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ABSTRACT 

In modeling physical systems, the order of the system gives an 

idea of the measure of accuracy of the modeling of the system. 

The higher the order, the more accurate the model can be in 

describing the physical system. But in several cases, the 

amount of information contained in a complex model may 

obfuscate simple, insightful behaviors, which can be better 

captured and explored by a model with a much lesser order. In 

this paper, stability preserving method is proposed for the 

Multiple Input Multiple Output linear time invariant system to 

obtain the stable reduced order system. The genetic algorithm 

is used at the tail end of the proposed scenarios to get error 

minimized reduced model.   
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1. INTRODUCTION 
In the analysis of many systems for which the physical laws are 

well known, one is frequently confronted with problems arising 

from the high dimensions of descriptive state model, the 

famous curse of dimensionality. The reduction of such high 

order systems (also termed as large scale systems) into low 

order models is one of the important problems in control and 

system theory system and is considered important in analysis, 

synthesis and simulation of practical systems. The exact 

analysis of high order systems is both tedious and costly. 

The concept of retaining the dominant dynamical 

characteristics of the original system in the reduced model is 

intuitive and has two appealing advantages: the reduced-order 

model retains the basic physical features (such as time 

constants) of the original system; and the stability of the 

simplified model is guaranteed. These characteristics confer 

upon the reduced-order models a greater physical meaning. The 

mode retention methods produce the reduced model such that it 

matches a certain number of coefficients computed from the 

original system. T.N.Lucas [4] proposed a method which is an 

alternative approach for linear system reduction by Pade 

approximation [5-6] to allow retention of dominant modes. It 

avoids calculation of system time moments and the solution of 

Pade equations by simply dividing out the unwanted pole 

factors. This method adjusts the numerator polynomial 

coefficients based on the original systems pole values. The 

Routh approximation, stability equation method are used to 

guarantee the stability of reduced model. Research works 

proposed by Shamash [7], Chen et al [8-9], Pal et al [10] and 

Gupta et al [11] proves the quality of the reduction process. 

Most of the model order reduction techniques are concerned 

with preserving stability and matching initial time moments 

between the full and reduced systems. The stability of the 

system is preserved by obtaining the reduced order 

denominator polynomial based on selecting stable poles or 

using the properties of Routh table. To preserve the steady state 

characteristics it is usual either to solve the pade equations or 

invert a continued fraction, which yields the reduced 

numerator. Instead of using single method to derive the reduced 

model, now-a-days researchers prepare some mixed methods of 

model simplification for continuous time systems.  

In S.K.Bhagat et al [12] method stability preserving methods 

namely, (γ-δ) canonical expansion [13], Gutman’s 

differentiation method [14] and stability equation method [15] 

have been used to obtain the denominator of original system 

and the Lucas factor division method[4] is used to yield the 

numerator. The mihailov criterion has been combined with 

pade and factor division method to obtain the better 

approximation. In R.Prasad, Mihailov criterion is combined 

with the Cauer second form for reducing the order of the large 

scale SISO systems. 

 Recently evolutionary techniques such as Genetic algorithm, 

Particle Swarm Optimization are applied to obtain the better 

approximation. Few methods [16-23] uses the ISE as 

performance parameter which produces reduced order closer to 

given higher order system behavior. In these methods, 

denominator polynomial is obtaining by using any of the 

stability preserving criterions like stability equation method, 

mihailov stability criterion [1-3], routh approximation and etc. 

In this paper, a mixed method is proposed to obtain the reduced 

model for the given stable higher order model.  The proposed 

method retains the important characteristics of the original 

system in its reduced model. The parameters those related to 

the dynamic behavior of the system such as damping ratio and 

undamped natural frequency are adjusted with the help of 

genetic algorithm. In this proposed scenario, the genetic 

algorithm is used at the tail end of the approximation method to 

get the error minimized reduced model.  

