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ABSTRACT 

In this paper we propose an approach for translating DATA* 

structure of a high number of states to aggregate region 

automaton. Firstly, we propose a program written in python 

language that transforms a DATA* structure, presented as a 

dotty file, to a DATA* structure written in the form of a 

python file respecting the syntax of AToM3. Secondly, we 

define a meta-model of the DATA* model and a meta-model 

of the aggregate region automata model thus a transformation 

grammar using graph transformation and the modeling tool 

AToM3 to perform this transformation automatically.  
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Keywords 
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1. INTRODUCTION 
Distributed applications, such as communication protocols 

which apprehend the temporal aspect, are characterized by 

their big complexity. 

Therefore, systems validation (verification and testing) always 

take a special interest among the research areas in computer 

science [1] [7] [20].  

In this context the Durational Action Timed Automata model 

(DATA*) [17] [13] has more interest. This model takes into 

account temporal and structural non-atomicity of actions; it is 

based on maximality semantics [16].  

Timed models consider a dense time domain, however; the 

state space generated in this case is infinite. The region 

automata imitate the infinite execution of these timed models 

by a finite set of transitions. They are very used in verification 

and system testing [19].  

In this paper, firstly, we propose a program written in python 

language that transforms a DATA* structure, presented as a 

dotty file, to a DATA* structure written in the form of a 

python file respecting the syntax of AToM3. The aim of this 

transformation is to consider DATA* structures with a high 

number of states. Secondly, we propose an approach and a 

tool for transforming DATA* to an aggregate region 

automaton using AToM3 which is a graph transformation 

tool. This study is based on an aggregation region automata 

procedure to reduce the combinatorial explosion of regions 

[11][18]. 

This paper is organized as follows. In section 2 and 3, we 

recall some basic concepts about Durational Action Timed 

Automata model, region automata, and the aggregate region 

automata. In section 4 we explain model transformation 

concepts and especially graph transformation with its main 

tools and methods. In section 5, we describe our approach. An 

example is dealt in section 6. The final section concludes the 

paper and gives some perspectives.  

2. DATA* MODEL 
The DATA* model (Durational Action Timed Automata) [4] 

is a temporal model defined by a timed transitions system 

over an alphabet representing actions to be executed. This 

model takes into account in the specification, the duration of 

actions based on an intuitive idea: temporal and structural 

non-atomicity of actions. This model seems interesting and 

funneling more and more research [4] because it coated 

models of timed automata by maximality semantics [16].  

The DATA* model, as the temporized models takes in charge 

the notions of urgency and deadlines as temporal constraints 

of the system. Figure1 illustrates an example of this model: 

 

Fig 1: DATA* (a) 

The durations associated to the actions are represented by 

constraints on the transitions and in the states targets of each 

one. In this sense, any enabled transition represents the 

beginning of the action execution. On the target state of 

transition, a timed expression means that the action is possibly 

under execution. From operational point of view, each clock 

is associated to an action. This clock is reset to 0 at the start of 

the action and will be used in the construction of the temporal 

constraints as guard of the transitions. 

The Figure 1 presents a system of two consecutives actions a 

and b, the clock x is associated to the action a, on the locality 

s1 the temporal expression {x≥2} represents the duration of 

the action a. The end of the execution of an action is deduced 

implicitly in the case of an action that it is causally dependent.  

The action b depends on a, so the transition is guarded by the 

relative duration constraint of a. 

Other concepts of real time systems such as the deadlines and 

the urgency are considered [5][6]. 

2.1 Formalisation 
Definition 1 : a DATA* A is a tuple (ACT, S, s0, Ή, TD, LS) 

where ACT is a finite set of actions, S is a finite set of states, 

s0∈S is the initial state, Ή is a finite set of clocks and TD is a 

set of transitions. An edge t=(s, g, a, x, s′) represents a 

transition from state s to state s‟ on input symbol a, x is a 
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clock  to be reset with this transition. g is the corresponding 

guard which must be satisfied to run this transition.  

2S:L
)H(

fnS
t  is a function which gives to each state s a set 

of actions conditions potentially executed in it. 

Definition 2: The semantic of a DATA* A is defined by 

associating to it an infinite transitions system SA over 

ACTR+. A state of SA (or configuration) is a pair <s,v> such 

as s is a state of A and v is a valuation over Ή.  

A valuation v is a mapping on Ή to R+. Let x be a clock, the 

valuation v[x 0] resets clock x to 0 and each other clock y 

to v(y). The valuation v+d maps every clock y to v(y)+d (d ∈ 

R+). A configuration <s0,v0>  is initial if s0 is the initial state 

of A and ∀ x ∈ Ή , v0(x)=0. 

Two types of transitions between configurations of SA are 

possible and correspond respectively to time passing thus the 

run of transition from A. 

3. REGION AUTOMATA 
In this section, we resume the classical definition of region 

automata [1][7]. 

