
International Journal of Computer Applications (0975 – 8887) 

Volume 37– No.1, January 2012 

14 

Illumination Invariant Facial Pose Classification

Ajay Jaiswal 
School of Computer & 

Systems Sciences,  
JNU, New Delhi – India 

 

Nitin Kumar 
School of Computer & 

Systems Sciences,  
JNU, New Delhi – India 

R. K. Agrawal 
School of Computer & 

Systems Sciences,  
JNU, New Delhi – India 

 

ABSTRACT 

In this paper, we compared the performance of various 

combinations of edge operators and linear subspace methods to 

determine the best combination for pose classification. To 

evaluate the performance, we have carried out experiments on 

CMU-PIE database which contains images with wide variation 

in illumination and pose. We found that the performance of 

pose classification depends on the choice of edge operator and 

linear subspace method. The best classification accuracy is 

obtained with Prewitt edge operator and Eigenfeature 

regularization method. In order to handle illumination variation, 

we used adaptive histogram equalization as a preprocessing step 

resulting into significant improvement in performance except 

for Roberts operator.   
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1. INTRODUCTION 
Human head orientation is being used to express important 

inter-personal information. For example, a person usually points 

the direction of his head to indicate the intended target in 

conversation. Similarly in a dialogue, head movement indicates 

the listener to switch roles in conversation. There is also 

importance of the head movement as a form of gesture in a 

discussion. People may nod to indicate that they agree to what 

is being said, and use other gestures to indicate disagreement. 

Humans possess inherent ability to understand such movements 

of head or face of a person conveniently which allows 

interpreting the intention or movement of other persons without 

any verbal form of communication. But to perform such pose 

estimation automatically is a challenging task. Hence, it has 

drawn the attention of the research community in last few years 

[1]. In methods for automatic head/face pose estimation, we 

need a process that can infer pose information from digital 

images. The method used for head pose estimation should be 

robust to changes in factors affecting images such as 

illumination, facial expression, environmental conditions, 

foreign objects etc. Human head orientation can be performed 

along three axes shown in Fig. 1 [1]. These orientations are 

defined as pitch, yaw and roll [1]. Although head pose can be 

estimated in any dimension, but most of the research work of 

pose estimation has been done when the movement of head is 

towards left or right which is known as yaw. 

Pose estimation is also one of the preprocessing steps in face 

recognition across pose. In recent methods for face recognition 

involving pose variation, first the pose of the test input face is 

 

Figure 1: Directions of human head orientation 

estimated and then it is transformed in to an already known 

reference pose [2,3]. When multiple view of a facial image are 

available, pose estimation can be used to reduce the search 

space, as first pose is estimated then probe image is compared 

with gallery images in the similar pose [4]. Pose estimation can 

be carried out in 3D image space or 2D image space. In 3D 

context, the human face is represented along three dimensions 

which require more storage and greater computational 

complexity. These limitations are overcome by the 2D models. 

In 2D context, various methods for face pose estimation are 

classified into two categories [5]: Landmark feature detection 

based and Appearance based subspace methods. Landmark 

feature detection methods [6] use certain localized landmarks 

points on the image and tries to estimate the pose information 

by modeling the displacement of these points across different 

poses. However, it is very sensitive to accurate localization of 

landmarks and also assumes that the ratios of these points do 

not change significantly in multiple poses. Appearance based 

subspace methods treat the whole face as one feature vector in 

some feature subspace [7] and pose estimation is carried out in 

the transformed feature subspace. Subspace methods 

circumvent these problems of landmarks localization and 

modeling. However, these methods are based on assumption 

that inter-pose variations are always larger than intra-pose 

variations. This condition is not satisfied always since different 

individuals in same pose may have large variations in 

appearance due to e.g. glasses, expressions, illumination and 

skin color. A hybrid model is also proposed for pose estimation 

[8] which exploits the advantages of the above mentioned two 

approaches. To overcome above mentioned limitations, a novel 

discriminative feature descriptor, Local Energy based Shape 

Histogram (LESH), is proposed in [5]. In this approach, a pose 

similarity feature space (PSFS) is generated with the help of 

feature descriptor that transforms the multi-class problem into 

two-class by using inter-pose and intra-pose similarities. 