2. PROBLEM STATEMENT 
Consider an nth order linear time invariant dynamic 

multivariable system with q inputs and p outputs described in 

time domain by state space equations given as 
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Where,  

 x is n dimensional state vector,  

 u is Input control vector, 

 y is output vector with,    
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A is n × n system matrix,  

B is n × 1 input matrix and  

C is 1 × n output matrix. 

Alternatively, corresponding transfer function representation of 

an nth order system is given by, 
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Irrespective of the statement in equation 1 and 2, the problem is 

to find the rth order reduced model, where r<n the following 

form represented in equation 3. Resultant approximation model 

will retain the important characteristics of given higher order 

system. With the common denominator D(s) of the given 

higher order system, its transfer function in matrix form is 

given by, 
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Where, i=1,2…p and j=1,2…q 
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The resultant order transfer coefficients are adjusted using 

genetic algorithm concept to achieve the good approximation. 

3. PROPOSED METHODOLOGY  
The proposed scenario consists of following steps to obtain the 

reduced order model. 

 

 Step-1: Obtain the denominator and numerator polynomial 

constant terms in the reduced model through pade 

approximation.  
 

Consider, the transfer function of higher order (nth) as 
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 sG  Can be expanded into a power series about 0s of the 

form, 
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with 10  nkdk
 

The bi are directly proportional to the time moments of the 

system, assuming the system is stable. 
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Then for  sR  to be pade approximant of  sG , we have 

equations, 
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From the equations (7) and (10), 
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From the equation (12), let 

           

(13)                                                    

 

Step-2: Determine the unknown coefficients of‘s’ remaining in 

reduced model 

The given higher order system transfer function is equated and 

cross multiplied with kth order general transfer function. 
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The co-efficients of same power of ‘s’ on both sides of the 

equation (15) equated with each other and is given by, 
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On solving the set of equations in (16) with the values of 

00 ,ed obtained in (13), the resultant reduced model is obtained 

as, 
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Sometimes the numerator part obtained in this step leads to an 

unstable reduced model. To overcome the same, the proposed 

method may be extended to the step-3 to obtain the stable 

reduced model. 

Step-3: Determine the reduced order numerator polynomial for 

stable condition  

Equating the given higher order transfer function in to the 

general reduced order model of rth order and where the 

denominator polynomial obtained in step 1 is used to obtain the 

reduced order numerator polynomial. 
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Consider, 
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Let the transfer function of the approximated system be, 
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The following relation should be satisfied as closely as 

possible, 
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From the equations (23) and (24), we can calculate the values 

of nmmm ,..., 21 and vlll ,..., 21  
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To satisfy the condition stated in (22), 
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for nx ,...3,2,1 and 10 m  and 
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for vy ,...3,2,1 and 10 l   

On solving the above equation, we can calculate the co-

efficient of numerator polynomial. 
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Step-4: Calculate the cumulative error index (J) for initial 

reduced model 

Consider, the transfer function of higher order (nth) as,  
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The general form of the transfer function of a second order 

system in the s-domain can be represented as, 

 
22

21

2 nn

ri
Ss

STT
sG

 




                (30)  

Where, ζ is the damping ratio and ωn is the undamped natural 

frequency of oscillation in rad/sec. The values of T1 and T2 

corresponding to Equation (30) can be computed as T1 = Tg 

and 2

2 ngST  . Where, the transient gain (Tg) and Steady state 

gain (Sg) are computed as, 
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By using proposed scenario-1, the reduced model obtained in 

step-2/step-3 is modified in to an initial form as,  
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The unit step time response of the initial second order 

approximant  sGri
 is analyzed with a computer program and 

its characteristics are noted. The cumulative error index J using 

the Integral square error of the unit step time responses of the 

given higher order system G(s) represented by Equation (3) and 

the initial second order approximant  sGri
represented by 

Equation (4) is calculated. The cumulative error index J is 

calculated using the formula, 
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Where, y(t) is the output response of the higher order system at 

the Nth instant of time, yr(t) is the output response of the second 

order model at the Nth instant of time and N is the time interval 

in seconds over which the error index is computed. 

