
International Journal of Computer Applications (0975 – 8887)

Volume 36– No.9, December 2011

47

Meeting Expectations with Dynamic Link Libraries:

Development and Applications

D.A. Adenugba

Department of Physics
The Federal University of Technology, Akure

P.M.B 704, Akure, Ondo State. Nigeria.

ABSTRACT
Expectations, be they scientific or technology or business,

are to be met accurately and promptly with dynamic link

libraries. In this paper, two class libraries for validation and

power law relation (PLR) were developed with Microsoft

Visual Studio 2010. The validation class was found to be

accurate and handy for quick input data check. The exposed

functionalities of PLR was applied to Chebil model to

generate information and rainfall rate exceeded 0.01% of

time (R0.01) data, much-sought-after data for rainfall

attenuation prediction model, for seventeen Meteorological

sites in Nigeria covering a period of thirty years. Microsoft

DataGridView control was customized for current and

anticipated use and the methods and properties work to

specifications. Not only will software developers benefit

from the use of our classes, Atmospheric Scientists,

Communication experts, system Engineers and Researchers

will find our R0.01 data indispensable in their works.

General Terms

Rainfall rate exceeded 0.01%, Server, Dynamic Link

Library, Class Library

Keywords

Chebil model, DGV control, Power law relation, Validation

1. INTRODUCTION
Expectations, either social or scientific or business or

technology could be met swiftly and accurately with the

use of software applications. Social comfort and fitness,

scientific and technological breakthrough and self-reliance,

business and economical advancement are required in all

communities, especially in developing nations. Everybody

has a dream for success, growth and progress which could

easily be actualized through software packages. The

building blocks for software applications are class libraries.

Accurate and flexible class libraries are much-sought-after

tools by software developers everyday all over the world.

Classes are templates used to create new objects; they are

made up of members such as fields (otherwise called data

members that hold internal state of object), methods,

events, and properties, which may be declared as private or

public. Although a class itself is not an object, its entire

members define object state and its functionality. A class is

“seen” through its public members, while the private

members are “unseen” outside the class. Even though a

class is not an object itself, an instance of a class is said to

be an object and by creating an object of a certain class,

you are instantiating an object of the class using a New

keyword. The New keyword is a unary operator which

takes a type identifier as its operand to produce a reference

to a newly created object of the given type. A method,

however, that has new name is a constructor [4]. Every

class has a default constructor where members are

initialized. Besides, a class could be a sealed class declared

with the keyword NotInheritable such as Array class, so a

new instance of it cannot be created. Base class is a class

declared without the Inherits keyword modifier, whereas

derived class is a class that is inherited from a base class

(that is, its parent class). Abstract base class, also known as

Virtual class, is a class that has to be inherited by another

class. It is declared with MustInherit keyword, which

informs Common Language runtime (CLR) that the class

cannot be used as is. Virtual methods are just placeholders

for name(s) [3-7].

Data validation is a regular exercise in software

development. Failure to capture exceptions (errors) where

users could make mistakes leads to software failure and

disappointment. Controls unexpected behaviour should be

tracked and reported to user or other part of the application.

Application’s crash is developer’s failure to trap all known

and unknown exceptions. Thus, adequate checks should be

provided to prevent application crash. A dedicated class

library, dvValidateCls is thus appropriate for this very

significant application chore, which we shall develop in

this work.

Power law relation (PRL) is commonly used in expressing

many prediction models in communication, hydrology and

Meteorology besides its use in Engineering, Mathematics

and Physics. VB.6.0 codes had been developed for this very

significant parameter [1]. Though adequate for few

computations, the method could not timely handle large

data. This shortcoming will be addressed in this work and

the existing method will be rewritten in VB.NET. It will be

polymophized, so that flexibility of data entry could be

easily achieved. Its application to Chebil model is expected

to generate rainfall rate exceeded 0.01% of time (R0.01) data

and useful information from long-term mean annual rainfall

rate, R. Besides, Microsoft DataGridView (DGV) control

will be customized for some common tasks.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.9, December 2011

48

2. DATA VALIDATION
Data validation is an essential part of software development

that any serious software developers cannot toy with to

prevent application crash. Among the commonly checked

items are numbers, zero and string. The class library,

dvValidateCls developed for checking these common

items, contains fifteen methods. The dvValidateZero

method has five overloads accepts two to six arguments

and determines if the supply number(s) is zero or not. If

zero an informed exception message is returned indicating

which argument is zero, else ok is returned. The last

boolean argument, if true immediately issues the exception

message before returning to the caller. If false, no

exception message is raised, still the exception message is

returned.