Most of 2D image-based methods handle either illumination or 

pose variation. Hence, these methods do not perform well when 

face images incorporate both illumination and pose variations.  

Sang et al. [4] have proposed a method which involves three 

phases for pose classification with illumination variation. In 

phase one, well known Sobel operator is used for finding edges 
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from images having light and pose variations. PCA is applied to 

reduce the dimensions in phase two and linear discriminant 

analysis (LDA)/ LDA for regression (LDA-r) [9] is used to 

extract features to estimate the pose in phase three. The research 

work [4] have also employed commonly used canny operator in 

phase one but the performance with sobel operator is found 

superior in comparison to canny. In literature, other edge 

detection operators e.g. Roberts, LoG (Laplacian of Gaussian), 

Prewitt etc.[10]are also suggested. It is also known that the 

choice of edge detection operator depends on underlying 

application. Hence, there is a need to investigate the better 

choice of edge operator. Similarly various subspace methods 

such as LDA /QR [11], Null-space LDA [12], Dual-space LDA 

[13], Eigenfeature regularization [14], SVM Based Feature 

extraction[15] etc. have been suggested for feature extraction 

which perform better in comparison to LDA/ LDA-r. In this 

paper, we investigate the performance of various combinations 

of edge operators and subspace methods to determine the best 

combination for pose classification. The performance is 

evaluated in terms of classification accuracy. 

The rest of the paper is organized as follows: Section 2 provides 

an overview of various edge operators. Section 3 briefly 

describes various linear subspace methods. Section 4 describes 

the experimental set up and results. Conclusions and future 

work are included in section 5.  

2. EDGE DETECTION 
Edge detection is an important step in image processing as 

edges contain a major part of information in images. The 

objective of edge detection is to locate the homogeneous region 

boundaries in an image based on characteristics such as 

intensity and texture. Edges in an image can be step, line and 

junctions edges [16].  In the last few decades various methods 

for edge detection have been proposed. The performance of a 

particular edge detection method depends on underlying 

application. These methods can be differently classified on the 

basis of different criteria [16]. From the technical point of view, 

edge detection methods are divided into two classes viz. search-

based and zero-crossing based. Search-based methods work on 

the principle that local edge strength represents local maxima of 

the absolute value of the first derivative while zero-crossing 

methods find the location of zero-crossing in the second 

derivative of an image. From the conceptual point of view, 

these methods can be divided into contextual and non-

contextual approaches. The contextual methods exploit a priori 

scene information. These methods perform better only in 

specific context. On the other hand, non-contextual methods are 

independent of the context. Therefore these methods can be 

used in large number of applications. Another classification of 

edge detection methods divides these methods in to nine 

categories: classical (e.g. Sobel), Gaussian based (e.g. LoG), 

multi-resolution [17], non-linear [18], wavelet based [19], 

statistical [20], machine learning based [21], contextual [22] 

and line edge [23] methods. 

Typically edge detection methods involve three key steps: 

differentiation, smoothing and labeling. Differentiation involves 

computation of the derivative of the image. Smoothing is used 

to reduce the effect of noise, while labeling incorporates edge 

localization and suppressing of false edges. Different edge 

detection methods may or may not involve all the 

aforementioned steps. 

Several first order derivative approximations along two 

perpendicular directions have been proposed, and some of the 

most commonly used are follows: 

The Roberts [10] operator is calculated using a set of axes 

rotated 45 degrees to the usual orientation of the column and 

row, and considers only four neighboring pixels to determine an 

edge pixel. The two kernels used by Roberts operator are shown 

below: 

+1     0  0     +1 

 0    -1   -1     0 

It is sensitive to noise because only four pixels are used to 

evaluate gradients. Most real-world images contain noise in 

them and the Roberts algorithm will highlight this noise as 

edges. 