Step-5: Adjustment of reduced model coefficients using GA  

The coefficients
0A , 

0B  and 
1B are adjusted based the 

cumulative error index (J) using Genetic Algorithm (GA). The 

resultant reduced order model will closely matches with the 

corresponding higher order model. If the cumulative error 

produced by reduced order model obtained as in step-4 is larger 

than the same as in step-2/step-3, then reduced model obtained 

in step-2/step-3 will be treated as a resultant reduced model. 

4. GENETIC ALGORITHM 
A genetic algorithm (or GA for short) is a programming 

technique that mimics biological evolution as a problem-

solving strategy. Given a specific problem to solve, the input to 

the GA is a set of potential solutions to that problem, encoded 

in some fashion, and a metric called a fitness function that 

allows each candidate to be quantitatively evaluated. This is a 

method for moving from one population of "chromosomes" 

(e.g., strings of ones and zeros, or "bits") to a new population 

by using a kind of "natural selection" together with the genetics 

inspired operators of crossover, mutation, and inversion. Each 

chromosome consists of "genes" (e.g., bits), each gene being an 

instance of a particular "allele" (e.g., 0 or 1). The selection 

operator chooses those chromosomes in the population that will 

be allowed to reproduce, and on average the fitter 

chromosomes produce more offspring than the less fit ones. 

Crossover exchanges subparts of two chromosomes, roughly 

mimicking biological recombination between two single 

chromosome ("haploid") organisms; mutation randomly 

changes the allele values of some locations in the chromosome.  

Genetic algorithms are now widely applied in science and 

engineering as adaptive algorithms for solving practical 

problems. Certain classes of problem are particularly suited to 

being tackled using a GA based approach. 

5. ILLUSTRATION 
Consider a sixth order two input two output system described 

by the transfer function matrix [24] 
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Where,  

D(s) is the common denominator of given MIMO system and is 

given by, 
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and            

a11(s) =2s5+70s4+762s3+3610s2+7700s+6000               (36) 

a12(s) =s5+38s4+459s3+2182s2+4160s+2400                 (37) 

a21(s) =s5+30s4+331s3+1650s2+3700s+3000                 (38) 

a22(s) =s5+42s4+601s3+3660s2+9100s+6000                (39) 

By applying the proposed scenario, the corresponding reduced 

model is obtained as, 
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The step response of corresponding reduced order systems is 

shown in the Figure.1 (a)-(d). The unit step time response of 

 )(sGr
 is analyzed with a computer program and the time 

domain characteristic parameters were noted down in the 

respective tables from Table-I-IV. Where, initial approximation 

model and model parameters tuned using genetic algorithm 

were tabulated. The results listed in Table-I-IV shows the 

validity of the proposed scenario in the approximation process. 

The reduced order parameter adjustment using genetic 

algorithm over number of iterations for the G21(s) is shown in 

Figure.2. The Table-V gives the comparison of proposed 

scenario with some of the existing methods based in Integral 

Squared Error value. 

6. CONCLUSION 
The proposed model reduction method uses the pade 

approximation technique in its procedure and gave the stable 

reduced order models for linear time invariant continuous 

MIMO dynamic systems. The algorithm has also been 

extended to the design of compensators, sub-optimal 

controllers for continuous and discrete systems, IIR filter. The 

algorithm is simple, rugged and computer oriented. The 

matching of step response is assured reasonably well in this 

method with the help of Genetic Algorithm. The algorithm 

preserves more stability and avoids any error in between the 

initial or final values of the responses of original and reduced 

order models. 
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Fig 1: (a) Unit step time response for G11(s) (b) Unit step time response for G12(s) (c) Unit step time response for G21(s) (d) Unit 

step time response for G22(s) 

 

 

 

 

 

                                    

 

 

 

          Fig 2: Approximation using GA for G21(s) 



International Journal of Computer Applications (0975 – 8887) 

Volume 36– No.8, December 2011 

7 

Table 1. Stages of Proposed Method for G11(S) 

System characteristics 
Higher order 

system 

Initial second order 

approximant 

Second order model from 

GA based approach 

Damping Ratio (ξ) - 1.739 1.739 

Undamped natural frequency of 

oscillation ( n ) 

