
International Journal of Computer Applications (0975 – 8887)

Volume 36– No.2, December 2011

49

Setting a Worm Attack Warning by using Machine

Learning to Classify NetFlow Data

Shubair A. Abdulla
NAV6 Center of

Excellence, Universiti
Sains Malaysia, 11800

Penang, Malaysia

 Sureswara Ramadass
NAV6 Center of

Excellence, Universiti
Sains Malaysia, 11800

Penang, Malaysia

Altyeb Altaher
NAV6 Center of

Excellence, Universiti
Sains Malaysia, 11800

Penang, Malaysia

Amer Al Nassiri
Ajman University of

Science & Technology,
Fujairah Campus,

Fujairah, UAE

ABSTRACT

We present a worm warning system that leverages the reliability

of IP-Flow and the effectiveness of machine learning techniques.

Our system aims at setting an alarm in case a node is behaving

maliciously. Typically, a host infected by a scanning or an email

worm initiates a significant amount of traffic that does not rely on

DNS to translate names into numeric IP addresses. Based on this

fact, we capture and classify NetFlow records to extract features

that uniquely identify worm's flow. The features are encapsulated

into a set of feature patterns to train the support vector machines

(SVM). A feature pattern includes: no of DNS requests, no of

DNS responses, no of DNS normals, and no of DNS anomalies,

for each PC on the network within a certain period of time. The

SVM training is performed by using five of the most dangerous

scanning worms: CodeRed, Slammer, Sasser, Witty, and

Doomjuice as well as five email worms: Sobig, NetSky,

MyDoom, Storm and Conficker. Eleven worms have been used

during the test: Welchia, Dabber, BlueCode, Myfip, Nimda,

Sober, Bagle, Francette, Sasser, MyDoom, and Conficker. The

results of experiments manifest the soundness of the worm

warning system.

General Terms

Machine Learning, IP Flow, Worm Detection.

Keywords

Intrusion detection systems, NetFlow, support vector machines,

scanning worms, email worms.

1. INTRODUCTION
Nowadays, worms' inventors are continuously inventing

malicious codes. They cause billions of dollars in damage to

businesses around the world every year. They strive to discover

the software defects in order to compromise systems, steal

sensitive information, send spam emails, and generate distributed

denial-of-service (DDoS) attacks. The security community has

adopted Network Intrusion Detection (NID) systems to defend

worms. These systems can be classified into two categories:

behavior-based and content-based systems. In behavior-based

systems, detection is based on watching anomalous behavior of

the network. The poor accuracy is the major criticism against

most of the existing behavior-based systems. They generate an

alarm in the absence of worm attack (false-positive) and miss

worm attack (false-negative). On the other hand, content-

based systems look for signatures of worms within

malicious traffic payload. These systems use a pre-compiled

database of signatures, so they detect known worms but miss the

unknown worms.

Generally, the NID systems inspect the payloads of every network

packet to find known or unknown attacks [1], [2]. This task is

hard or even impossible due to high speed lines, large number of

packets, and the huge volume of packet information makes it too

difficult to analyze. One option that has been recently attracted

the attention of the researchers is IP Flow-based technique. The IP

Flow is unidirectional chains of IP packets of TCP/UDP protocol

travelling between a pair of networked IP addresses within a

certain period of time.

The flow can be exported by using an export mechanism such as

CISCO NetFlow [3] and sFlow [4]. Although the information

carried by flows is limited to the network nodes interactions, the

volume of Flow Records is extremely huge. According to our

experiments, the number of NetFlow Records exceeds 2000

within two hours in small network consisting of four PCs

connected to one domain controller. Systems that employ IP

Flow-based technique aggregate data-exchange information for

every pair of IP addresses, and then encapsulate this information

into a Flow Record. Figure 1 shows an example of IP Flow based

system architecture. Two segments are connected through flow

enable router that is responsible for capturing the IP flows and

exporting them to a listening port on the flow record analyzer.

The flow record analyzer performs a process of analyzing flow

records to explore the status of the network and detect any

intrusion.

