
International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.3, January 2012 

18 

Towards an Integrated AORE Process Model for 

Handling Crosscutting Concerns

 
Narender Singh 

Department of Computer Science & 
Applications, 

Maharshi Dayanand University, 

Rohtak, India. 

 

 

 
Nasib Singh Gill 

Department of Computer Science & 
Applications, 

Maharshi Dayanand University, 

Rohtak, India. 

 

 

ABSTRACT 

The two fundamental principles in software engineering to deal 

software complexity are separation of concerns and modularity. 

A lot of techniques exist in literature adopting these fundamental 

principles and some success in this direction has been achieved. 

Despite this improvement, still complete separation of concerns 

is not achieved and is far from adequate. 

Aspect-Oriented Software Development is another step towards 

achieving improved modularity and aims to advanced separation 

of concerns. It handles crosscutting concerns in an efficient 

manner by encapsulation them in separate modules called 

aspects and further uses composition mechanism to integrate 

them with core concerns. Handling crosscutting concerns in the 

early stages of software development is beneficial rather than 

handling them in later stages of software development because it 

not only makes the design simpler, but also helps to reduce the 

cost and defects that occur in the later stages of development.  

Aspect-Oriented Requirements Engineering (AORE) focuses on 

identifying, analyzing, specifying, verifying, and managing the 

crosscutting concerns at the early stages of software 

development. In last few years, many researchers contributed 

their significant efforts in this area but, still it is not sufficient.  

In this paper, we have proposed such an approach that 

incorporates aspect-oriented concepts and which includes 

concern management as a key separate activity that is not clearly 

mentioned earlier in literature. Also, traceability is an essential 

activity to accommodate changes in requirements but it is very 

difficult to implement. Organizing large numbers of 

requirements into meaningful and more manageable groups and 

negotiating specification with clients can make traceability 

easier to implement and maintain. The proposed approach 

supports identification, management, specification, and 

composition of all concerns. 

Keywords 

Separation of concerns, crosscutting concerns, aspect-oriented 

software development, aspect-oriented requirements 

engineering. 

1. INTRODUCTION 
Over the last decade, software is evolving at a rapid pace along 

with more advanced technologies. Developing complex software 

systems is not a straight forward process but it includes 

implementation of high level concepts and techniques. A large 

number of projects fail and result into software crisis [1] 

because they violate some constraints. The software engineering 

[2] term was introduced in the NATO Working conference on 

software engineering in 1968 to cope with software crisis. 

Although hundreds of authors have developed personal 

definitions of software engineering, a definition proposed by 

Fritz Bauer at the seminal conference on the subject still serves 

as a basis for discussion: “Software engineering is the 

establishment and use of sound engineering principles in order 

to obtain economically software that is reliable and works 

efficiently on real machines”. 

The two fundamental principles in software engineering to deal 

software complexity are separation of concerns and modularity 

[3] [4] [5]. A concern [6] is any matter of interest in a software 

system. Separation of concerns [SOC] means that handle one 

property of a system at a time. In others words, it is quite easy 

and simple to divide the complex task into smaller subtasks and 

then handle one by one rather than handling the whole complex 

task. The smaller subtasks are handled separately and finally 

integrated for the complete solution. Modularity [3] [7] is the 

principle to structure software into modules where modules are 

self-contained, cohesive building blocks of software. Each 

module is responsible for handling certain concerns of the 

software system and all modules of a software system grasp all 

the concerns of the system.  

A lot of techniques exist in literature which follows these 

fundamental principles of software engineering. Some success in 

this direction has been achieved. But, still complete separation 

of concerns is not achieved even in today‟s most popular 

programming paradigm like object-oriented programming. In 

these traditional techniques, some concerns may be easily 

encapsulated with their building blocks such as classes, 

modules, procedures etc. But, same is not possible for another. 

They are non-modular and spanning over multiple classes, 

modules, or procedures in a software system and are therefore 

called crosscutting concerns. Typical examples are persistence, 

logging, exception handling, synchronization, auditing, security 

etc. Due to their vary nature, crosscutting concerns are 

responsible for scattering, which means the implementation of a 

concern is spread over several program modules; and tangling 

which means a program module implements multiple concerns. 