The Prewitt method [10] models the edges in an image as ramp 

function. This can be implemented with the help of convolution 

kernels whose response is maximal to edge pixels by giving 

equal weights to all the neighboring pixels in horizontal and 

vertical directions. The major advantage of Prewitt operator is 

its simplicity but it is also sensitive to noise and produces thick 

edges in the images. 

-1 0 +1  +1 +1 +1 

-1 0 +1  0 0 0 

-1 0 +1  -1 -1 -1 

Fig 2. Convolution kernels for Prewitt operator 

The Sobel  method [10] slightly changes the convolution kernel 

by giving more weight to central pixel in comparison to Prewitt 

operator. This method also suffers from thick edges and is 

sensitive to noisy images. 

-1 0 +1  +1 +2 +1 

-2 0 +2  0 0 0 

-1 0 +1  -1 -2 -1 

Fig 3. Convolution kernels for Sobel operator 

Laplacian of Gaussian (LoG) [10] method finds edges by 

finding zero crossings after filtering image with a Laplacian of 

Gaussian filter. The Laplacian L(x,y) of an image with pixel 

intensity values I(x,y) is given by: 
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Image is smoothed using Gaussian filter before applying 

Laplacian filter to reduce the noise. LoG is a linear and non-

directional operator. The advantage of LoG lies in its capability 

to determine localized edges. Disadvantage of LoG operator is 

that it does not find the orientation of edges. Also it does not 

perform better at the corners and curves. 

Canny edge detector [24] is proposed to achieve the following 

performance criteria: low error rate, localized edge points and 

unique response to an edge. Low error rate is important as edge 

detector should not miss any edge point and do not respond to  

non-edges. Localized edge points minimize the distance 

between the edge pixels as obtained by the detector and the 

actual edge. A third criterion is to have unique response to a 

single edge. 

The canny method finds edges by looking for local maxima of 

the gradient of smoothed image. The gradient is calculated 

using the derivative of a Gaussian filter in two orthogonal 

directions and then finds the edge strength and direction of 

edges in terms of two components of gradient. Candidate edge 

pixels are recognized as the pixels that survive a thinning 

process called non-maximal suppression. Finally, hysteresis is 

used to eliminate streaking. It uses two different thresholds, a 

high and a low.  All candidate edge pixels above the high 
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threshold are marked as edge pixels and all pixels above the 

lower threshold that can be connected to any pixel above the 

high threshold through a chain of edge pixels are also marked as 

edge pixels. All pixels below lower threshold are non-edge 

pixels. The advantages of Canny operator is its ability to detect 

edges in images with noise and true weak edges. Its 

disadvantage includes complexity of implementation and high 

computation requirement in comparison to other operators. 

3. LINEAR SUBSPACE METHODS 
Here we briefly describe the linear subspace methods used for 

evaluating the performance in conjunction with various edge 

operators for feature extraction. In Linear discriminant analysis 

(LDA) [25], the objective is to seek the transformation matrix 

W such that the following criterion function 

 
WSW

WSW
WJ

W
T

b
T

                (2) 

is maximized, thereby maximizing the between-class scatter 

and minimizing the within-class scatter of the projected images 

simultaneously. 

Here Sb and Sw are between-class scatter and within-class   

scatter matrix respectively. If Sw is non-singular then we solve 

λWWSS b
1

W 
                                                               (3) 

Hence in case of LDA, the transformation matrix W = {wi | i=1, 

2, ..., m} is represented in terms of eigenvectors of matrix 

b
1

W SSU
  corresponding to m largest eigenvalues. Note that 

c-1 is an upper bound on m because the rank of Sb can be at 

most c-1 or less, where c is the number of classes [25]. 

 LDA for regression (LDA-r) [9] is a variant of LDA, which 

solves regression problem. If we consider a set of 

predictor/response pairs n
iii yx 1)},{(   where RyRx i

d
i   ,1  

and n represents the total number of predictor/response pairs. 

Here, d corresponds to the dimensionality of the input and yi is 

the class label. The computation of between-class scatter matrix 

Sb and within-class scatter matrix Sw is modified as follows [9]: 
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where nw and nb are cardinality of sets Aw and Ab respectively. 

