
International Journal of Computer Applications (0975 – 8887)

Volume 36– No.8, December 2011

44

Optimal Call based Checkpointing for Orchestrated

Web Services

A.Vani Vathsala
Department of Computer Science

CVR college of Engineering and University of Hyderabad

ABSTRACT

Web Services are built on service-oriented architecture which

is based on the notion of building applications by discovering

and orchestrating services available on the web. Complex

business processes can be realized by discovering and

orchestrating already available services on the web. In order

to make these orchestrated web services resilient to faults, we

proposed a simple and elegant checkpointing policy called

"Call based Global Checkpointing of Orchestrated web

services" which specifies that when a web service calls

another web service the calling web service has to save its

state. But performance of the web services implementing this

policy reduces due to checkpointing overhead. In an effort to

improvise this policy, we propose in this paper, a

checkpointing policy which uses Predicted Execution Time

and Mean Time Between Failures of the called web services

to make checkpointing decisions. This policy aims at reducing

the required number of Call based Checkpoints but at the

same time maintains the resilience of web services to faults.

General Terms

Web Services

Keywords

Checkpoints, Web Services, Mean Time Between Failures,

Orchestration.

1. INTRODUCTION
A service in execution may take service of another service and

this may result in nested call of services. This is known as

Orchestration of services. In case of such service execution

pattern, if a service fails to complete (for any possible reason)

then all the services dependent on the failed service are to be

re-executed causing a voluminous rework.

Traditionally such a situation is handled (for avoiding re-

work) by checkpointing. In our earlier work, [5], we have

proposed “Call Based Checkpointing Policy" that saves status

of caller services so that in case of failure of callee service, the

computation at the former can be resumed at this saved point.

However this method is time consuming due to the overhead

of maintaining caller status at every service call.

In this work, we propose a method that does not necessitate

checkpointing at every call thus reducing instances of

checkpointing. The rationality on decision making is based on

two factors i.e, Execution Time Prediction and Mean Time

Between Failures. A caller service predicts the execution time

of the callee S1, say PET(S1). This is a possible estimate from
the execution history of callee services. Let the Mean Time

Between Failures of the callee be MTBF(S1). If PET(S1)<

MTBF(S1) then the caller most probably can avail the service

from the callee. Hence checkpointing the caller at the service

call is not required. This paper details on this concept and

advocates its utility for orchestrated services in making them

resilient to possible errors.

If S1 is a composite web service, a call to S1 might result in a

nested call; whether to take a checkpoint or not while calling

each of the services involved in the nested call, has to be

decided. This decision at each step has to be taken without

needing many computations (Execution Time predictions of

the services involved in the nested call). Hence we have

proposed to use the already available computations, i.e, PET

of S1, and composition operators used to compose involved

web services, to take the decisions. We have proved the fact

that PET of the composite service S1 and knowledge of

composition operators alone are sufficient to take these

decisions.

In section 2 we present our analysis of work done in this area.

In section 3 we present our basic Call based Checkpointing

policy and in section 4 we give a detailed description of our

Execution Prediction based checkpointing policy. In

subsection 4.1 of this section we give briefly the method for

calculating MTBF for web services. In subsection 4.2 we

describe the method of using Euclidean distances to predict

Execution time of web services. In subsection 4.3 we describe

how to minimize the number of checkpoints to be taken. We

also discuss the role of composition opera-tors and PET of a

composite service in making Call based Checkpointing

decisions with necessary proofs. Towards the end of this

section we have demonstrated the generation of Global

checkpoints of an orchestrated web service using the new

Execution Prediction Based Checkpointing policy. We

conclude by giving a sketch of our future work.