- 3.162 3.162 

Transient gain (Tg) 2 2 2 

Steady state gain (Sg) 1 1 1 

Rise time (Tr) 2.12 2.12 2.12 

Peak amplitude (Pa) 0.9999 1 1 

Settling time (Ts) 3.8 3.8 3.8 

Transfer function R11(s) - 

1011

102
2 



ss

s  
1011

102
2 



ss

s  

Cumulative error index (J) - 2.3099x10-29 2.3099x10-29 

 

Table 2. Stages of Proposed Method for G12(S) 

System characteristics Higher order system 
Initial second order 

approximant 

Second order model from 

GA based approach 

Damping Ratio (ξ) - 1.107 1.107 

Undamped natural frequency of 

oscillation ( n ) 

- 3.162 3.162 

Transient gain (Tg) 1 1 1 

Steady state gain (Sg) 0.4 0.4 0.4 

Rise time (Tr) 1.02 1.02 1.02 

Peak amplitude (Pa) 0.4 0.4 0.4 

Settling time (Ts) 1.87 1.87 1.87 

Transfer function R12(s) - 

107

4
2 



ss

s  

107

4
2 



ss

s  

Cumulative error index (J) - 1.3867x10-31 1.3867x10-31 

 

Table 3. Stages of Proposed Method for G21(S) 

System characteristics 
Higher order 

system 

Initial second order 

approximant 

Second order model from 

 GA based approach 

Damping Ratio (ξ) - 2.348 2.365 

Undamped natural frequency of 

oscillation ( n ) 

- 4.472 4.461 

Transient gain (Tg) 1 1 1 

Steady state gain (Sg) 0.5 0.5 0.5 

Rise time (Tr) 2.18 2.09 2.12 

Peak amplitude (Pa) 0.499 0.5 0.499 

Settling time (Ts) 3.86 3.74 3.78 

Transfer function R21(s) - 

2021

102
2 



ss

s  
19.903421.0974

9.93562
2 



ss

s  

Cumulative error index (J) - 4.3357x10-4 2.9998x10-5 
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Table 4. Stages of Proposed Method for G22(S) 

 

 

 

 

 

 

 

 

 

Table 5. Comparison of Integral Square Error 

 

 

 

 

 

 

 

 

System characteristics 
Higher order 

system 

Initial second order 

approximant 

Second order model from 

 GA based approach 

Damping Ratio (ξ) - 1.02 1.02 

Undamped natural frequency of 

oscillation ( n ) 

- 2.45 2.45 

Transient gain (Tg) 1 1 1 

Steady state gain (Sg) 1 1 1 

Rise time (Tr) 1.34 1.34 1.34 

Peak amplitude (Pa) 1 1 1 

Settling time (Ts) 2.28 2.28 2.28 

Transfer function R22(s) - 

65

6
2 



ss

s  

65

6
2 



ss

s  

Cumulative error index (J) - 9.5773x10-30 9.5773x10-30 

Model reduction method Cumulative error index (J ) for 10 s 

G11(s) G12(s) G21(s) G22(s) 

Proposed Method 2.3099x10-29 1.3867x10-31 2.9998x10-5 9.5773x10-30 

Swadhin Ku. Mishra et.al.[30] 4.0656x10-4 7.772x10-5 3.2448x10-5 0.0068 

C.B.Vishwakarma[24] 0.001515 7.845×10-5 0.000299 0.004681 

S. N. Sivanandam et al. [25] 0.0067 0.0020 0.0028 0.0235 

Parmar et al. [26] 0.014498 0.008744 0.002538 0.015741 

Prasad and Pal [27] 0.136484 0.002446 0.040291 0.067902 

Prasad et al. [28] 0.030689 0.000256 0.261963 0.021683 

Safonov and Chiang [29] 0.590617 0.037129 0.007328 1.066123 

Prasad et al.[31] 0.1676 0.0955 0.0307 0.1970 

Prasad [32] 0.2301 0.0887 0.0468 0.2114 