Aw and Ab are given by 

j}in},{1,...,ji,τ,|yy:|j){(i,wA ji   

j}in},{1,...,ji,τ,|yy:|j){(i,bA ji   

The function f(.) is a weight function with positive values and 

 determines a boundary to separate the points of two different 

sets wA  and bA . The weight function used in the research 

work [4] is ||||)(  xxf and  std(y)*alpha=  where alpha = 

0.1 as in [9]. 

LDA/QR proposed by Ye et al. [11] is another extension of the 

classical LDA which involves two stages. The first stage 

maximizes the separation between various classes via QR 

decomposition. The QR decomposition method decompose a 

matrix A into two matrix Q and R such that A = QR where Q is 

an orthogonal matrix and R is an upper triangular matrix.  The 

transformation matrix so obtained can be used independently 

for dimensionality reduction. The distinguishing property of 

first stage of LDA/QR is its low time/space complexity. The 

second stage takes into consideration the issue of within-class 

distance and also maintains low time/space complexity. 

The LDA is performed in the principal subspace of SW, in 

which WTSWW ≠ 0. However, the null space of SW, in which 

WTSWW = 0, also contains much discriminative information. It 

is possible to find some projection matrix W satisfying WTSWW 

= 0 and WTSbW ≠ 0 which also maximizes Fisher criterion 

function in (2). This modification of LDA is termed as Null 

space LDA [12]. 

In the null-space LDA, the discriminative information present 

outside the null space is discarded.  However, the discriminative 

information to distinguish any two faces is available in both 

subspaces (null space and principal space). Hence, the feature 

vector obtained using only the null-space LDA may not be 

suitable for better classification. Wang and Tang [13] proposed 

a Dual-space LDA approach to take full advantage of the 

discriminative information present in both subspaces. The 

eigenvalue spectrum in the null space of within-class scatter 

matrix is estimated based on a probabilistic visual model. The 

discriminant analysis is simultaneously applied in both null and 

the principal spaces of the within-class scatter matrix. The two 

sets of discriminative features so obtained are merged together 

for feature extraction. 

Jiang et al. [14] proposed Eigenfeature regularization and 

extraction method. In this approach, image space spanned by 

eigenvectors of within-class scatter matrix is decomposed into 

three subspaces: i) a reliable subspace which is spanned mainly 

by the variation in face, ii) an unstable subspace due to noise 

and finite number of training samples and iii) null space. 

Eigenfeatures are then regularized differently in these three 

subspaces based on an eigenspectrum model to alleviate the 

problems of instability, overfitting, or poor generalization. This 

also allows the discriminant evaluation to be performed in the 

whole space. Feature extraction or dimensionality reduction 

occurs only at the final stage after the discriminant assessment. 

This facilitates a discriminative and a stable low-dimensional 

feature representation of the face image. 

There are some inherent limitations in LDA which includes the 

small sample size (SSS) problem and a limited dimensionality 

because the rank of Sb is bounded by c-1 where c is number of 

classes. To overcome these limitations of LDA, Sang et al. [15] 

proposed a new feature extraction algorithm, called SVM-based 

discriminant analysis. They proposed computation of between-

class scatter matrix based on the principle of SVM margins in 

conjunction with regularization process [14] to resolve the 

above mentioned limitations to determine distinctive features. 

In this method, SVM based modification of Fisher’s criterion is 

obtained [15]. In first step, eigenfeature regularization is carried 

out as suggested by Jiang et al. [14]. Then, the regularized with 

in class scatter matrix is obtained as: 

T
www VΔVS ˆˆ                                                    (6) 

where Δ̂  = diag ]λ...,,λ,λ[
W
N

W
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regularized eigenvalues in its diagonal, and ]v...,,[vV
w
N

w
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w
  

is the matrix of corresponding eigenvectors. Since SVM is 

originally proposed for a two-class problem, it is required to 

modify the scatter matrix for multi-class problem. The modified 

Sb is given by: 
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where ω is the hyperplane parameter of the SVM classifier, 

which separates classes. The rank of this between-class scatter 

matrix is bounded by min(c(c-1)/2, NSV) instead of c-1, where 

NSV is the number of support vectors. 