2. RELATED WORK

Few papers [6,7,8] have been published discussing the need

and techniques for checkpointing web services. But all these

works require the user to specify the exact checkpointing

locations. In contrast we proposed a simple and elegant

checkpointing policy[5] for orchestrated web services which

specifies that whenever a web service calls another web

service, the state of calling web service must be saved. But

checkpointing web services at all pre specified locations (at

all service calls) may lead to overzealous checkpointing that

results in degradation of the performance altogether. Hence to

improve the performance of composed web services with call

based checkpoints, we propose Execution Prediction based

Checkpointing scheme.

The research works presented in [2,3,4] propose methods for

predicting runtime of web services. These works advocate the

use of predicted execution time for selection of web services

to construct composite web service workflows. To the best of

our knowledge there is no work which concentrates on using

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.8, December 2011

45

Predicted Execution Time and MTBF for checkpointing of

web services.

Zoltan Balogh et:al presented a knowledge based approach[2]

for predicting runtime of stateful web services. To predict the

execution time of a web service instance, it maintains a

knowledge base of possible different past cases for different

combinations of input parameters. Given a web service

instance, Euclidean distances are used to find out most similar

past cases. The runtime for the given web service instance is

predicted to be the average output value of the most similar

past cases. Estimation of web services runtime is done

keeping in view construction of composite web service

workflows.

Zhengdong Gao uses Back Propagation Neural Networks to

predict the runtime of a given web service[4]. He uses

Availability, Network Bandwidth, Response Time, Reliability

of the given web service as inputs to the Neural Network

which produces predicted execution duration as output. The

core of his work is the design and implementation of BP

Neural Network which is used to predict performance of

services.

In order to predict timing failures, Laranjeiro [3] proposes to

use a graph based approach. He analyzes the service code and

builds a graph to represent its logical structure. He then

gathers time-related performance metrics during runtime. This

data is used to predict if a given execution will or will not

conclude in due time.

The research presented in [1] intends to provide the concept of

MTTF(Mean Time To Failure) of composite web service. It

describes the calculation method of MTTF of composite web

services based on the workflow composition pattern. The

authors use the concept of MTTF of web services to find out

reliability of a given composite web service.

3. CALL BASED CHECKPOINTING

POLICY

Calling a web service includes the following steps:

At Service requestor side:
1) Initiation of the call.

2) Encoding data to be transmitted as a SOAP message

3)Transmitting the SOAP message

At Service provider side:
1) Receiving the SOAP message

2) Decoding the SOAP message

3) Parsing the decoded XML data to locate the actual method

name and the parameters.

Thus we can see that calling a web service includes several

steps and incurs considerable cost and time at run time. When

the calls are nested and if there is any kind of failure the entire

sequence of calls has to be re-invoked causing considerable

delay in response which results in degradation of quality of

the service provided.

Motivating example

A customer requests a web service for his loan processing.

This loan processing web service receives the request from

the customer which consists of information like his name and

requested credit amount. This loan processing web service, S0,

invokes two more web services: Loan approver web

service(S1) and accessor web service(S2). If the amount

requested is less than 10,000 S0 calls the loan accessor web

service S2. This web service, based on some customer records,

decides and reports back whether there is high risk in

approving loan to the customer. If S2 reports low risk, S0 itself

approves the loan. If the amount requested is greater than

10,000 or if S2 reports high risk, the loan approver web

service,S1, is invoked by S0 to enquire about the customer and

report whether to approve the loan to the customer or not. If

the amount requested is greater than 1,00,000 S1 outsources

the job to another web service S3. S1 calls another loan

approver web service S4 to take second opinion and sends

back the reply to S0. Finally loan processing web service S0

sends back its reply to the customer. Fig 1 depicts an

execution instance of this loan processing web service. ■

In Fig 1, if S4 fails at time t1, then all the invocations have to

be repeated, if the application does not use any checkpointing

policy.

Fig 1: An Execution Instance

Our checkpointing policy aims at avoiding expensive rein-

vocations of web services and hence we propose that Check-

points must be taken when web services interact with each

other. Web services interact with each other by invoking any

of the operations specified in corresponding WSDL files. A

WSDL file defines four types of operations:

One-way: A web service receives a message but does not

return a response.

