

 Create a conceptual map of information while

eliminating redundant information,

 Conceive the system components.

Then, a business type model is created as a conceptual map of

all related data and information as shown in figure 1.

Fig. 1. Business Type Model

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

21

Indeed, a system is a set of requirements in terms of user

inputs and expected outputs of the system. The system usage

scenarios and business events detail how system should

respond to the events [8]. A Use Case is a description of a

user interaction with the system [7]. An use case contains the

participating actors where actor could be anything (a user, a

role, a person) internal or external that interacts with system

[9]. The figure 6 presents a set of users receiving the service

of a sales system.

Fig. 2. Use Case Model

The challenge in component-based systems architecture is to

reuse as many existing components and minimizing the need

for new components. In order to arrive at the requirements of

a component-based system, the business type models and use

case models can be used in an effort to identify component

specifications, interfaces and their dependencies [1]. The

figure 2 identifies how a component-based architecture is

created starting with the requirements models.

Fig. 3. Conceiving the component-based systems

architecture

An information system can be viewed as a set of collaborating

components. Each component acts upon a set of input

parameters and states, and provide an interface to other

components. The component interfaces in the interface

diagram have operations with data signatures and use the

terminology defined in the business type model or use case

model. The component architecture model should define all

components, their responsibilities, specifications, interfaces

and dependencies. The figure 3 presents a set of components

interacting among one another that constitute a component-

based systems architecture. In figure 3, the incoming arrows

represent input to a component and an outgoing arrow

presents a result or a service offered by that component. The

overall system provides the expected results.

Fig. 4. Component-based system architecture

Once the candidate component architecture is created, the

behaviour of each component and overall system can be

analysed in more detail. At this stage, the system functionality

is defined through component interfaces via component

interaction diagrams that specify messages or data exchanged

between the collaborating and communicating objects as

shown in figure 5.

Fig. 5. Sequence Diagram

The component collaborations are presented in

collaboration diagrams as shown in figure 6 that help

context modeling of a use case.

Fig. 6. Collaboration Diagram

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

22

The functionality resulted among these interactions can be

characterized in context diagrams [7]. A context model is a

high-level view of business context as procedures, roles and

responsibilities. A context model can be used for describing

the complete system in the context of business domain. The

figure 7 presents the details of processing a use case, as a set

of sequential and parallel processing procedures that reflect

upon the business context of an information system.

Fig. 7. Context Model

At a component interface, a set of parameters, data structures,

messages, or procedures as an input trigger a certain

processing, or as an output for results or input to other

component. The component interfaces and collaborations

among components are shown in figure 4. For each operation,

its parameters are defined by making use of appropriate types,
namely, pre-condition and post-condition behaviours [7].

3. COMPONENT REPLACEMENT
The component-based system reengineering is accomplished

via redesigning or revising an existing component for the

required changes. The target component can also be replaced

with another component with an equivalent new component

that offers the same service. Redesigning an existing

component may require reverse engineering when the existing

software system is not fully documented. The overall effort

for redesigning a component can be expensive. In such cases,

component replacement could be a better strategy for system

reengineering. It is often difficult to find another component

that offers an exact interface. However, it may be possible to

take only the required services and ignore irrelevant services

at the interface. A glue code can be triggered for transforming

the interface for the intended results. The component

replacement strategy for system reengineering requires a

through analysis since the component may require all relevant

inputs for producing the required output. At the component

interface level, if an input parameter is not needed, it can be

ignored and be left to a default value. While replacing a

component with another that offers similar but not exactly the

same service, a trivial glue code can help revising the service

as required. The glue code framework is similar to the control

part of Model-view-Control (MVC) framework, and turns the

component services and results that meet the user

expectations. The framework involves a model as a set of

communicating classes, view as a graphical user interface

(GUI) to the user, and control as a communication control.

The figure 8 depicts a MVC framework where the glue code is

on the model side in (a) and on the view side in (b).

Fig. 8. MVC framework

A carefully documented component provides all data and

information regarding the service offered and how it is

accomplished. Such documentation serves as a basis for

evaluating the feasibility of using the component as a

replacement for an existing component for system

reengineering. The component replacement strategy for

system reengineering can be considered based on complexity

as follows:

a) One-to-One component replacement,

b) One-to-Many component replacement,

c) Many-to-One component replacement,

d) Many-to-Many component replacement.