Now, we need to maximize the modified Fisher’s criterion 

given by: 

VSV

VSV
argmaxJ(v)

w
T

b
T 

                     (8) 

Generally in the case of lower number of samples, the matrix Sw 

is not a full rank matrix. However, the discriminant information 

corresponding to the zero eigenvalues of Sw have the most 

discriminative power. But, LDA cannot extracts discriminant 

information only from the principal subspace of Sw. Zhang et al. 

[26] have proposed another approach based on the matrix 

exponential and is known as Exponential Discriminant Analysis 

(EDA). To extract discriminative information, they had 

replaced the eigenvalues of Sw i.e. wiλ , by exp( wiλ ) and biλ  

i.e, the eigenvalue of Sb, by exp( biλ ) and represent 

)e,...,e,diag(e)exp(Λ bnb2b1 λλλ
b                   (9) 

)e,...,e,diag(e)exp(Λ wnw2w1 λλλ
w                 (10) 

Then the LDA criterion is modified as below [26]: 
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However, it should be noted that we must normalize scatter 

matrices Sb and Sw before carrying out further transformation 

because exp(Sb) and exp(Sw) may involve large numbers. This 

method captures high-order mixed central moments which can 

reveal the intereffect between many factors. 

 

 

 

 

 

 

 

 

4. EXPERIMENTAL SETUP AND 

RESULTS 
To determine best combination of edge operator and linear 

subspace method for pose classification, we have used five edge 

detection operators (Sobel, Canny, Prewitt, LoG and Roberts) in 

phase one and, eight linear subspace methods (LDA, LDA-r, 

LDA-QR, Null-space LDA, Dual-space LDA, Eigenfeature 

regularization, SVM based feture extraction and Exponential 

LDA ) in phase three. To investigate the performance of various 

combinations, we have performed experiments on a widely used 

CMU-PIE face database [27]. In preprocessing, we have 

cropped face images containing central portion of face and 

resized each image to 60×50.  We have selected images of 65 

persons and 7 pose classes (c22, c02, c05, c27 c29, c14, c34) 

with 21 different lighting conditions for each pose. The pose 

classes are arranged sequentially from left profile to right 

profile. The training set was constructed by randomly choosing 

three images from each pose for each individual. 

This results into a total of 3*7*65=1365 images for training and 

18*7*65=8190 for testing. The experiment was repeated 20 

times with different training samples to determine average 

classification accuracy. We applied edge operator followed by 

PCA for dimensionality reduction. Finally, linear subspace 

methods are used for feature extraction. K-nearest neighbor 

classification (K=1) method with Euclidean distance is used as 

a classifier. The results for average classification accuracy for 

different linear subspace methods over various edge detectors 

are shown in Table 1. For a given edge detector, the maximum 

classification accuracy achieved by a linear subspace method is 

shown in bold.  

We observe the following from Table1: 

1. The performance in terms of classification accuracy 

with Sobel and Prewitt edge operator is similar using 

all linear subspace methods.  

2. The performance in terms of classification accuracy 

with Sobel/Prewitt edge operator is significantly 

better in comparison to other edge operators using all 

linear subspace methods.  

3.  Eigenfeature regularization method significantly 

outperforms other linear subspace methods except for 

Canny edge detector.  

4. The standard deviation of the classification accuracies 

obtained using 20 different training and testing 

datasets shows that the classification accuracy is 

highly dependent on the choice of training samples. 

This is due to the fact that the face database contains 

wide illumination variations. 

5. Although Canny edge detector is considered to be a 

better edge operator in literature but experimental 

results show that it does not perform better for pose 

classification problem.  

Prewitt edge operator in combination with eigenfeature 

regularization method outperforms all other combinations. 
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In order to overcome the effect of illumination variation present 

in face database, we applied adaptive histogram equalization 

prior to edge operator and used eigenfeature regularization in 

phase three of pose classification problem. Table 2 contains the 

comparison of classification accuracy with and without adaptive 

histogram equalization. 