The next method dvValidateNumericZero is equally

overloaded as the previous one and functions the same way

to determine if the argument(s) is zero or not. But in

addition, it checks if the object argument(s) is numeric or

not. The last overloaded dvValidateNumeric is identical to

the two previous ones; however, it checks if the supply

argument(s) is simply numeric or not and reports back.

Each method has its use at various times. There are

occasions when only to find out if an object argument is

only numeric, and not to both if zero or not. The three

overloaded methods have been repeatedly called at

different times to assist us to filter input(s) before using

it/them, and they save a lot of space and time to validate

input(s).

The Yoruba people said it is because of the afternoon thirst

that one fetches water early in the morning. For this reason,

apart from the methods used in this work, in anticipation

for future software development, some common properties

and methods are developed as Table 1 shows. The task(s)

of each item which name is in column 2 is given in column

3 to which you are referred.

Table 1: Some Common Properties and Methods

S/n Name Task(s)

1. dvAutoDGV This method has a reference DGV control argument that is to be

resized by calling AutoResizeColumn property of the control.

2. dvCompleteMsg This read only property returns a message indicating the completion

of an evaluation. It is repeatedly summoned in client application.

3. dvGetRowColl_MissingRow It has five arguments that are declared as ByRef except the first

which is the DGV control to find its row and column and the last

boolean, which simply indicates if exception message is to be

displayed or not. This reference declaration is required so that

obtained values could be returned to function or sub procedure

calling this method. Not only are integers returned as row and column

numbers, informed message are given that could be displayed in

calling function.

4. dvInsertTitleInDGVRow It inserts title in row1 of the supply reference DGVcontrol. The string

for title is supplied next as argument. There are six overloads for one

column string title to five strings columns; above which the title have

to be loaded in a listbox control as argument, any other number of

string could be supplied as title for row one of the DVG control.

5. EnumFMTType This is a customized enumerate class with five members to assist user

to format result.

6. dvGetSmallNumb It returns the smaller of two numbers. It is very handy when identical

number is to be used in a loop.

7. dvReport It accepts a reference label and changes its fore colour as well as text

properties to the one’s supply. The second overload changes, also the

back colour property. The last overload, in addition to the

aforementioned alterations, changes the location. This is a useful

method for showing messages in a client application.

8. dvFMTForm With a single call to this method windows form state, key preview,

Back color, fore color and form Border style could be set. It is very

useful for start-up windows form, and we extensively utilized it.

9. dvConvertDegreeToRadian It converts degrees to radians. Quite useful in Trigonometry functions

,and wherever such conversion is required.

10. dvConvertRadianToDegree It converts radians to degrees. Quite useful in Trigonometry functions

,and wherever such conversion is required.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.9, December 2011

49

3. POWER LAW RELATION
In its basic form, PRL is expressed thus: aRb ; a and b are

the coefficient and exponent respectively, R is a numeric

number either integer or real. Methods with different data

types and/or arguments numbers were developed for PLR

in a class library, dvPLRCls. The previous method was

rewritten in Microsoft Visual Studio 2010 and overloaded

to allow more methods of varying data types to be

included. PLR has a simple form that makes it attractive to

be used in various areas including attenuation prediction

model.

The new power law relation method has a reference

DataGridView control as argument which contains the

inputs: a, R, and b in that order; and after computation, the

result is stored in it. It assumes the title is already in row

one, thus row one is not read for computation. A column is

dynamically inserted in the control for result after the

number of rows and columns in the control have been

obtained and checked for correct inputs, using

dvGetRowColl_MissingRow method (see Table 1, Sn 3). If

the number of columns is less than three, for instance, an

exception message is thrown and the method gracefully

exits. To be sure the correct title is in row 1;

dvInsertTitleInDGVRow method is summoned to insert the

title in each column of row 1, zero-based. The format type

is set to scientific; and a loop is entered where the entire

inputs are read, and passed to former method or anyone of

the new methods to calculate PLR. After finishing

computation, dvAutoDGV method is summoned to resize

the DGV control.