3.1 Clock Regions 
A region is a set of valuations over a finite set of clocks. Two 

valuations of the same region must satisfy the same 

constraints. 

Definition 3: the region equivalence  is an equivalence 

relation defined over the clocks valuations as follows: 

 

 

 

 

                                                                                   

 

 

Mx is the maximum constant appearing in the constraints of 

clock x, and for any real d, bdc denotes the integral part of d 

and frac(d) denotes the fractional part of d. 

Example: if we consider two clocks x, y with Mx = 3 and My = 

1 we will have 38 regions: (Figure 2) 

                                                                                                                            

Fig 2: Standard regions 

 The time-successors succ(r) of a region r are the regions 

that can be reached by moving along a line drawn from 

some point in r in the diagonally upwards direction 

(parallel to the line x = y). 

3.2 Region Automata 
Definition 4: Let A = (ACT, S, s0, Ή, TD, LS) be a DATA*, 

the region automaton RA corresponding to A is a finite 

automaton defined as follows: 

 All localities of RA have the form (s, r) where sS and r 

is a clock region. The initial locality is (s0, r0). 

 The set of transitions TR is, 
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We present an example of the region automaton associated to 

a DATA* A in Figure 3 and Figure 4. 

 

Fig 3: DATA* A 

', if  8() 2 Ή 
1. () , '()  
2. () ) ((b()c = b0()c) and 
frac(()) = 0 , frac(0()) = 0)) 

3. (()  and ()   )) (frac(())   
frac(()) ,frac(0())  frac(0())) 

 

Successors of  r1 [(2<x<3), (0<y<x<1)] :                                          

r2 [(x=3 ), (0<y<1)]                                                           

r3 [(x>3), (0<y<1)]                                                 

r4 [(x>3), (y=1)]                                                       

r5 [(x>3), (y>1)] 
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Fig 4: Region automaton associated to a DATA* A 

3.3 Aggregate Region Automata 
An aggregation operation based on a BI-relation between the 

localities of region automata has been defined in [18]. This 

operation consists to substitute the grouped localities by a new 

locality (s,R) where R is the summation over the regions ri. 

This summation is defined as follows: 



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





1kifr.....rr

                       1kifr

)(r)r,.....r,(rR

k21

kkk21

                                       

(2) 

The union operation  is defined like the one in integer 

intervals. 

The localities are regrouped iff they have the same “forward 

mirror” and “backward mirror” transitions [18]. 

It was proved in [18] that, from the specification of DATA* 

model we can generate an aggregate region automaton by 

graph transformation. The rules of this transformation are 

based on a translation of the guards and a reset of clocks for 

the target state of transition. 

Example: Figure 5 presents the aggregate region automaton 

associated to the DATA* A of Figure 3. 

 

 

 

Fig 5: Aggregate region automaton associated to A 

4. GRAPH TRANSFORMATION 
The transformation between models is a process that converts 

a model to another model. This task requires a set of rules that 

define how the source model has to be analyzed and 

transformed into other elements of the target model.  The 

transformation operation takes the source model in input then 

executes the rules of transformation and generates the target 

model in output. 

Graph Grammars [15] are used for model transformation [3] 

[8] [12]. They are composed of production rules; each one 

have graphs in their left and right hand sides (LHS and RHS) 

(Figure 6). Rules are compared with an input graph called 

host graph. If a matching is found between the LHS of a rule 

and a sub graph in the host graph, then the rule can be applied 

and the matching sub graph of the host graph is replaced by 

the RHS of the rule. Furthermore, rules may also have a 

condition that must be satisfied in order to apply the rule, as 

well as actions to be performed when the rule is executed. A 

rewriting system iteratively applies matching rules in the 

grammar to the host graph, until no more rules are applicable. 

AToM3 [2] [9] is a graph transformation tool among others. In 

this paper we use it. 

 

Fig 6: A grammar rule (LHS and RHS) 

5. THE APPROACH 
In order to allow the use of DATA* structures with a high 

number of states and transitions, we propose firstly a program 

written in python language that transforms a DATA* 

structure, presented as a dotty file [10], to a DATA* structure 

written in a python file [14] which respect the syntax of 

AToM3. Also we define a meta-model of the DATA* model 

and a meta-model of the aggregate region automata model 

thus a transformation grammar. The meta-model is 

represented by UML class diagrams and the constraints are 

expressed using python language. 

5.1 Generation of a DATA* Respecting the 

Syntax of AToM
3
 

Figure 7 presents an example of DATA* structure with the 

graph editor dotty [10], the translation from a dotty 

representation to a python representation (Figure 8.b) is done 

by the python program 

„DATAstarDotty2DATAstarPython.py‟ (Figure 8.a). 

A graphical representation of DATA* structure with AToM3 

is presented in Figure 9. 