Table 2: Comaprison of classification accuracy 

with and without adaptive histogram equalization 

 

Eig_reg (without 

adaptive 

histogram 

equalization) 

Eig reg  (with 

adaptive 

histogram 

equalization) Roberts 87.42 (11.16) 84.31 (12.70) 

Prewitt 89.12 (10.73) 89.99 (10.03) 

Sobel 88.46 (10.43)  90.24( 9.87) 

LoG 81.16 (10.94) 83.17 (10.48) 

Canny 75.51 (12.45) 82.75 (9.54) 

 

From Table 2 it can be observed that classification accuracy 

increases with the use of adaptive histogram equalization except 

for Robert edge operator. The classification accuracy has 

improved significantly in case of Canny operator with the use 

of adaptive histogram equalization. It can also be noted that 

standard deviation of classification accuracies has decreased 

with all operators except Robert operator. It signifies that 

adaptive histogram equalization reduces the effect of 

illumination variation to estimate pose. Similar observations 

can be made from box plot  

shown in Figure 2. 

5. CONCLUSION 
Pose classification is a challenging problem in computer vision. 

Various methods have been proposed for identity independent 

pose classification. One of appearance based subspace methods 

for pose estimation involves three phases. An edge operator is 

used for finding edges from images, PCA is applied to reduce 

the dimensions, and finally a linear subspace feature extraction 

is used for pose classification. In literature, various edge 

operators and linear subspace method for feature extraction are 

suggested. It is well known that the choice of edge operator and 

linear subspace methods depends on underlying application. In 

this paper, we have investigated the performance of various 

combinations of edge operators and subspace methods to 

determine the best combination for pose classification. The 

performance is evaluated in terms of classification accuracy. 

For evaluating the performance, we have carried out 

experiments on CMU-PIE database which contains images with 

wide variation in illumination and pose. We found that the 

performance of pose classification depends on the choice of 

combination of edge operator and linear subspace method. The 

performance of Sobel and Prewitt edge operator is more 

suitable in comparison to other edge operators. We obtained 

best classification accuracy with Prewitt operator for edge 

detection with Eigenfeature regularization method. It is also 

found that the performance of method is sensitive to variation in 

illumination. In order to overcome this, we used adaptive 

histogram equalization as preprocessing step and noticed 

significant improvement in performance except for Roberts 

operator. 

Figure 

2: Box plot for classification accuracy in Table2 

 

 

 

Table  1: Comparison of average pose classification accuracy and standard deviation 

  LDA LDA-r LDA/QR NLDA Dual_LDA Eig_reg Eig_SVM Exp_LDA 

Roberts 82.44 (10.48) 76.75 (9.86) 81.09 (14.37) 81.87 (12.19) 83.08(10.57) 87.42 (11.16) 83.62 (10.67) 81.74 (11.13) 

Prewitt 84.14 (10.6) 79.66 (9.92) 84.24 (13.73) 82.86 (12.12) 84.41(10.76) 89.12 (10.73) 84.39 (10.79) 82.79 (11.98) 

Sobel 84.33 (10.81) 79.46 (10.02) 83.22 (14.06) 82.56 (11.93) 84.75(10.84) 88.46 (10.43) 84.76 (10.66) 83.09 (11.95) 

LoG 79.49 (10.41) 73.06 (9.00) 78.77 (14.94) 77.15 (12.12) 80.51(10.47) 81.16 (10.94) 80.1(10.24) 76.68 (9.97) 

Canny 78.32 (10.24) 67.40 (10.10) 70.32 (15.56) 71.1 (10.3) 79.26(10.77) 75.51 (12.45) 78.91(10.67) 77.28 (12.42) 
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In the future work, we are planning to investigate robustness 

of best combination for pose classification on other publicly 

available face databases. We would also explore scale-space 

invariant approaches to tackle illumination variation in pose 

classification. 
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