Aspect-Oriented Software Development (AOSD) [8] is another 

step towards achieving improved modularity and aims at 

alleviating the problems of scattering and tangling. It aims at 

addressing crosscutting concerns by providing means for their 

systematic identification, separation, representation and 

composition [9]. Crosscutting concerns are encapsulated in 

separate modules, known as aspects, so that localization can be 

promoted. It later uses composition mechanism to weave them 

with other core modules at loading time, compilation time, or 

run-time [10]. This results in better support for modularization 

hence reducing development, maintenance and evolution costs. 



International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.3, January 2012 

19 

AOSD was first introduced at programming level, where aspects 

are handled in code. Many aspect-oriented programming 

approaches have been proposed such as AspectJ, AspectC, 

AspectC++, JBoss AOP, JAsCo, HyperJ, adaptive 

programming, and composition filters.  A lot of work also has 

been carried out at the design level mainly through extensions to 

the UML meta-model e.g. [11] [12]. Research on the use of 

aspects at the requirements engineering stage is still immature. 

Handling crosscutting concerns in the early stages of software 

development is beneficial rather than handling them in later 

stages of software development because it not only makes the 

design simpler, but also helps to reduce the cost and defects that 

occur in the later stages of development. Aspect-Oriented 

Requirements Engineering (AORE) focuses on identifying, 

analyzing, specifying, verifying, and managing the crosscutting 

concerns at the early stages of software development. It does not 

replace but rather complements any of the existing requirements 

methodologies. 

In this paper, we attempt to briefly discuss the strengths and 

shortcomings identified from the literature of traditional 

requirements engineering approaches and research conducted 

during last few years in the area of AORE. The main objective 

of this paper is to address these shortcomings and outline an 

integrated AORE process model for handling crosscutting 

concerns. 

2. LITERATURE REVIEW 
A lot of approaches exist in the literature for separation of 

concerns at early stages of software development. We generally 

categorize these approaches as non aspect-oriented and aspect-

oriented approaches. Non aspect-oriented approaches include 

Viewpoint-oriented approaches (PREview and VIM), Goal-

oriented approaches (NFRF, I*, and KAOS), Use Cases and 

Scenario Based Approaches (Use cases, and negative scenarios), 

and Problem Frames. Aspect-oriented approaches include 

AORE with arcade, Aspects in Requirements Goal Models, 

Aspect-Oriented Software Development with Use Cases, 

Scenario Modeling with Aspects, Aspectual Use Case Driven 

Approach, Concern Modeling with Cosmos, Concern-Oriented 

Requirements Engineering, Aspect-Oriented Requirements 

Engineering for Component-Based Software Systems, and 

Theme approach.  

In last few years, many researchers contributed their significant 

work in this area for the identification, specification and 

composition of aspects at requirements engineering phase. In 

this section, we briefly discuss these efforts. In paper [13], an 

approach called Aspect-Oriented Component Requirements 

Engineering (AOCRE) is proposed that focuses on identifying 

and specifying the functional and non-functional requirements 

relating to key aspects of a system each component provides or 

requires. It helps in improving reusability, extensibility, and 

allocating the responsibility among reused and application-

specific components. But, this approach is too specific for 

component development and there is no evidence of its use in 

software development in general. Also, the identification of 

aspects is not clearly defined and lacks tool support. In paper 

[14], a general model for aspect-oriented requirements 

engineering is presented that supports identification and 

separation of concerns at early stages and their mapping and 

influence on later stages of development. But, it needs more 

efforts on aspect validation, aspect composition, and conflicts 

resolution. In paper [15], theme approach is discussed that is 

divided into two parts: Theme/Doc and Theme/UML. 

