
International Journal of Computer Applications (0975 – 8887)

Volume 37– No.10, January 2012

35

Transforming DATA* with Dotty Format to

Aggregate Region Automaton

H. Hachichi

MISC Laboratory
University Mentouri
Constantine, Algeria

I. Kitouni
MISC Laboratory

University Mentouri
Constantine, Algeria

D.E. Saidouni
MISC Laboratory

University Mentouri
Constantine, Algeria

ABSTRACT

In this paper we propose an approach for translating DATA*

structure of a high number of states to aggregate region

automaton. Firstly, we propose a program written in python

language that transforms a DATA* structure, presented as a

dotty file, to a DATA* structure written in the form of a

python file respecting the syntax of AToM3. Secondly, we

define a meta-model of the DATA* model and a meta-model

of the aggregate region automata model thus a transformation

grammar using graph transformation and the modeling tool

AToM3 to perform this transformation automatically.

General Terms

Formal methods, Graph transformation, Real time systems.

Keywords

Formal validation, Graph transformation, DATA*, Region

automata, Aggregate region automata, AToM3
.

1. INTRODUCTION
Distributed applications, such as communication protocols

which apprehend the temporal aspect, are characterized by

their big complexity.

Therefore, systems validation (verification and testing) always

take a special interest among the research areas in computer

science [1] [7] [20].

In this context the Durational Action Timed Automata model

(DATA*) [17] [13] has more interest. This model takes into

account temporal and structural non-atomicity of actions; it is

based on maximality semantics [16].

Timed models consider a dense time domain, however; the

state space generated in this case is infinite. The region

automata imitate the infinite execution of these timed models

by a finite set of transitions. They are very used in verification

and system testing [19].

In this paper, firstly, we propose a program written in python

language that transforms a DATA* structure, presented as a

dotty file, to a DATA* structure written in the form of a

python file respecting the syntax of AToM3. The aim of this

transformation is to consider DATA* structures with a high

number of states. Secondly, we propose an approach and a

tool for transforming DATA* to an aggregate region

automaton using AToM3 which is a graph transformation

tool. This study is based on an aggregation region automata

procedure to reduce the combinatorial explosion of regions

[11][18].

This paper is organized as follows. In section 2 and 3, we

recall some basic concepts about Durational Action Timed

Automata model, region automata, and the aggregate region

automata. In section 4 we explain model transformation

concepts and especially graph transformation with its main

tools and methods. In section 5, we describe our approach. An

example is dealt in section 6. The final section concludes the

paper and gives some perspectives.

2. DATA* MODEL
The DATA* model (Durational Action Timed Automata) [4]

is a temporal model defined by a timed transitions system

over an alphabet representing actions to be executed. This

model takes into account in the specification, the duration of

actions based on an intuitive idea: temporal and structural

non-atomicity of actions. This model seems interesting and

funneling more and more research [4] because it coated

models of timed automata by maximality semantics [16].

The DATA* model, as the temporized models takes in charge

the notions of urgency and deadlines as temporal constraints

of the system. Figure1 illustrates an example of this model:

Fig 1: DATA* (a)

The durations associated to the actions are represented by

constraints on the transitions and in the states targets of each

one. In this sense, any enabled transition represents the

beginning of the action execution. On the target state of

transition, a timed expression means that the action is possibly

under execution. From operational point of view, each clock

is associated to an action. This clock is reset to 0 at the start of

the action and will be used in the construction of the temporal

constraints as guard of the transitions.

The Figure 1 presents a system of two consecutives actions a

and b, the clock x is associated to the action a, on the locality

s1 the temporal expression {x≥2} represents the duration of

the action a. The end of the execution of an action is deduced

implicitly in the case of an action that it is causally dependent.

The action b depends on a, so the transition is guarded by the

relative duration constraint of a.

Other concepts of real time systems such as the deadlines and

the urgency are considered [5][6].

2.1 Formalisation
Definition 1 : a DATA* A is a tuple (ACT, S, s0, Ή, TD, LS)

where ACT is a finite set of actions, S is a finite set of states,

s0∈S is the initial state, Ή is a finite set of clocks and TD is a

set of transitions. An edge t=(s, g, a, x, s′) represents a

transition from state s to state s‟ on input symbol a, x is a

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.10, January 2012

36

clock to be reset with this transition. g is the corresponding

guard which must be satisfied to run this transition.

2S:L
)H(

fnS
t is a function which gives to each state s a set

of actions conditions potentially executed in it.

Definition 2: The semantic of a DATA* A is defined by

associating to it an infinite transitions system SA over

ACTR+. A state of SA (or configuration) is a pair <s,v> such

as s is a state of A and v is a valuation over Ή.