Another method accepts two DGV controls for rainfall rate

input and outputs. It works the same way as the previous

but the results are stored in the second control. Before

calling this method a method is called to set a and b values

for use. The third method allows the supply of a and b as

the first two arguments, the next two DGV control

arguments are for R input and results respectively. Other

three overloads share the same steps, but one permits user

to supply title for row 1. The second allows user to specify

the format to use instead of the hard coded, scientific

format. The last combines the supply of title string and

format. The PowerLawRelatnWkg method helps us to

generate PLR workings which could be employed to teach

and learn real time. The result, as outputted from our

package for a = 2, b = 4 and R = 10, is shown below.

Power Law Relation Computed

PLR=a*(R^b)

PLR= 2*(10^4)

PLR= 2(10000.00)

PLR= 20000.00

The PLR working always gives the formula and the

substituted values which makes it very useful for teaching-

learning real time. By this effort, flexibility is freely given

to user to call any of the new methods to compute PLR

promptly and view both inputs and result together in a

DGV control.

3.1 Data, Data Entry and Output

Flexibility
Data from seventeen Meteorological stations in Nigeria,

which span a period of thirty years (1980-2010), are used

for this work. The sites’ characteristics are shown in Table

2. Input data could be randomly and interactively supplied,

besides being uploaded from Excel file. One thing that is

clear is that user is not restricted to only one way of data

entry. Flexibility of data entry gives comfort to the users of

our package.

Data are read, validated and used to compute result(s).

Table 2: Site Characteristics

S/N Station

Name

Latitude oN Longitude oE State GeoPolitical Zones

1 Akure 07 15 05 11 Ondo South-West

2 Bauchi 10 30 10 00 Bauchi North-East

3 Calabar 04 58 08 21 Cross-River South-South

4 Enugu 06 28 07 33 Enugu South-East

5 Ilorin 08 26 04 29 Kwara North-West

6 Jos 09 56 08 05 Jos North-Central

7 Kaduna 10 31 07 26 Kaduna North-Central

8 Kano 12 00 08 31 Kano North-West

9 Lagos 06 27 03 23 Lagos South-West

10 Lokoja 07 47 06 44 Kogi North-West

11 Maiduguri 11 51 13 05 Borno North-Central

12 Minna 09 37 06 32 Niger North-Central

13 Onitsha 06 10 06 47 Anambra South-East

14 Owerri 05 29 07 02 Imo South-East

15 Sokoto 13 05 05 15 Sokoto North-West

16 Warri 05 31 05 45 Delta South-South

17 Yola 09 13 12 27 Adamawa North-East

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.9, December 2011

50

The output(s) could be stored in the same DGV control

containing the input(s) or in another reference DGV

control. Whichever one, additional column(s) is inserted

dynamically in the DGV control for result storage by

calling dvAddAnyColumn method. Table 4 conserves

space especially for large inputs requiring equally large

outputs. This Year-RateMonth data style is the

Meteorology data style, which is quite space efficient.

3.2 Applications
The applications of PLR will be seen in Chebil model and

Mathematics in this section.

3.2.1 Chebil Model
Chebil (1999) model for converting long-time mean annual

rainfall rate data R to rainfall rate exceeded 0.01% of time

(R0.01) is expressed in PLR as follow:

R0.01 =12.2903R0.2973

R0.01 is a mandatory input for ITUR rainfall attenuation

prediction model and its availability from Meteorological

long-time-mean annual rate will aid speedy calculation of

attenuation due to rainfall. Results were calculated for all

the seventeen stations shown in Table1 and for the entire

thirty years using our new PLR method and they are found

to be correct as Tables 2-5 depict.

Tables 2-3 are the March 1991-2000 results for Calabar and

Enugu sites; and up to one hundred thousand R data could

be processed for corresponding R 0.01 to be calculated. Table

4 is R0.01 Maiduguri site result. At this site, for most parts

of January, February, March and November, there is no

rainfall; and throughout December no rain, hence these

months are omitted from the Table. If rate is not numeric,

NR for No Result is returned, but for R=0 there is no

calculation but R=0 is inserted in the DGV control to

indicate what is wrong. Table 5 shows the result for mixed

a and b, and R for Calabar site.