Theme/Doc provides views and functional support for 

identification at requirements phase, whereas Theme/UML 

provides standard UML to model each theme and their 

integration at the design phase. This approach supports 

identification and analysis of aspects at requirements phase, but 

does not provide any mechanism for specifying and compositing 

aspects in a systematic way. Also, this approach is only 

applicable for structured requirements document. Hence, results 

in costly and time-consuming for handling large and 

unstructured requirements documents. In paper [16], a process 

model for modelling and composition of aspectual scenarios is 

presented. The approach provides ability to independently 

specify both aspectual and non-aspectual scenarios and further 

their composition along with better modularization and 

traceability. But, the approach lacks on providing any systematic 

technique for identifying aspectual scenarios and handling 

conflicts during composition. In paper [17], an approach called 

aspect-oriented software development with use cases is 

presented; which is an extension to the traditional Use Case 

approach proposed by the same author. The approach supports 

the identification, specification, analysis, design, and 

implementation of use cases; but does not support conflicts 

resolution. In paper [18], an approach called concern-oriented 

requirements engineering that handles both functional and non-

functional requirements in a uniform fashion and concerns are 

not classified as viewpoints, use cases or aspects. This approach 

supports multi-dimensional separation of concerns too. Hence, 

avoids the tyranny of dominant decomposition. It also supports 

early trade-offs and conflicts resolution. But, it lacks on the 

relationships between two concerns, implementation of proposed 

model with more case studies for validation. In paper [19], an 

integrated approach to support Aspectual Requirements is 

presented which include a process model with a tool. This 

approach facilitates better understanding of concepts and their 

analysis along with tool support of identification, specification 

and composition of concerns. But, the approach lacks in 

providing any technique to support traceability as well as trade-

offs. In paper [20], AOP is applied at early phase of software 

development i.e. at requirements phase and an approach called 

aspect-oriented requirements modelling is proposed; which aims 

to apply AOP at early stages of software development. The 

approach provides mechanism to cater both functional and non-

functional concerns and their representation in class diagrams 

and state-chart diagrams respectively. Here, core concerns are 

considered as functional and crosscutting concerns are treated as 

non-functional. But, a crosscutting concern may also be 

functional [21]. Hence, this approach does not clearly identify 

and specify crosscutting concerns which are functional. But it 

does not mention any method for identifying aspects along with 

their validity. It also lacks on mapping requirements and 

traceability. In paper [22], an aspect-oriented approach is 

presented, which supports separation of crosscutting concerns in 

activity modelling. This approach is inspired from the 

Theme/Doc Approach and EA-Miner. In paper [23], a model for 

identifying crosscutting concerns and supporting it an automated 

tool is presented. The model is based on Theme/Doc and Early 

Aspects Identification approaches. This model provides full 

automatic facility for identifying crosscutting concerns at early 

stages of software development. But, the model does not provide 

any mechanism for resolving conflicts and also not provide 

evidences of its validation using case studies. In paper [24], an 

approach called Aspect-oriented User Requirements Notation 

(AoURN) is proposed which integrates goal-based, scenario-

based, and aspect-based concepts in a single framework. It 

clearly represents relationship among goal and scenario models 

and also provides an ability to manage crosscutting concerns 

among them. It also supports traceability with the help of 

pointcut and aspects. It also supports composition mechanism, 

but only limited to User Requirements Notation (URN). Further, 

its qualitative as well as quantitative assessment with respect to 



International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.3, January 2012 

20 

AORE models properties and metrics respectively still needed 

and advanced research should be investigated for its 

applicability. In paper [25], a model called aspect-oriented 

software development is proposed, which represents aspects as 

Use Case Model and Sequence Diagrams from the early stages 

of software development. The model supports the aspect 

representation throughout the software development lifecycle. It 

also supports aspects traceability. The first limitation of this 

model is that it only works with structured documents i.e. 

software requirements specifications (SRS). It does not provide 

any systematic method to handle conflicts. It also lacks on 

implementing the model and validation it with some case 

studies. In paper [26], an approach is proposed for identifying 

aspects from functional and non-functional requirements using 

system structure. This approach is good in aspect identification 

but lacks on tools to fully automate the process and also lacks on 

implementing the model and validation it with some case 

studies. In paper [27], an approach called use case and non-

functional scenario template-based approach is proposed, which 

is based on use cases. It supports aspects handling along with 

improved traceability. But, it does not support any formal 

method and its application in real systems.  