A valuation v is a mapping on Ή to R+. Let x be a clock, the

valuation v[x 0] resets clock x to 0 and each other clock y

to v(y). The valuation v+d maps every clock y to v(y)+d (d ∈

R+). A configuration <s0,v0> is initial if s0 is the initial state

of A and ∀ x ∈ Ή , v0(x)=0.

Two types of transitions between configurations of SA are

possible and correspond respectively to time passing thus the

run of transition from A.

3. REGION AUTOMATA
In this section, we resume the classical definition of region

automata [1][7].

3.1 Clock Regions
A region is a set of valuations over a finite set of clocks. Two

valuations of the same region must satisfy the same

constraints.

Definition 3: the region equivalence  is an equivalence

relation defined over the clocks valuations as follows:

Mx is the maximum constant appearing in the constraints of

clock x, and for any real d, bdc denotes the integral part of d

and frac(d) denotes the fractional part of d.

Example: if we consider two clocks x, y with Mx = 3 and My =

1 we will have 38 regions: (Figure 2)

Fig 2: Standard regions

 The time-successors succ(r) of a region r are the regions

that can be reached by moving along a line drawn from

some point in r in the diagonally upwards direction

(parallel to the line x = y).

3.2 Region Automata
Definition 4: Let A = (ACT, S, s0, Ή, TD, LS) be a DATA*,

the region automaton RA corresponding to A is a finite

automaton defined as follows:

 All localities of RA have the form (s, r) where sS and r

is a clock region. The initial locality is (s0, r0).

 The set of transitions TR is,

  













  







0x"r'rndagr assuch

)r(succ"r ndaT's
x,a,g

s
)'r,'s(

a
)r,s('t/'tRT D

(1)

We present an example of the region automaton associated to

a DATA* A in Figure 3 and Figure 4.

Fig 3: DATA* A

', if 8() 2 Ή
1. () , '() 
2. () ) ((b()c = b0()c) and
frac(()) = 0 , frac(0()) = 0))

3. (() and ()  )) (frac(()) 
frac(()) ,frac(0()) frac(0()))

Successors of r1 [(2<x<3), (0<y<x<1)] :

r2 [(x=3), (0<y<1)]

r3 [(x>3), (0<y<1)]

r4 [(x>3), (y=1)]

r5 [(x>3), (y>1)]

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.10, January 2012

37

Fig 4: Region automaton associated to a DATA* A

3.3 Aggregate Region Automata
An aggregation operation based on a BI-relation between the

localities of region automata has been defined in [18]. This

operation consists to substitute the grouped localities by a new

locality (s,R) where R is the summation over the regions ri.

This summation is defined as follows:











1kifr.....rr

 1kifr

)(r)r,.....r,(rR

k21

kkk21

(2)

The union operation  is defined like the one in integer

intervals.

The localities are regrouped iff they have the same “forward

mirror” and “backward mirror” transitions [18].

It was proved in [18] that, from the specification of DATA*

model we can generate an aggregate region automaton by

graph transformation. The rules of this transformation are

based on a translation of the guards and a reset of clocks for

the target state of transition.

Example: Figure 5 presents the aggregate region automaton

associated to the DATA* A of Figure 3.

Fig 5: Aggregate region automaton associated to A

4. GRAPH TRANSFORMATION
The transformation between models is a process that converts

a model to another model. This task requires a set of rules that

define how the source model has to be analyzed and

transformed into other elements of the target model. The

transformation operation takes the source model in input then

executes the rules of transformation and generates the target

model in output.

Graph Grammars [15] are used for model transformation [3]

[8] [12]. They are composed of production rules; each one

have graphs in their left and right hand sides (LHS and RHS)

(Figure 6). Rules are compared with an input graph called

host graph. If a matching is found between the LHS of a rule

and a sub graph in the host graph, then the rule can be applied

and the matching sub graph of the host graph is replaced by

the RHS of the rule. Furthermore, rules may also have a

condition that must be satisfied in order to apply the rule, as

well as actions to be performed when the rule is executed. A

rewriting system iteratively applies matching rules in the

grammar to the host graph, until no more rules are applicable.

AToM3 [2] [9] is a graph transformation tool among others. In

this paper we use it.

Fig 6: A grammar rule (LHS and RHS)

5. THE APPROACH
In order to allow the use of DATA* structures with a high

number of states and transitions, we propose firstly a program

written in python language that transforms a DATA*

structure, presented as a dotty file [10], to a DATA* structure

written in a python file [14] which respect the syntax of

AToM3. Also we define a meta-model of the DATA* model

and a meta-model of the aggregate region automata model

thus a transformation grammar. The meta-model is

represented by UML class diagrams and the constraints are

expressed using python language.