Request-response: A web service receives a request and

returns a response.

Solicit-response: A web service sends a request and waits for

a response.

Notification: A web service sends a message but does not

wait for a response.

We propose a call based checkpointing policy which is

presented in Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.8, December 2011

46

Table 1: Checkpointing Policy

Type of

Operation Checkpointing Policy

Request-Response Save the state of the service requestor after

sending the request. Log the message at

service provider side upon receiving the

request. Similarly save the state of the

service provider after sending the response

and log the response message after it is

received by the service requestor

/ Solicit-Response

One Way /
Notification

Save the state of the sender after sending
the message and log the message at
receiver side after receiving it.

When a synchronous communication is initiated between a

service requestor and a service provider, the type of operation

becomes ’Solicit-response’ at the service requestor side and it

becomes ’Request-response’ at the service provider side.

Therefore, the checkpointing policy is same for these two

operations. Fig 2 demonstrates our checkpointing policy for

synchronous interactions. When S0 invokes S2 and is waiting

for its reply, S0 blocks itself and cannot do any useful work.

Hence saving the state of service requestor upon receiving the

reply from service provider is not required and it is sufficient

to log the reply message for later replay.

Fig 2: Checkpointing policy for Synchronous interactions

When an asynchronous message is sent by a sender to a

receiver, the type of operation becomes ’Notification’ at the

sender side and it becomes ’One Way’ operation at the

receiver side. Hence we see that the checkpointing policy is

same for these two operations also.

3.1 Call-based global checkpoints
A state of a web service in execution is characterized by the

state of its local memory and a history of its activity. If such a

state of the web service is saved on a stable storage, then the

saved state is called as a local checkpoint for the web service.

A local checkpoint that is taken most recently is called as the

latest local checkpoint for the web service.

An orchestrated web service S0, is a composition of one or

more constituent web services. It has pieces of code that it

executes on itself and also calls other web services based on

some conditions. If the orchestrated web service is not having

any active calls (time t2 in Fig 1), and is executing its own

piece of code, then its latest local checkpoint gives the latest

global checkpoint of the composed application.

When S0, calls another web service, there may be nested chain

of service calls because of which more than one web service

can be active(not completed their execution) at a given point

of time.(at time t1 in Fig 1 web services S0,S1 and S3 are

active). Hence the state of the orchestrated web service is

collectively represented by the states of all active web

services when a service call is in place. Thus, Call-based

Global checkpoint for an orchestrated web service which has

a service call in process, is defined as the set of the latest local

checkpoints of each of the web services that are active during

the call.

Let C0 represent the local checkpoints generated by S0. Let C1

represent local checkpoints generated by the service S1, C2

represent local checkpoints generated by the service S2 and so

on.

S0 might make several web service calls, while in execution.

Let C0
i represent the checkpoint generated by S0 for ith service

call that it has placed. Let S0 invoke S1 in its ith service call.

Then C1
ij represents the jth local checkpoint taken by S1 when

it is serving ith call of S0.

To provide the service, if S1 makes use of services provided

by other web services we have three superscripts in

checkpoint numbering. In general, checkpoint Cm
ijk indicates:

S0 invokes S1 as part of its ith service call, S1 invokes Sm, as

part of its jth service call, and this is the kth local checkpoint

taken by web service Sm.

By applying the Call-based checkpointing policy to the

execution instance depicted in Fig 1, we can see that number

of local checkpoints generated as part of Call based Global

checkpoint is ’9’ as shown in Table 2.

Thus we see from Table 2 that when the service reply is

received back by S0, the Call-based Global checkpoint

reduces to the latest local checkpoint of S0.