3. FLAWS ENCOUNTERED IN 

TRADITIONAL RE APPROACHES 

A lot of traditional (non-AO) requirements engineering 

approaches exist in literature like Use Cases [28], Goals [29], 

and Viewpoints [30]. All these approaches identify and treat the 

requirements in good manners. But, they all fail in handling the 

crosscutting concerns clearly. The major motivation factor in the 

invention of AORE approaches is to remove some of the flaws 

encountered in traditional requirements engineering approaches 

which are discussed here as: 

These approaches suffer from tyranny of dominant 

decomposition symptom i.e. they are modularized in only one 

way by considering only one type of concerns such as use cases, 

viewpoints and goals at a time. And the other kinds of concerns 

that do not align with that modularization result as scattered and 

tangled modules. For example, PREview has focused on non-

functional concerns. On the other hand, Use Cases have focused 

on functional requirements. In contract, Aspect-Oriented 

approaches, such as CORE treat all types of concerns equally 

and consistently. Thus, the first flaw encountered that AORE 

addressed is the equal treatment of all types of concerns of 

importance simultaneously.   

Some traditional approaches have identified non-functional 

requirements as crosscutting requirements. But, they do not 

consider functional requirements as so. Also, crosscutting 

requirements are not modularized separately. In contract, 

Aspect-Oriented approaches, such as CORE have considered 

this issue. Thus, the second flaw encountered that AORE 

addressed is to identify and characterize the crosscutting 

influence for both functional and non-functional requirements 

and modularize them separately as aspects. 

Mostly, all the traditional approaches lacks on composition 

mechanism. AORE provides composition as primary issue and 

handles it using joinpoint model and composition semantics. The 

joinpoint model exposes structured points through which 

requirements can be composed. The composition semantics 

provide systematic meaning to the composition. Thus, the third 

flaw encountered in traditional requirements engineering 

approaches that AORE addressed is lacking the mechanism for 

requirement composability.  

4. A CRITICAL ANALYSIS OF AORE 

APPROACHES IN LITERATURE 
A critical analysis of existing AORE approaches in literature is 

given in Table 1. Here, an attempt is made to find out strength as 

well as shortcomings of each approach explained in literature 

review section of this paper.    

 

 

Table 1. A critical analysis of AORE approaches 

Techniques Strengths Shortcomings 

Aspect-Oriented Component 

Requirements Engineering (AOCRE) 

-Supports separation of crosscutting 

functional and non-functional properties. 

-Improves reusability, extensibility, and 

allocates the responsibility among reused 

and application-specific components. 

- Basic tool support for aspect-oriented 

requirements engineering. 

-Too specific for component 

development and there is no evidence of 

its use in software development in 

general. 

-Lacks on clearly defining the 

identification of crosscutting concerns. 

-Lacks on tool support. 
Early-aspects -Supports separation of crosscutting 

functional and non-functional properties. 

-Identify conflicts and establish possible 

tradeoffs early on in the development 

cycle. 

-Improves modularisation and 

traceability. 

-Applicable for structured and 

unstructured requirements document. 

-Lacks on validation of aspects, their 

composition with other requirements and 

resolution of possible conflicts resulting 

from the composition process. 

-Lacks on a notation to describe aspects, 

their interactions and composition 

relationships at the requirements level. 

Theme -All the relationship between the 

requirements are clearly identified and 

mapped.  

-Ambiguity in the requirements can be 

identified. 

-Supports traceability from requirements 

to design. 

-Provides a tool support to create 

relationships between concerns and the 

-This approach is only applicable for 

structured requirements document. 

-The developer must posses the domain 

knowledge. 

-The developer has to manually map the 

relationship between the themes and 

requirements. 

-It is costly and time consuming to 

handle large amount of requirement 



International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.3, January 2012 

21 

requirements. sources. 
Aspect-Oriented Scenario Modeling -Provides ability to independently 

specify both aspectual and non-aspectual 

scenarios. 

-Also provides composition along with 

better modularization and traceability. 

-Does not provide any systematic 

technique for identifying aspectual 

scenarios and handling conflicts during 

composition. 

-Lacks on tool support. 

Aspect-Oriented Software Development 

with Use Cases 
-Handles both functional and non-

functional requirements in a uniform 

fashion. 

-Supports the identification, 

specification, analysis, design, and 

implementation of use cases. 

-Does not support conflicts resolution. 

Concern-Oriented Requirements 

Engineering 
-Handles both functional and non-

functional requirements in a uniform 

fashion. 