The size and complexity of a component may require either

grouping of simple components into one, or dividing into

multiple components that provide the same service. Let us

consider the component-based system architecture in figure 4

that consists of six components with well defined interfaces

for evaluating the component replacement strategies as

detailed below. Suppose the component C6 consists of classes

that are simple, such component can be replaced with a new

component NC6 as shown in figure 9. While implementing

such replacement, the interface provided by the new

component NC6 should be exactly same as the interface of

C6. Due to system evolution if any of the input interface

elements (IC4OA, IC4OB, IC5OA, and IC5OB) or output

elements (IC6OA, IC6OB, and IC6OC) become redundant,

such elements should be omitted in the new component NC6.

Conversely, if any of these elements require some kind of

input or output transformation, the glue code can be

implemented.

Fig. 9. One-to-One Component Replacement

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

23

When a component is very complex and an equivalent

component is not available, then a set of components that

collectively match the services offered by the existing one, it

can be replaced with those new components by carefully

reengineering the interfaces for accomplishing the same

service. In figure 10, component C6 is replaced with two new

components NC61 and NC62 which receive their required

interfaces from other components that collectively provide an

exact interface of C6. Such system reengineering simplifies

system architecture and enhances the scope for better system

maintenance and evolution. When several simple components

collectively can be replaced with a moderate component that

offers all services, it is worthwhile to use the new set of

components to replace the existing complex component in an

effort to reengineer the system that accomplishes the same

service.

Fig. 10. One-to-Many Component Replacement

In figure 11, the functionality of components C5 and C6 is

replaced with a new component NC5C6 while accomplishing

the same interface and services offered by both C5 and C6. It

should be noted that the services should be directed to the

target components or users selectively, so that the end results

of both C5 and C6 components match the overall system.

When the above strategies are not possible and a group of

components that define a service can be collectively replaced

with a new group of components that accomplish the same

service.

Fig. 11. Many-to-One Component Replacement

The resulting reengineered system will adapt a multitude of

aspects of the system. In figure 12, the components C4, C5

and C6 are replaced with a new component NC41, NC42, and

NC5NC6 reflecting upon the same final interface of both C5

and C6.

Fig. 12. Many-to-Many Component Replacement

A careful system reengineering involves a keen evaluation of

all above strategies to choose the one which is the most

appropriate and economical. The component simulators can

be used for testing an existing component functionality, or a

new component results for faster development and

reengineering of a software system.

4. CONCLUSIONS
In this paper, the component based modelling methodology is

detailed for system architecture and design; while several

strategies for replacing the components are presented for

system reengineering. The concepts and strategies in this

paper can be used for new systems as well as for legacy

systems reengineering. If an existing system is component-

based, the system components can be replaced with new

components that use the latest business rule set; however if

the existing system is a legacy system, component-based

modelling allows reengineering via plugging equivalent

components and an on-going system reengineering. The main

contribution of this paper is in reengineering via component

replacement while balancing the complexity among the

components. Such system reengineering enhances the scope

for efficient system maintenance and evolution. When a

component is processing-intensive, such component can be

divided into multiple components all of which may exist

within the system, or distributed over a network. The glue

code proposed in this paper allows a client/server architecture

for reengineering. Using these concepts, a legacy system can

be reengineered to adopt a new client/server architecture.

Further work may involve in evaluating component-based

modelling to benefit from network oriented client/server

architecture where most common components can be

centralized at server side whereas the user interface

components can be located at client side. Such component-

based modelling opens a gateway for numerous application

systems reengineering.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.6, January 2012

24

5. REFERENCES

[1] Cheesman, J. & Daniels J. (2001), “UML Components:

Simple Process for Specifying Component-based

Software”. Addison Wesley. N.J., US

[2] Landry Chouambe, Benjamin Klatt, and Klaus Krogmann,

(2008), “Reverse Engineering Software-Models of

Component-Based Models”, Proc. IEEE Conf. on

Software Maintenance and Reengineering”, 978-1-4244-

2157-2, pp 93-102.