Upon failure the application has to be rolled back to latest

global checkpoint and all the messages received after the

latest global checkpoint have to be replayed from the message

logs. Execution of the composed application can thus continue

from latest global checkpoint without re-invocation of already

finished constituent web services

Table 2: Local Checkpoints generated as part of Call -

based Global Checkpoints (CBGC)

Status of

execution

CBGC

invoke S2 {C0
1} /* first CBGC */

End S2 {C0
1 C2

11 } /*End of first CBGC */

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.8, December 2011

47

invoke S1 {C0
2} /* second CBGC */

invoke S3 {C0
2, C1

21 }

End S3 {C0
2, C1

21 , C3
211}

invoke S4 {C0
2, C1

22 }

End S4 {C0
2, C1

22 , C4
221}

End S1 {C0
2, C1

23} /*End of second CBGC */

End S0 {C0
3} /* third CBGC */

Total No of Local checkpoints generated = 9

4. EXECUTION PREDICTION BASED

CHECKPOINTING OF WEB SERVICES
In order to improve the performance of composed web

services with call based checkpoints, we propose Execution

Prediction based Checkpointing scheme. For each service call,

this scheme decides, considering the PET and MTBF of the

called web service, whether a checkpoint has to be taken on

making a call to the service. Hence to implement this scheme,

a caller should know the MTBF and PET of the callee.

MTBF of a service is an average measure of the time

duration for which the service can run without failure. MTBF

of a service has to be made public by the service itself by

placing the MTBF in its WSDL. This MTBF can then be used

by the service requestors to implement the checkpointing

policy. When S0 calls another web service S1, PET of S1 is

calculated by S0 using Euclidean distances method as

explained in subsection ’4.2’ below.

Checkpointing Rule:

If PET (S1) < MTBF (S1), then S1 will execute within its

MTBF and eventually send back the reply to S0. In such a

case S0 need not take a checkpoint while calling S1 with

anticipation that S1 might fail.

Else if PET (S1) ≥ MTBF (S1) then S1 might fail before

sending a reply back to S0 and hence S0 must take a

checkpoint before calling S1.

4.1 Calculation of MTBF
Let ⋋ represent the Failure rate of a web service S and let ϴ

represent the MTBF. Then Θ= 1/ ⋋.

MTBF of a web service can be obtained by taking inverse of

its Failure rate. Failure rate of a web service can be obtained

by measuring its number of failures per unit time. (Ex: Failure

rate = 5 failures in one hour. MTBF = 1/Failure rate = one

hour/5 = 12 minutes).

MTBF of composite services: If a web service is a

composition of other web services, then their MTBFs will

affect the MTBF of the composite service. Let Θi represent

the MTBF of a constituent web service Si where 1≤ i ≤ n and

n is the maximum number of web services involved in the

composition.

A web service may be composed of a set of web services

using the three primitive operations sequence, parallel and

choice as depicted in Table 3. Fig 3 shows different cases of

MTBF calculation. Other composition operations can be

derived from these three primitive operations.

Table 3: MTBF Calculation

Composition

Operation MTBF Calculation

Sequence: S = S1; S2 ⋋= ⋋ 1 + ⋋ 2; Θ = 1/⋋

Parallel: S = S1│S2 ⋋= ⋋ 1 + ⋋ 2; Θ = 1/⋋

Choice: S = (S1 + S2) ⋋= ⋋1* P1 + ⋋ 2* P2; Θ = 1/⋋ .

S1 is selected with probability P1 and
S2

 is selected with probability P2

4.2 Execution Time Prediction
Execution time Prediction can be done by comparing the

current execution instance with similar previous cases. Input

parameter values can be compared to find out the similarity

between any two execution instances. Let I = {i1,i2,…im}

represent an execution instance of a web service with m input

parameters.

Euclidean distance can be used to find out the similarity. The

similarity between any two cases I1, I2 is computed using the

following formula for finding Euclidean Distance(ED).

ED (I1, I2) = SQRT (Σ
m

k=1(i1k-i2k)
2)

The case/instance which has the smallest Euclidean distance

to the current execution instance is considered to be the most

similar case.