-Supports multi-dimensional separation 

of concerns, early trade-offs and 

conflicts resolution. 

-Lacks on the relationships between two 

concerns. 

-Also lacks on implementation of 

proposed model with more case studies 

for validation. 

Integrated Approach for Aspectual 

Requirements 
-Support better handling of separation, 

modularization, representation and 

composition of concerns. 

-Facilitates better understanding of 

concepts and their analysis along with 

tool support. 

-Lacks on providing any technique to 

support traceability as well as trade-offs. 

Aspect-Oriented Requirements 

Modelling 
-Provides mechanism to cater both 

functional and non-functional concerns. 

-Here, core concerns are considered as 

functional and crosscutting concerns are 

treated as non-functional. 

-Does not clearly identify and specify 

crosscutting concerns which are 

functional. 

-Also, lacks on mapping requirements 

and traceability. 
Crosscutting Concern Identification 

using NLP 
Provides full automatic facility for 

identifying crosscutting concerns at early 

stages of software development. 

Does not provide any mechanism for 

resolving conflicts and also not provide 

evidences of its validation using case 

studies. 
Aspect-oriented User Requirements 

Notation (AoURN) 
-Integrates goal-based, scenario-based, 

and aspect-based concepts in a single 

framework. 

-Clearly, represents relationship among 

goal and scenario models and also 

provides an ability to manage 

crosscutting concerns among them. 

-Supports traceability with the help of 

pointcut and aspects. 

-It also supports composition 

mechanism, but only limited to User 

Requirements Notation (URN). 

-Further, its qualitative as well as 

quantitative assessment with respect to 

AORE models properties and metrics 

respectively still needed and advanced 

research should be investigated for its 

applicability. 
Use case And Non-functional Scenario 

Template-Based Approach to Identify 

Aspects 

-Supports aspects handling at 

requirements level. 

-Improves modularity in the 

requirements. 

-Also improves traceability from 

requirement analysis level to implement 

level. 

-Does not support any formal method 

and its application in real systems. 

-Lacks on validation of aspects, their 

composition with other requirements and 

resolution of possible conflicts resulting 

from the composition process. 

-Lacks on tool support.  
Identification of Crosscutting Concerns 

with UML  
It is a simple method and applicable to 

small scale requirements 
It can only identify non-functional 

crosscutting concerns. 
Aspect-Oriented Use Case Modelling -Handles both functional and non-

functional requirements. 

-Treats business rules as an important 

source of aspects when it cross-cuts more 

than one use cases. 

-Further, improves the reusability of both 

the base model and the representation of 

business rules. 

-Successfully, realizes the composition 

of aspects to the core functionalities at 

the requirement level. 

-Does not support conflicts resolution. 

-Lacks on providing any technique to 

support traceability as well as trade-offs. 

-Lacks on tool support. 



International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.3, January 2012 

22 

5. MOTIVATION FOR AN INTEGRATED 

AORE PROCESS MODEL 
As mentioned above, the flaws encountered in traditional 

requirements engineering approaches should be avoided by 

AORE process models. A lot of work in the area of AORE has 

been done with some success, but this work is not sufficient to 

handle all the flaws encountered. Some AORE process models 

still need to avoid the tyranny of dominant decomposition 

because they are extensions of existing requirements 

engineering approaches and result in scattering and tangling; to 

improve the ability to identify and specify both functional and 

non-functional crosscutting concerns because most of the 

approaches consider only non-functional concerns as 

crosscutting; to manage concerns and to offer a systematic 

method to handle conflicts. Thus, the main motivation factor 

behind this work is the analysis of existing AORE approaches 

and incorporating their strengths into a single integrated 

approach along with including activity like concern 

management. Now the question is why we need concerns 

management? If we look at some reports like Standish Group in 

1995 [31] and CHAOS Summary 2009 [32]; evidence suggests 

that most of the projects failures are due to requirements. 

Hence, for avoiding more projects failures, we need 

management of requirements and concerns. 

6. A PROPOSAL FOR AN INTEGRATED 

AORE PROCESS MODEL 
Our proposal to Integrated AORE process model consists of the 

following activities as identify concerns, manage concerns, 

specify concerns, identify crosscutting concerns, and compose 

concerns.  