[3] Xin Peng, Yijian Wu, Wenyun Zhao (2007), “A feature

oriented adaptive component model for dynamic

evolution”, Proc. IEEE conf. on Software Maintenance

and Reengineering”, 0-7695-2802-3/07.

[4] Pasquale Ardimento, Giovanni Bruno, Danilo Caivano,

Giuseppe Visaggio (2007), “A maintenance oriented

framework for software components characterization”,

Proc. IEEE Conf. on Software Maintenance and

Reengineering”, 0-7695-2802-3/07.

 [5] Nasreddin Aoumeur, Kamel Barkaoui, Gunter Saake

(2007), “Incremental specification validation and runtime

adaptativity of distributed component information

systems”, Proc. IEEE Conf. on Software Maintenance

and Reengineering”, 0-7695-2802-3/07.

[6] Biplav Srivastava (2004), “A feature oriented adaptive

component model for dynamic evolution”, Proc. IEEE

Conf. on Software Maintenance and Reengineering”, 0-

7695-2802-3/07.

[7] Brown, A.W. 2000, Large-Scale, Component-based

Development, Prentice Hall, New Jersey.

[8] Whitten, J. L., Bentley D. L. and Dittman K.V. 2000,

Systems Analysis and Design Methods, McGraw-Hill,

New York.

[9] Rumbaugh, J. 1994, „Getting started: Using use cases to

capture requirements‟, Jour. of Object-Oriented

Programming, vol.7, no.5, September, pp. 8-1-,12,23.

[10] Heineman G. T. and Councill W.T (2001), Definition of

a Software Component and its elements, Ch.1,

Component Based Software Engineering , Addison-

Wesley.

[11] Serrano, M., and Carver, D., de Oca, C. (2001),

“Reengineering legacy systems for distributed

environments”, Journal of Systems and Software, 64(1),

37-55.

6. AUTHORS PROFILE

Malleswara Talla is a Professor (sessional) in the department

of Decision Sciences & MIS at John Molson School of

Business (JMSB), Concordia University, Montreal. He

received B.Tech. degree from J.T.U. College of Engineering,

Kakinada, India in 1979, a M.Tech. degree in 1981 from

I.I.T., Kharagpur, India, and a Ph.D. degree from Concordia

University, Montreal, in 1995 specializing in Computer

Communications and Networks. He worked for Tata

Consultancy Service (TCS), Bombay, and Societe

Internationale de Telecommunications Aeronautique

(S.I.T.A), Montreal for several years. Dr. Talla managed

several projects involving data communications, computer

networks, and business performance excellence. Dr. Talla is a

member of Canadian Operations Research Society (CORS),

Professional Engineers of Ontario (PEO), Institute of

Electrical and Electronics Engineers (IEEE), Project

Management Institute (PMI), The Association for Operations

Management (APICS), and The Institute for Internal Controls

(THEIIC). His teaching and research interests are mainly in

Operations Management, Management Information Systems,

Systems Re-engineering, Business Intelligence, Data

Communications and Computer Network, Software

Engineering and Evolution, Software Architecture, Design,

and Development. Dr. Talla is a registered professional

engineer in Canada.

Raul Valverde is working as a Professor in the department of

Decision Sciences & MIS at John Molson School of Business

(JMSB), Concordia University in Montreal. He holds a

Bachelor of Science degree in Mathematics and Management

from Excelsior College (US), a M. Eng. degree in Electrical &

Computer Engineering from Concordia University, and a

Ph.D. degree in Information Systems from University of

Southern Queensland, Australia. He has more than 17 years of

professional experience in IT/IS, mathematical modeling, and

financial analysis. Dr. Valverde is a member of the Society of

Management Accountants, Canadian Operational Research

Society, Institute of Internal Controls, Forensic CPA society,

Professional Engineers of Ontario and the Association for

Operations Management. His main research interests include

Supply Chain Systems, Risk Management, E-business,

Information Security and Auditing, Accounting and Financial

Information Systems, Fraud Detection and Reengineering. Dr.

Valverde is a registered professional engineer and accountant

in Canada.