Table 4 depicts history of execution instances of our loan

processing web service, where m=2, I= {i1,i2}=

{LoanAmount, Risk}. These values are synthesized values and

are based on the number of web services that will be invoked

for the corresponding execution instance. Let the input

parameter values for current execution instance of S0 be Loan

Amount=1,27,000 and Risk = IR.

Table 4: Execution instances of Loan Processing Example

Input Parameters Parameter used
 for Prediction

Loan Amount Risk Execution time
9000 Low 2 tu

8000 High 6 tu

25,000 IR 4 tu

1,25,000 IR 7 tu

7000 Low 2 tu

IR=Irrelevant I=Invoked tu=time units

While calculating Euclidean distances, input parameters

having non-numerical values pose a problem. In such a case,

map Non-numerical values to numerical values. For example,

Input parameter ’Risk’ in the example has fixed non-numeric

values ’Irrelevant’, ’Low’, High’. They can be mapped to

corresponding numeric values 1,2,3.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.8, December 2011

48

Similarly input parameters that have range values, like

’LoanAmount’ in our example, where the range in which they

fall is more important than the actual value, we have to map

each range to a numerical value.

Calculation of Euclidean distances for this example reveals

that there is one case similar to current execution instance.

Take the average of execution times of similar cases to predict

the execution time of the current execution instance, which is

7 time units.

4.3 Minimizing the number of Checkpoints
Goal of Execution prediction based Checkpointing policy

is to minimize the number of local checkpoints that are

generated as part of the Call-based Global checkpoint.

When a web service S0 calls another web service S1 and if

PET (S1) < MTBF (S1) then it indicates that the called web

service completes its execution within its MTBF. Hence the

calling web service will get its reply and there is no need to

take a checkpoint in the calling web service. If the called

service is a composite service and results in nested calls,

decision has to be taken whether the checkpoints have be

taken throughout the path of the nested call or not.

For example, if a composite service S1 calls two constituent

services S2 and S3, then it must be decided whether S1 must

take checkpoints while calling S2 and S3. According to the

policy, when S1 calls S2, S1 must calculate PET (S2) and

obtain MTBF of S2 from WSDL file of S2. If PET(S2)<

MTBF(S2) then there is no need to checkpoint S1 while calling

S2. But in order to take this decision, S1 must calculate the

PET (S2).Similar is the case of calling S3. These calculations

can be avoided if the decision can be taken by using PET (S1)

and MTBF (S1) alone.

We have that PET (S1) < MTBF (S1).
If it can be proved that PET (S2) < PET (S1) and MTBF (S1)<

MTBF (S2) then it can be deduced that:

PET(S2) < PET(S1) <MTBF (S1) < MTBF(S2)……..(1)

Hence PET (S2) < MTBF (S2)

Whether PET (S2) is less than MTBF (S2) or not can thus

be found without calculating PET (S2).

Proof:

PET of a composite service = It’s Local Computation time +

Time taken to place Service calls + PET of constituent

services.

PET (S1) = Local Computation time of (S1) + Time taken to

call S2 and S3 + PET (S2) + PET (S3)

Therefore PET (S1) > PET (S2) and PET (S1) > PET (S3).

OR PET (S2) < PET (S1) and PET (S3) < PET (S1).

Hence first half of equation (1) is proved. We have to consider

MTBF calculations to prove second half.

MTBF for a composite service is calculated taking into

account MTBF of its constituent services also, as shown in

Table 3. Fig 3 explains MTBF calculation.