6.1 Identify concerns 

The first phase in our proposed process model is to identify all 

concerns of the system. A concern is any matter of interest in a 

software system and may represent any feature that the system 

must have or a constraint that it must satisfy to be accepted by 

the stakeholders. A requirement in requirements specification 

document may represent a concern [33]. Generally, we classify 

requirements into two categories, functional requirements and 

non-functional requirements. Functional requirements describe 

the interaction between the system and its environment 

independent of its implementation. The environment includes 

the user and any other system that interacts with the system. 

Non-functional requirements describe aspects of the systems 

that are not directly related to the functional behavior of the 

system. It includes a broad variety of requirements that apply to 

many different aspects of the system, such as usability, 

reliability, performance (i.e. response time, throughput, 

accuracy, availability etc), and supportability. We also call 

these requirements as quality requirements. Hence, concerns 

can be classified as functional concerns and non-functional 

concerns. Still, we are not interested to propose a new concern 

elicitation technique because in literature many such techniques 

are available. Hence, we will explore use cases from the already 

existing technique of concern elicitation such as viewpoints, use 

cases, and goals. 

6.2 Manage concerns 
There are some technical problems which the developers and 

stakeholders face when modelling a system as use cases. Use 

case modelling by itself, however, does not constitute 

requirements elicitation. Even after a use case modeller expert 

is included, developers still need to elicit requirements from the 

users and come to an agreement with the client. In this phase of 

process model, we describe the methods for eliciting 

information from users and negotiating an agreement with the 

client. This activity is divided into two sub-tasks: negotiating 

specification with clients and maintaining traceability. During 

negotiating specification with clients, all stakeholders including 

developers and an expert in requirements management present 

their viewpoints, listen to other viewpoints, negotiate, and come 

to a mutually acceptable solution. The outcome is joint 

application design (JAD) document, which is an agreement 

among all stakeholders and developers. Hence, minimizing 

requirements changes later in the development process. The 

ability to follow life of requirements in whole software 

development lifecycle is termed as traceability. In other words, 

it gives answers to questions like: from where a requirement 

comes i.e. who originates it, how it affects other aspects of the 

system, which components realize the requirement, which test 

cases checks its realization etc. It enables developers to show 

that the system is complete, testers to show that the system 

conforms to its expectations, designers to record the rationale 

behind the system, and maintainers to determine impact of 

change. It is very difficult to implement traceability in 

requirements management. But, it is essential to accommodate 

changes. Organizing large numbers of requirements into 

meaningful and more manageable groups and negotiating 

specification with clients can make traceability easier to 

implement and maintain. 

6.3 Specify concerns 

During this phase, all identified concerns are specified using a 

template, which contains information like name of the concern, 

description of its proposed behaviour, its source of origin, its 

classification as functional or non-functional, its possible 

stakeholders, its responsibilities, contribution list containing a 

list of concerns that contribute or affect this concern, a list of 

concerns needed or requested by the concern, and priorities to 

the concern for possible stakeholders.  

6.4 Identify crosscutting concerns 

It is significant to identify crosscutting concerns i.e. candidate 

aspect at early stages because they may create differing 

situations and result as undesirable affect on later stages of 

software development. This is achieved by considering the list 

of required concerns field in concern specification template and 

building a table to relate concerns to each other and identifying 

their crosscutting nature. 

6.5 Compose concerns 

The last phase in our process model is composing concerns. 

This can be achieved by constructing a table to identify all 

possible matchpoints. A matchpoint describes which concerns 

either crosscutting or non-crosscutting should be weaved so that 

complete integration should be achieved. Further, there should 

be some conflicting situations due to negatively contribution of 

two or more concerns on each other. This can be detected using 

concerns specification template‟s contribution field where the 

concerns with same priority contribute negatively on each other 

and also be weaved on same matchpoint. And finally, 

composition rules are defined to accomplish this task. 

7. CONCLUSION AND ONGOING 

WORK 
This paper has briefly discussed the efforts contributed towards 

AORE by many research along with their strength and flaws 

encountered. Some AORE approaches still suffer from the 

tyranny of dominant decomposition symptom because they are 

extensions to traditional requirements engineering approaches 



International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.3, January 2012 

23 

and result in scattering and tangling; some are unable to identify 

and specify both functional and non-functional crosscutting 

concerns because most of the approaches consider only non-

functional concerns as crosscutting; some need to manage 

concerns and to offer a systematic method to handle conflicts. 