S0 

x=y=0 

S1 

x≤1, y=0 

S2 

1≤y≤2, x=0     a     b 
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Fig 7: A dotty representation of a DATA* A 

 

(a)                                       (b) 

Fig 8:  Translation step (dotty-python) of a DATA* A 

Fig 9:   A graphical representation of a DATA* A with AToM3 

5.2 DATA* Meta-Model 
The first meta-model proposed is a class diagram composed 

of the following classes (Figure 10): 

1) DATAet class: it represents the states of DATA*, each 

state has two attributes: a name (name), and duration 

conditions (CD). It is connected to TransitionD and 

DATAetInit by inheritance link. 

2) TransitionD association: it represents the transitions of 

DATA*, each transition is identified by an action, a clock 

and a guard. 

3) DATAetInit class: it represents the initial state of DATA*, 

it inherits the attributes from  DATAet. 
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Fig 10:  DATA* meta-model 

5.3 Aggregate Region Automata Meta-

Model 
The second meta-model is a class diagram composed of the 

following classes (Figure 11) : 

1) ARstate class: it represents the localities of the aggregate 

region automaton, each locality has two attributes: a name 

(name), and a clock region (RegionHorloge). It is 

connected to ARtransition and ARStateInit by inheritance 

link. 

2) ARtransition association: it represents the transitions of 

the aggregate region automaton, each transition is 

identified by an action. 

3) ARStateInit class: it represents the initial locality of the 

aggregate region automaton; it inherits the attributes from  

Arstate class. 

Each class has an only graphical appearance. 

 

Fig 11:    Aggregate region automata meta-model 

5.4 Modeling Tool of Data* and the 

Aggregate Region Automata 
The two meta-models defined previously are represented in 

AToM3 (Figure 10, Figure 11) and allow to generate a tool 

for modeling systems in DATA* and the aggregate region 

automata (Figure 12). 

     

Fig 12:  Modeling tool of DATA* and the aggregate region automata 

         

5.5 Graph Grammar 
The proposed graph grammar is composed by 9 rules 

organized in 3 categories. 

The first three rules allow the construction of an aggregate 

region automaton based on the principle detailed in Section 

3.3. 
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•The 1st rule is used to generate the first region associated to 

the initial state of DATA* where all clocks are reset to zero. 

(Figure 13). 

 

 

 

 

                        LHS                               RHS 

Fig 13:  Generating the initial locality of an aggregate 

region automaton (Rule 1) 

•Rules 2 and 3 (Figure 14) generate the rest of the aggregate 

region automaton and save it in a text file (Figure 20). 

 

 

                                                LHS                                RHS                                         LHS                                RHS 

Fig 14:  Generating localities of an aggregate region automaton and saving it in a text file (Rules 2 and 3)

•Rules 4 and 5 eliminate a generic links between the source 

model and the target model (Figure 15).  

  

LHS              RHS                       LHS                  RHS 

Fig 15:   Removing generic links (Rules 4 and 5)

•Rules 6, 7, 8 and 9 (Figure 16) eliminate the graphical 

representation of DATA* model. 

 

 

  

                  LHS                          RHS                       LHS                        RHS                 LHS              RHS             LHS             RHS 

Fig 16:  Removing DATA* model (Rules 6,7,8 and 9) 

6. EXAMPLE 
To illustrate our approach we propose the example of the 

ticket reservation system “TRS”. This example supposes that 

to buy a ticket, we generally pass by two counters. The first 

counter R is for making a reservation and the second counter 

C is for paying and taking the ticket. This agency has one 

waiting room, three counters of type R and two of type C. 

On arrival, the client goes to the waiting room, when a 

counter of type R is free, he can make a reservation. Once the 

operation is complete, he waits until a counter C becomes free 

for paying and taking the ticket. 

 Figure 17 presents a DATA* of TRS for two clients with the 

graph editor dotty. 

The mapping of this DATA* with the graph editor dotty to the 

equivalent DATA* model of Figure 18 is performed using 

python program.  

We have applied our tool on the DATA* model and obtained 

automatically the aggregate region automaton of Figure 19. 

The result is saved in the text file of Figure 20. 
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Fig 17:   DATA* of TRS with the graph editor dotty 

Fig 18:   DATA* of TRS with AToM3 

 

Fig 19:   Aggregate region automaton 

 

Fig 20:   A textual aggregate region automaton 
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7. CONCLUSION 
In this paper we proposed a method for generating an 

aggregate region automaton from a DATA* by the graph 

transformation approach and using the environment AToM3 

in order to provide a finite abstraction of DATA* structures 

with a high number of states. 

Firstly, we have proposed a program written in python 

language that transforms a DATA* structure, presented as a 

dotty file, to a DATA* structure written in the form of a 

python file respecting the syntax of AToM3. We have 

proposed also two meta-models; one for the input model and 

the other for the output model. Based on these meta-models, 

we have proposed a graph grammar that deals with the 

transformation process. The meta-modeling tool AToM3 is 

used for this purpose. We have illustrated our approach 

through an example. In future work, we plan to implement our 

approach with other tools as AGG in order to compare 

performances. We plan also to Study the complexity of this 

transformation and its use in system testing. 
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