5.1 Generation of a DATA* Respecting the

Syntax of AToM
3

Figure 7 presents an example of DATA* structure with the

graph editor dotty [10], the translation from a dotty

representation to a python representation (Figure 8.b) is done

by the python program

„DATAstarDotty2DATAstarPython.py‟ (Figure 8.a).

A graphical representation of DATA* structure with AToM3

is presented in Figure 9.

S0

x=y=0

S1

x≤1, y=0

S2

1≤y≤2, x=0 a b

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.10, January 2012

38

Fig 7: A dotty representation of a DATA* A

(a) (b)

Fig 8: Translation step (dotty-python) of a DATA* A

Fig 9: A graphical representation of a DATA* A with AToM3

5.2 DATA* Meta-Model
The first meta-model proposed is a class diagram composed

of the following classes (Figure 10):

1) DATAet class: it represents the states of DATA*, each

state has two attributes: a name (name), and duration

conditions (CD). It is connected to TransitionD and

DATAetInit by inheritance link.

2) TransitionD association: it represents the transitions of

DATA*, each transition is identified by an action, a clock

and a guard.

3) DATAetInit class: it represents the initial state of DATA*,

it inherits the attributes from DATAet.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.10, January 2012

39

Fig 10: DATA* meta-model

5.3 Aggregate Region Automata Meta-

Model
The second meta-model is a class diagram composed of the

following classes (Figure 11) :

1) ARstate class: it represents the localities of the aggregate

region automaton, each locality has two attributes: a name

(name), and a clock region (RegionHorloge). It is

connected to ARtransition and ARStateInit by inheritance

link.

2) ARtransition association: it represents the transitions of

the aggregate region automaton, each transition is

identified by an action.

3) ARStateInit class: it represents the initial locality of the

aggregate region automaton; it inherits the attributes from

Arstate class.

Each class has an only graphical appearance.

Fig 11: Aggregate region automata meta-model

5.4 Modeling Tool of Data* and the

Aggregate Region Automata
The two meta-models defined previously are represented in

AToM3 (Figure 10, Figure 11) and allow to generate a tool

for modeling systems in DATA* and the aggregate region

automata (Figure 12).

Fig 12: Modeling tool of DATA* and the aggregate region automata

5.5 Graph Grammar
The proposed graph grammar is composed by 9 rules

organized in 3 categories.

The first three rules allow the construction of an aggregate

region automaton based on the principle detailed in Section

3.3.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.10, January 2012

40

•The 1st rule is used to generate the first region associated to

the initial state of DATA* where all clocks are reset to zero.

(Figure 13).

 LHS RHS

Fig 13: Generating the initial locality of an aggregate

region automaton (Rule 1)

•Rules 2 and 3 (Figure 14) generate the rest of the aggregate

region automaton and save it in a text file (Figure 20).

 LHS RHS LHS RHS

Fig 14: Generating localities of an aggregate region automaton and saving it in a text file (Rules 2 and 3)

•Rules 4 and 5 eliminate a generic links between the source

model and the target model (Figure 15).

LHS RHS LHS RHS

Fig 15: Removing generic links (Rules 4 and 5)

•Rules 6, 7, 8 and 9 (Figure 16) eliminate the graphical

representation of DATA* model.

 LHS RHS LHS RHS LHS RHS LHS RHS

Fig 16: Removing DATA* model (Rules 6,7,8 and 9)

6. EXAMPLE
To illustrate our approach we propose the example of the

ticket reservation system “TRS”. This example supposes that

to buy a ticket, we generally pass by two counters. The first

counter R is for making a reservation and the second counter

C is for paying and taking the ticket. This agency has one

waiting room, three counters of type R and two of type C.

On arrival, the client goes to the waiting room, when a

counter of type R is free, he can make a reservation. Once the

operation is complete, he waits until a counter C becomes free

for paying and taking the ticket.

 Figure 17 presents a DATA* of TRS for two clients with the

graph editor dotty.

The mapping of this DATA* with the graph editor dotty to the

equivalent DATA* model of Figure 18 is performed using

python program.

We have applied our tool on the DATA* model and obtained

automatically the aggregate region automaton of Figure 19.

The result is saved in the text file of Figure 20.