Thus, the main motivation towards integrated AORE process 

models is the analysis of existing AORE approaches, 

incorporating their strengths into a single integrated approach 

along with new one as concern management. Because, evidence 

suggests that most of the projects failures are due to 

requirements. Hence, for avoiding more projects failures, we 

need to manage requirements and concerns.  

In this paper, we have proposed such an approach that 

incorporates aspect-oriented concepts and which includes 

concern management as a key separate activity that is not 

clearly mentioned earlier in literature. It is very difficult to 

implement traceability in requirements management. But, it is 

essential to accommodate changes. Organizing large numbers 

of requirements into meaningful and more manageable groups 

and negotiating specification with clients can make traceability 

easier to implement and maintain. The approach supports 

identification, management, specification, and composition of 

all concerns.  

Our ongoing work is on extending the description of the 

approach and presenting a detailed integrated AORE process 

model. Still, we need to validate our approach by applying it on 

case studies. We are in progress towards it and achieve it in 

near future. The future work will cover all these aspects.   

8. REFERENCES 
[1] Pressman, R. Software Engineering: A Practitioner ‟.s 

Approach, 3„d edition, McGraw Hill, 1992. 

[2] P. Naur and B. Randell, “Software Engineering: Report of 

the Working Conference on Software Engineering”, 

Garmisch, Germany, October 1968. NATO Science 

Committee, 1969. 

[3]  Parnas, D.L. “On the criteria to be used in decomposing 

systems into modules”, Communications of the ACM, 

15(12):1053–1058 [1972]. 

[4]  Dijkstra, E.W. “A Discipline of Programming”, Prentice 

Hall PTR, Upper Saddle River, NJ, USA [1997]. 

[5]  Baldwin, C.Y. and Clark, K.B. “Design Rules: The Power 

of Modularity Volume 1”, MIT Press, Cambridge, MA, 

USA [1999]. 

[6] S. M. Sutton Jr and I. Rouvellou, “Modeling of Software 

Concerns in Cosmos”, In Proceeding of the Ist International 

Conference on Aspect-Oriented Software Development, 

pg. 127-133, ACM Press, 2002. 

[7] D. L. Parnas, “A Technique for Software Module 

Specification with Examples”, Communications of the 

ACM (CACM), 15(5):330–336, 1972. 

[8]  Elrad T., Filman R., and Bader A. (eds.), "Theme Section 

on Aspect-Oriented Programming", CACM, 44(10), 2001. 

[9] Rashid, A., Moreira, A., Araújo, J., “Modularization and 

Composition of Aspectual Requirements”, In 2nd Aspect-

Oriented Software Development Conference (AOSD'03), 

Boston, USA, ACM Press. 11-20, 2003. 

[10] Baniassad, E., Clements, P., Araújo, J., Moreira, A., 

Rashid, A., Tekinerdogan, B., "Discovering Early 

Aspects", IEEE Software Special Issue on Aspect-Oriented 

Programming. 23(1): 61-70, 2006. 

[11]  Clarke S. and Walker R. J., "Composition Patterns: An 

Approach to Designing Reusable Aspects", ICSE, 2001. 

[12]  Suzuki J. and Yamamoto Y., "Extending UML with 

Aspects: Aspect Support in the Design Phase", ECOOP 

Workshop on AOP, 1999. 

[13]  J. Grundy, "Aspect-Oriented Requirements Engineering for 

Component-based Software Systems", IEEE International 

Symposium on Requirements Engineering, IEEE CS, pp. 

84-91, 1999. 

[14]  Rashid, A., Sawyer, P., Moreira, A., and Araújo, J. "Early 

Aspects: a Model for Aspect-Oriented Requirements 

Engineering", Proc. of Int. Conference on Requirements 

Engineering (RE'02), 2002. 

[15]  E. Baniassad, S. Clarke, "Theme: An Approach for Aspect-

Oriented Analysis and Design", In Proceedings of the 26th 

Int. Conf. on Software Engineering (ICSE04), 2004. 