Fig 3: MTBF Calculation

Hence it cannot be generalized that ϴ1 is lesser than ϴ2 and

ϴ3. i.e, it cannot be generalized that MTBF (S1) <MTBF (S2)

OR MTBF (S1) < MTBF (S3). Hence If PET (S1) < MTBF

(S1) and if the called web service S1 is a composite service

resulting in a nested call, then equation (1) holds good if

composition operation is either ’sequence’ or ’parallel

composition’ but does not hold good in case of ’choice’

operation. ■

Hence using above observation, Execution time prediction

based checkpointing policy can be stated as: When a web

service S0 calls another web service S1 then, S0 must:

i) Obtain the MTBF (S1) being called from its WSDL. If S1 is

a composite service, then the composite service should

calculate its MTBF using the formulae briefed in previous

section and make it’s MTBF available in its WSDL.

ii) Use Euclidean distances to find out similar cases and take

their average execution time as Predicted Execution Time,

PET (S1).

iii) If PET (S1) ≥ MTBF (S1) then

S0 has to take a checkpoint while calling S1.

else if PET (S1) < MTBF (S1) then

a) If S1 is not a composite service then S0 need not take a

checkpoint while calling S1.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.8, December 2011

49

Fig 4: Execution prediction based Checkpointing Policy

for basic composition operations

b) If S1 is a composite service : policy is explained using the

Fig 4 below for basic cases of composition and using Fig 5 for

combination of composition operations

For any combination of sequence and parallel composition

operations, equation (1) holds good because in any case, ⋋1 is

the sum of ⋋s of constituent services. The same is explained

using Fig 5. But in case of choice composition operation,

equation (1) does not hold good. Hence any sub composition

involving ’choice’ operation leaves us with no choice other

than taking checkpoints for that sub composition.

But when Execution prediction based checkpointing policy is

used, the number of checkpoints generated as part of Call

based Global checkpoint reduces to 3 as shown in Table 5.

Fig 5: Execution prediction based Checkpointing Policy

for basic composition operations

This is because when S0 calls S1, S1 calls S3 and S4 in

sequence resulting in a nested call. Before S0 calls S1, S0

calculates that PET (S1) = 4tu and MTBF (S1) = 5tu. Hence it

is found that PET (S1) < MTBF (S1) and S0 need not take a

checkpoint before calling S1. S1 calls S3 and S4 in sequence

and since composition operation is ’sequence’, we can see that

equation (1) holds good and there is no need to calculate PET

(S3) and PET (S4). Hence it can be deduced that PET (S3) <

MTBF (S3) and PET (S4) < MTBF (S4) and S1 need not take

checkpoints while calling them. Also S3 and S4 need not take

checkpoints after sending reply back to S1 since their

predicted execution time is less than their MTBF and they will

not fail.

Thus we can see that total number of Local checkpoints

generated is greatly reduced by implementing Execution time

Prediction based Checkpointing.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.8, December 2011

50

Table 5: Demonstration of Execution Prediction

based Checkpointing

Current

node

visited

PET and MTBF

Calculation by the caller Action Taken

invoke S2 PET (S2) 2tu and {C0
1} generated

 MTBF (S2) = 1tu. by S0 /* first

 PET (S2) > MTBF (S2) CBGC */

End S2 {C0
1,C2

11}/*

 End of first
 CBGC */

invoke S1 PET (S1) = 4tu and {C0
2} not

 MTBF (S1) = 5tu. generated by S0
 PET (S1) < MTBF (S1)

invoke S3 PET (S3) < MTBF (S3) C1
21 not

 can be deduced from generated by S1
 PET (S1) < MTBF (S1)

End S3 PET (S3) < MTBF (S3) C3
211 not

 can be deduced from generated by S3
 PET (S1) < MTBF (S1)

invoke S4 PET (S4) < MTBF (S4) C1
22 not

 can be deduced from generated by S1
 PET (S1) < MTBF (S1)

End S4 PET (S4) < MTBF (S4) C4
221 not

 can be deduced from
generated
 by S4

 PET (S1) < MTBF (S1)

End S1 PET (S1) < MTBF (S1) {C1
23} not

 generated by S1

End S0 {C0
3} /* third

 CBGC */

Total No of Local checkpoints generated = 3

5. CONCLUSION AND FUTURE WORK
In this paper we have proposed to use PET and MTBF of web

services to decide whether checkpoints have to be taken at

service calling locations. We have used Euclidean distances

method to find out similar cases for the given web service

execution instance and use them to estimate the execution

time of the instance. If this estimated execution time of the

called web service is less than its MTBF then there is no need

to checkpoint its calling web service.