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.10, January 2012

41

Fig 17: DATA* of TRS with the graph editor dotty

Fig 18: DATA* of TRS with AToM3

Fig 19: Aggregate region automaton

Fig 20: A textual aggregate region automaton

International Journal of Computer Applications (0975 – 8887)

Volume 37– No.10, January 2012

42

7. CONCLUSION
In this paper we proposed a method for generating an

aggregate region automaton from a DATA* by the graph

transformation approach and using the environment AToM3

in order to provide a finite abstraction of DATA* structures

with a high number of states.

Firstly, we have proposed a program written in python

language that transforms a DATA* structure, presented as a

dotty file, to a DATA* structure written in the form of a

python file respecting the syntax of AToM3. We have

proposed also two meta-models; one for the input model and

the other for the output model. Based on these meta-models,

we have proposed a graph grammar that deals with the

transformation process. The meta-modeling tool AToM3 is

used for this purpose. We have illustrated our approach

through an example. In future work, we plan to implement our

approach with other tools as AGG in order to compare

performances. We plan also to Study the complexity of this

transformation and its use in system testing.

8. REFERENCES
[1] Alur, R., Dill, D. L.1994. A theory of timed automata.

Theoretical Computer Science, 126(2):183-235.

[2] AToM3 Home page, version 3.00,

http://atom3.cs.mcgill.ca/

[3] Baresi, L., Hekel, R. 2004.Tutorial Introduction to graph

transformation. A software Engineering perspective,

Lecture Notes in Co0mputer Science, Volume

3256/2004, Springer Berlin, pp.431-433.

[4] Belala, N. 2010. Modèles de Temps et leur Intérêt à la

Vérification Formelle des Systèmes Temps-Réel. PHD‟s

thesis, Mentouri University, 25000 Constantine, Algeria.

[5] Bornot, S., Sifakis, J., Tripakis, S.1997. Modeling

urgency in timed systems. In Proc. International

Symposium Compositionality (COMPOS‟97), volume

1536 of LNCS. Springer-Verlag.

[6] Bornot, S., Sifakis, J. 1998. On the composition of

hybrid systems. In Proceedings of HSCC“98”, volume

1386 of LNCS, Springer-Verlag, pp. 69–83.

[7] Bouyer, P. 2002. Modèles et Algorithmes pour la

Vérification des Systèmes Temporisés, PhD thesis.

Laboratoire Spécification et Vérification – CNRS UMR

8643 & ENS de Cachan 61, avenue du Président Wilson

– 94230 Cachan – France.

[8] Czarecki, K., Helsen, S. 2006. Feature-based survey of

model transformation approaches. IBM SYSTEMS

JOURNAL, VOL 45, NO 3.

[9] De Lara, J., Vangheluwe, H. 2002. AToM3: A Tool for

Multi-Formalism Modeling and Meta-Modeling. Proc.

Fundamental Approaches to Software Engineering,

FASE'02, Vol. 2306. LNCS. Grenoble, France, pp. 174-

188.

[10] Graphviz Home page,http://www.graphviz.org/

[11] Hachichi, H., Kitouni, I., Saïdouni, D. E. 2011. A Graph

Grammar Approach for calculation of Aggregate

Regions Automata. The International Arab Conference

on Information Technology (ACIT).

[12] Karsai, G., Agrawal, A. 2004. Graph Transformations in

OMG‟s Model-Driven Architecture. Lecture Notes in

Computer Science, Vol 3062, Springer Berlin /

Heidelberg, pp.243-259.

[13] Kitouni, I. 2008. Déterminisation des automates

temporisés avec durées d‟actions pour le test formel.

Master‟s thesis. Mentouri University, 25000 Constantine,

Algeria.

[14] Python Home page, htpp://www.python.org.

[15] Rozenberg, G. 1997. Handbook of Graph Grammars and

Computing by Graph Transformation, vol 1:

Foundations, World Scientific.

[16] Saïdouni, D. E., Courtiat, J. P. 2003. Prise en Compte des

Durées d‟Action dans les Algèbres de Processus par

l‟Utilisation de la Sémantique de Maximalité. In

CFIP.2003. Hermes, France.

[17] Saïdouni, D. E., Belala, N. 2006. Actions duration in

timed models. The International Arab Conference on

Information Technology (ACIT).

[18] Saïdouni, D. E., Kitouni, I., Hachichi, H. 2011.

Formalisation du calcul de l‟automate des régions

agrégé d'un automate temporisé avec durées d'actions.

MISC REPORT 11001. Mentouri University, 25000

Constantine, Algeria.

[19] Springntveld, J., Vaandrager, F., D'Argenio, P. 2001.

Testing timed automata. Theoretical Computer Science,

254.

[20] Stainer, A. Test d'automates temporisées. 2010. Master‟s

thesis, INRIA Rennes, France.

http://atom3.cs.mcgill.ca/