Table 2: R0.01 result for Calabar site using Chebil Model

a R b R0.01

12.2903 88.3 0.2973 46.56897

12.2903 271.5 0.2973 65.03127

12.2903 177.7 0.2973 57.33167

12.2903 167.3 0.2973 56.31289

12.2903 366.1 0.2973 71.07562

12.2903 161.5 0.2973 55.72527

12.2903 139.4 0.2973 53.33985

12.2903 174.0 0.2973 56.97414

12.2903 203.0 0.2973 59.64596

12.2903 95.9 0.2973 47.72623

Table 3: R0.01 result for Enugu site using Chebil Model

a R b R0.01

12.2903 63.4 0.2973 42.20109

12.2903 111.5 0.2973 49.91342

12.2903 62.8 0.2973 42.08195

12.2903 9.7 0.2973 24.1507

12.2903 90.2 0.2973 46.86465

12.2903 48.6 0.2973 38.99415

12.2903 111.6 0.2973 49.92672

12.2903 25.8 0.2973 32.30257

12.2903 30 0.2973 33.78397

12.2903 32.3 0.2973 34.53412

Table 4: R0.01 result for Maiduguri site using Chebil Model

Year Apr May Jun Jul Aug Sep Oct

1991 2.37E+01 4.49E+01 4.84E+01 4.69E+01 5.99E+01 8.59E+00 1.63E+01

1992 1.06E+01 4.05E+01 3.69E+01 5.02E+01 6.68E+01 4.19E+01 2.73E+01

1993 2.03E+01 4.20E+01 2.99E+01 5.97E+01 5.45E+01 3.92E+01 R=0

1994 1.75E+01 2.51E+01 3.94E+01 4.73E+01 5.64E+01 4.90E+01 3.11E+01

1995 2.58E+01 1.93E+01 3.81E+01 6.53E+01 5.75E+01 5.61E+01 2.20E+01

1996 1.98E+01 3.49E+01 4.11E+01 5.90E+01 5.72E+01 5.31E+01 3.17E+01

1997 2.98E+01 3.64E+01 5.37E+01 5.31E+01 5.22E+01 4.16E+01 3.02E+01

1998 1.39E+01 3.19E+01 4.15E+01 5.75E+01 6.48E+01 5.47E+01 1.30E+01

1999 R=0 3.17E+01 3.23E+01 6.97E+01 5.82E+01 6.20E+01 3.43E+01

2000 R=0 2.63E+01 3.51E+01 5.95E+01 6.33E+01 4.19E+01 3.46E+01

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.9, December 2011

51

Table 5: R0.01 result for mixed a and b; R from Calabar sites

a R b PLR Source

12.2903 479.0 0.2973 76.98857 Chebil

 4.1000 387.7 -0.2100 1.172735 MP

10.0000 281.0 3.0000 221880400 Arbitrary

 8.0000 294.2 2.0000 692429.1 Arbitrary

11.0000 375.2 -0.1000 6.08088 Arbitrary

3.2.2 Mathematics

Random number could be used to calculate PLR. Table 6 shows accurate result of some arbitrary data.

Table 6: Power Law relation methods result

a R b PLR

12 6 15 5.64E+12

11 5 9 2.15E+07

3 9 8 1.29E+08

2 3 15 2.87E+07

9 5 19 1.72E+14

2 6 11 7.26E+08

2 7 4 4.80E+03

6 12 2 8.64E+02

9 12 8 3.87E+09

4. RESULTS AND DISCUSSION
The reference DGV control, which holds up to one hundred

thousand data (our package capacity) that could be

processed at a single location, was used in our new PLR

methods. This aids timely computation of result for PLR

especially for very large data unlike the previous method

which returns only a single result each time. In Tables 2

and 3, for a given site, a and b have to be repeated for all R

values, which is not efficient; but for different a and b

values, the method is very efficient as Table 5 for different

a and b shows. Let it be mentioned again that a, R and b are

expected to be in the DGV control in this order for correct

result.

Programmatically, R0.01 data could be made available for

use by applying our PLR methods. This eliminates the use

of rate maps to determine R0.01 for use where not available.

Figures 1-6 are typical plots of R0.01 for six of the sites. It

was observed that at the commencement of rain around

March in the south and April in the North and at the end of

the raining season in September-October, R0.01 values are

generally low. The highest values of R0.01 are obtained

between June and July when rain is at its peak.

The frequency of rainfall is also seen in the cluster pattern

of the graphs; more rain in the south, especially at coastal

sites like Lagos and Warri where there is rainfall

throughout the year. All the northern sites plot patterns are

not as densely packed as the southern sites owing to fewer

rainfalls. Jos site, as could be seen in figure 3, has more

rainfalls than Bauchi site.