Recovery of applications based on checkpointing policies has

been well studied in database and distributed computing

fields. Due to lack of space we are not describing the

implementation of recovery policy for web services. We

intend to cover it in our future work.

When web services are orchestrated each service call results

in creation of a new service instance and when the called

service sends a reply back that service instance is destroyed.

But if web services are choreographed service calls may be

directed to already existing service instances. Also, when the

called service sends a message to the caller, it might be in the

middle of an operation, expecting some communication from

the caller. Our previous checkpointing policy does not suffice

to such a scenario. Hence we propose to develop a new

checkpointing policy for Choreographed services as part of

our ongoing research work.

6. ACKNOWLEDGEMENTS
I would like to express my gratitude to Prof. Hrushikesha

Mohanty, Dept of Computer Science, University of

Hyderabad, for his valuable suggestions that greatly helped

me in writing this paper. I wish to extend my sincere thanks to

him for sparing his precious time and encouraging me through

out. I would like to wholeheartedly thank the management of

CVR College of Engineering for providing me facilities to

pursue my Ph.D. at University of Hyderabad.

7. REFERENCES
[1] Tao Hu, Minyi Guo, Song Guo, Hirokazu Ozaki, Long

Zheng, Kaori Ota, Mianxiong Dong.MTTF of Composite

Web Services.International Symposium on Parallel and

Distributed Processing with Applications, 978-0-7695-

4190-7/10

[2] Zoltan Balogh, Emil Gatial, Michal Laclavik,Martin

Maliska, and Ladislav Hluchy. Knowledge-Based

Runtime Prediction of Stateful Web Services for Optimal

Workflow Construction. LNCS 3911, pp. 599U607,

2006. Springer-Verlag Berlin Heidelberg 2006

[3] Nuno Laranjeiro, Marco Vieira, and Henrique

Madeira.Predicting Tim-ing Failures in Web

Services.ISBN: 978-3-642-04204-1. Springer-Verlag

Berlin, Heidelberg l’2009

[4] Zhengdong Gao, Gengfeng Wu.Combining QoS-based

Service Selection with Performance Prediction.

Proceedings of the 2005 IEEE International Conference

on e-Business Engineering (ICEBEŠ05) 0-7695-2430-

3/05 l’ 2005 IEEE

[5] A.Vani Vathsala.Global Checkpointing of Orchestrated

Web Services. Submitted to RAIT 2012, ISM Dhanbad.

Paper Accepted for publication in IEEE Xplore.

[6] [6] Soumaya Marzouk, Afef Jmal MaLalej, and

Mohamed Jmaiel. Aspect-Oriented Checkpointing

Approach of Composed Web Services. F. Daniel and

F.M. Facca (Eds.): ICWE 2010 Workshops, LNCS 6385,

pp.301U312, 2010. Springer-Verlag Berlin Heidelberg

2010.

[7] Susan D. Urban, Le Gao, Rajiv Shrestha, and Andrew

Courter. Achieving Recovery in Service Composition

with Assurance Points and Integration ˝ Rules: OTM

2010, Part I, LNCS 6426, pp. 428U437, 2010. l’

Springer-Verlag Berlin Heidelberg 2010

[8] Sagnika Sen, Haluk Demirkan and Michael

Goul.Towards a Verifiable Checkpointing Scheme for

Agent-based Interorganizational Workflow System

Docking Station Standards.

[9] Jens Happe.Predicting Mean Service Execution Times of

Software Com-ponents Based on Markov Models. p 53-

70, Proceedings of Lecture Notes in Computer Science

3712 Springer 2005, ISBN 3-540-29033-8