The Flow Enable Router exports, for every node in segment1

exchange information with node in segment2, data-exchange

information, such as: packet timestamp, source IP, destination IP,

source port, destination port, and other useful protocol

information.

Fig 1: IP Flow-based intrusion detection system–basic

architecture

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.2, December 2011

50

Compared with other kinds of security threats, the worms are the

most dangerous threat as they spread so quickly in the Internet.

Typically, to perform spreading, updating, or any other mission,

the worms do not rely on DNS to resolve a host name to a

registered IP address as the vast majority of publicly available

applications behave. However, based on our observations, there

are legitimate applications and users that generally do not rely on

DNS. Such exceptional scenarios are observed usually in carrying

out connection maintenance procedures. In view of an enterprise

network, these scenarios may lead to a decline in the detection

accuracy for DNS-based systems. In this paper, we propose a

system to set an initial alarm if a node initiates malicious traffic. It

is an IP flow-based approach relying on the fact that the attacking

worm uses IP addresses as the target for its infection attempt. We

utilize the classification effectiveness of Support Vector Machines

(SVM) to classify the worms' flows and the legitimate flows

initiated by resources that do not rely on DNS. 18 worms were

used to implement and evaluate the proposed system. The results

of experiments reflect the effectiveness of the proposed approach.

The remainder of the paper is organized as follows: Section II

describes related work by examining existing IP-flow, machine

learning, and DNS anomaly based techniques with focus on the

drawbacks. Section III provides background information on

scanning and email worms. Section IV introduces a system that

applies IP-flow and SVM to detect worms' flows. Section V

explains our using of SVM. System implementation and

evaluation are presented in Sections VI and VII. Finally, Section

VIII concludes the paper and gives directions for future work.

2. RELATED WORK
In this section, we review some related work in the fields of IP

Flow-based methods, machine learning and DNS anomaly-based

methods with focus on the drawbacks that we are trying

to overcome in our research.

2.1 IP Flow-based
Since the scans' threat is similar to worms' victim finding phase

[1], some IP flow-based methods that are dedicated to defend

against scan threats can be extended to worms detection [5,6,7].

The methods in [8] [9] employ IP flow-based technique to detect

worms'. In [8], the authors focused on hit list worms' detection. A

hit list worm probes a predefined list of hosts sequentially to find

next victim. The algorithm slices the network according to a

monitored protocol such as FTP, HTTP, or SMTP. Liu Bin et al

[9] introduced a flow analysis and monitoring system based on

NetFlow. Their system consists of a real-time anomalous traffic

monitoring module equipped with two traffic static-based

algorithms: variance similarity and Euclidean distance-based. It

should be noted that, unlike our approach where we analyze the

features of DNS queries, this approach uses ICMP and

TCP_FLAGS information in the pattern matching. The main point

that needs to be considered regarding these IP Flow-based

methods is the extra load created on the monitoring and analysis

systems as a consequence of worm attack. Searching within huge

volume of flows for characteristics that identify worms uniquely

is a very difficult and prone to error process. To interact

efficiently with the huge volume of NetFlow records, we design a

special sampling module which is responsible of categorizing the

NetFlow records into: DNS requests, DNS responses, DNS

normals, and DNS anomalies.

2.2 Machine Learning-based
Although machine learning has already been used for detecting

malicious attacks, the authors in [10] mentioned that there have

been few attempts to use data mining and machine learning

techniques for the purpose of identifying unknown worms. A look

at the literature reveals that the most of the machine learning-

based research have been focusing on payload features to classify

the malicious codes [11], [12], [13], [14]. The payload features

that are extracted to train the classifiers in these approaches could

be the variable length of instruction sequences, some strings, or

the JUMP address. Several learning methods have been applied

by the researchers such as: naive Bayes, SVM, Instance-Based k

(IBk), and Term Frequency-Inverted Document Freq-uency

(TFIDF). It is obvious that these methods are not suitable for

high speed networks as they require high processing to analyze

the network packet payloads online. Our approach aims at

analyzing the communication flows rather than payloads thus it

runs with low computational processing. The most relevant to our

work is [29] where the authors found that the worm actions

grouped into 3 categories: Registry, file system, and network.