[16]  Araújo, J. Whittle, and D-K. Kim, “Modeling And 

Composing Scenario-Based Requirements With Aspects” 

In Proc. of the 12th IEEE International Requirements 

Engineering Conference (RE 04), 2004. 

[17]  Jacobson, I.,” Aspect-Oriented Software Development 

with Use Cases”, 978-0-321-26888-4, Addison-Wesley, 

2004. 

[18] A. Moreira, J. Araújo, A. Rashid, “A Concern-Oriented 

Requirements Engineering Model”, Proc. Conference on 

Advanced Information Systems Engineering, Portugal, 

LNCS 3520, pp. 293 – 308, Springer-Verlag Berlin 

Heidelberg 2005. 

[19] Isabel Sofia Brito and Ana Moreira, “Towards an 

Integrated Approach for Aspectual Requirements”, 14th 

IEEE International Requirements Engineering Conference 

(RE'06), IEEE 2006. 

[20] Zhang Jingjun, Li Furong, and Zhang Yang, “Aspect-

Oriented Requirements Modeling”, Proceeding of the 31st 

IEEE Software Engineering Workshop SEW-31 

(SEW‟07), Baltimore, MD, USA, 2007. 

[21] Moreira, A., Araújo, J., Brito, I., “Crosscutting Quality 

Attributes for Requirements Engineering”, In 14th 

Software Engineering and Knowledge Engineering 

Conference (SEKE'02), Ischia, Italy, ACM Press. 167 – 

174, 2002. 

[22]  Jing Zhang, Yan Liu, Michael Jiang, and John Strassner, 

“An Aspect-Oriented Approach to Handling Crosscutting 

Concerns in Activity Modeling”, Proceedings of the 

International MultiConference of Engineers and Computer 

Scientists 2008 Vol I, IMECS 2008, Hong Kong, 19-21 

March, 2008. 

[23] Busyairah Syd Ali and Zarinah Mohd. 

Kasirun,”Developing Tool for Crosscutting Concern 

Identification using NLP”, IEEE 2008. 

[24] G. Mussbacher, “Aspect-Oriented User Requirements 

Notation: Aspects in Goal and Scenario Models”, 

MoDELS 2007 Workshops, LNCS 5002, pp. 305–316, 

2008, Springer-Verlag Berlin Heidelberg 2008. 

[25]  S. Iqbal, and G. Allen, “Representing Aspects in Design", 

presented at 2009 Third IEEE International Symposium on 

Theoretical Aspects of Software Engineering, Tianjin, 

China , 2009. 



International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.3, January 2012 

24 

[26] S. Hamza and D. Darwish, “On the Discovery of 

Crosscutting concerns in Software Requirements”, Proc. 

Of Sixth International Conference on Information 

Technology: New Generations, 2009. 

[27] Xiaojuan Zheng, Xiaomei Liu, and shulin Liu, “Use case 

And Non-functional Scenario Template-Based Approach to 

Identify Aspects”, Second International Conference on 

Computer Engineering and Applications, 2010. 

[28] I. Jacobson, Object-Oriented Software Engineering - a Use 

Case Driven Approach: Addison-Wesley, 1992. 

[29] A. Lamsweerde, "Goal-Oriented Requirements 

Engineering: A Guided Tour", 5th Int'l Symp. on RE, 

2001, IEEE CS Press, pp. 249-261. 

[30]  A. Finkelstein and I. Sommerville, "The Viewpoints FAQ", 

BCS/IEE Software Engineering Journal, 11(1), 1996. 

[31]  The Standish Group. Chaos Report. Technical report, 

Standish Group International, 1995, http://www.it-

cortex.com/Stat_Failure_Rate.htm#The%20Chaos%20Rep

ort%20(1995).  

[32]  The Standish Group, “CHAOS Summary 2009”, Technical 

report, Standish Group International, Boston, 

Massachusetts, April 23, 2009, 

http://www1.standishgroup.com/newsroom/chaos_2009.ph

p 

[33] L. Rosenhainer, “The DISCERN Method: Dealing 

Separately With Crosscutting Concerns”, In Early Aspects, 

OOPSLA 2005, 2005. 

 

 

 

 