The combined plots for Kaduna (Kad), Sokoto (Sok), Yola

(Yol) and Onitsha (Oni) sites for June-August are shown in

figure 7. The summary result in Table 7 indicates that R0.01

is generally low at the beginning of rain (January-March)

and high around June-September. Warri site has the highest

value at the beginning, whereas Calabar site is a little

higher than Warri at the end of the raining period.

Although there is no rainfall throughout the year in the

north, the intensity of rainfall is still high.

Table 7: Summary of R0.01 (mm/h) Result

S/n Site Range of R0.01

1 Akure 10.00 – 76.20

2 Bauchi 10.00 – 78.90

3 Calabar 6.20 – 89.90

4 Enugu 10.00 – 82.10

5 Ilorin 8.59 – 85.40

6 Jos 6.20 – 73.30

7 Kaduna 6.20 – 80.20

8 Kano 8.59 – 82.50

9 Lagos 8.59 – 85.40

10 Lokoja 8.59 – 74.40

11 Maiduguri 8.59 – 71.40

12 Minna 8.59 – 77.90

13 Ontisha 6.20 – 79.30

14 Owerri 6.20 – 84.30

15 Sokoto 9.36 – 71.60

16 Warri 16.30 – 89.50

17 Yola 11.10 - 70.40

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.9, December 2011

52

4.1 Exceptions
Exceptions are errors that are expected to be trapped in an

application in order to prevent its crash. According to Dave

(2002), an exception is any occurrence that is not

considered part of normal, expected program flow.

Consequently, a minute exception will prohibit a program

from continuing its current normal activity. Exceptions are

harmful to all programs as their presence could cause

program to malfunction and/or crash the application. Just as

harm is not far from a person who eats fish bones in the

dark, so is a programmer who develops a package without

error check(s) at all levels where error(s) is likely to occur.

What a foreign object is to a human body is what an

exception is to a program. Unless it is removed, the

program is sick and will decline to function. There is

availability of exception classes that provide functionalities

for exception types. Message, one of the properties in the

exception class, was often summoned to describe what is

wrong and offer possible solution, if error(s) is unknown

ahead of time. However, where certain errors are known

ahead of time, we provided our own informed description

of the error and solution to it.

Another property we repeatedly employed is ToString that

returns a text representation of any exception caught.

Besides, we utilized ArithmeticException property to trap

DivideByZeroException, NotFinitNumberException and

OverflowException. It is enough to say that enough error

checks are inserted in all our functions, sub-procedures and

methods; for more on Exception see [3-6]

Figure 1: R0.01 Plot for Akure Site Figure 2: R0.01 Plot for Bauchi Site

Figure 3: R0.01 Plot for Jos Site Figure 4: R0.01 Plot for Minna Site

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.9, December 2011

53

Figure 5: R0.01 Plot for Lagos Site Figure 6: R0.01 Plot for Warri Site

Figure 7: R0.01 Plot for Combined Kaduna (Kad), Sokoto (Sok), Yola(Yol) and Onisha(Oni) Sites for Jun-Aug

5. CONCLUSION
Swift Software development expectations could be met

with flexible and accurate servers. Our validation server

works to expectation; and by further customizing Microsoft

DGV control, developers are empowered to quickly

develop applications. The PLR class library could be called

with diverse data formats to output accurate PLR results. Its

application to Chebil model yields R0.01 data which are

much-needed in rainfall attenuation prediction models for

thirty years and for seventeen sites in Nigeria. Microsoft

DGV should further be customized for more use, both

scientifically and socially.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.9, December 2011

54

6. REFERENCES
[1] Adenugba, D.A.2007. An Atmospheric Server for some

Atmospheric Parameters: Development and

Applications. J. Res. Sci. Mgt. 5(1); 91-104.

[2] Chebil, J and Rahman, T.A.1999. Development of

1min Rain Rate Contour Maps for Microwave

Applications in Malaysia Peninsula. Electronics Letts.

(35) 1712 – 1774.

[3] Craig Utley 2001. A Programmer’s Guide to Visual

Basic. NET. Sams Publishing.

[4] Dave Grundgeiger 2002. Programming Visual

Basic.NET. O’ Reilly and Associate, Inc.

[5] Evangelos Petroutsos 2002. Mastering Visual

Basic.NET. Sybex, Inc.

[6] Thearon and Bryan. 2010. Beginning Microsoft Visual

Basic 2010. Wiley Publishing Inc.

[7] Tim Patrick (2008), Programming Visual Basic 2008.

O’ Reilly and Associate, Inc.