They used SVM in malicious programs classification. However,

our approach differs from their in that we consider the network

activities to avoid installing the system on each network node to

watch the Registry and file system.

2.3 DNS Anomaly-based
Using IP addresses by email worms obviates the need for a DNS

query [15]. Based on this idea, some research is devoted to detect

scanning worms by studying the DNS traffic. The method

proposed by David Whyte et al [15] relies on the correlation of

DNS queries with outgoing connections from an enterprise

network to detect scanning worms. In 2008, H. Binsalleeh B. et al

[16] proposed a system that followed the same architecture in [15]

but the new system performs online processing of TCP dumps.

The email worms also attracted the attention of the researchers.

The methods in [17,18] are straightforward with focus on the

volume of DNS queries for mail exchange (MX) to detect email

worm infections. Ishibashi et al. [19] proposes an approach for

detecting worm based on prior knowledge of worm signature

DNS queries. However, the problem of legitimate traffic that does

not rely on DNS queries has not been resolved completely. This

legitimate traffic could be originated by either normal users or

network applications. The authors in [15] suggested whitelist to

address those clients that legitimately do not rely on DNS. The

disadvantage of using whitelist is that it needs to be updated

regularly to reflect changes to the network. We have employed

the learning machine in our approach to overcome this

shortcoming. We performed the training of SVM by using five of

the most dangerous scanning worms: CodeRed, Slammer, Sasser,

Witty, and Doomjuice as well as five email worms: Sobig,

NetSky, MyDoom, Storm and Conficker. The results showed a

good solution for the problem of isolating the legitimate traffic

that does not rely on the DNS and could be initiated in certain

exceptional circumstances.

3. SCANNING WORMS & EMAIL WORMS
A worm is a malicious program that self-propagates across the

networks by exploiting the software vulner-abilities. According to

the way that is used in finding new host to infect, the worms are

categorized into four groups: Scanning Worms, Email Worms,

P2P Worms, and Instant Messaging Worms. To limit our scope,

we will consider two types of worms, scanning worms and email

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.2, December 2011

51

worms, and since we concentrate on the IP flows, the discussion

will be limited to the flows generated during the life-cycle of

these two types. Readers who are interested in computer worms

and their categories can refer to [20, 21].

3.1 Scanning Worms
The life-cycle of scanning worm consists of four phases: victim

finding, transferring, activation, and infection. The scanning

worm is active over the network in victim finding and transferring

phases, while its activities are limited to local hosts in the other

phases. Most worms use either blind or hit-list scanning

strategies. In the former strategy, the worm has no knowledge

about the targets while in the later strategy the worm knows

where the victims are. In both strategies, the worms scan a TCP or

UDP port on the targets to find a host that runs vulnerable

software and penetrate it. This scanning process causes a dramatic

increase in anomaly traffic rate which makes it possible for a

vigilant NID system to catch the worm [21].

Table 1 shows examples of scanning worms along with their

scanning ports and the software vulnerabilities that they utilize.

Table 1 Examples of scanning worm

Worm Scanning Port Software Vulnerability

CodeRed

2003

TCP 80 Buffer overflow in MS

Index Server or MS IIS.

Slammer

2003

UDP 1434 Buffer overflow in MS

SQL server

Sasser

2004

TCP 445 Local Security Authority

Subsystem Service LSASS

Witty

2004

Uses a UDP port

to scan randomly

generated list of

UDP ports

Internet Security Systems

(ISS) Protocol Analysis

Module (PAM)

Doomjuice

2005

TCP 3127 This worm spreads by

entering systems through a

backdoor created by the

Mydoom worm.

3.2 Email Worms
This kind of worms spread by using email messages, they spread

through HTML links or an email attachment. If the user opens the

HTML link or email attachment, the worm will infect the

computer and propagates by emailing itself using the user's

address book. Email worms, such as Sobig, NetSky, and My-

Doom, are programmed to drop backdoors, launch DoS, or send

documents via email. Recently, most of the email worms' victims

become part of botnet: a group of computers (bots) infected by

malicious programs that cause them to operate against the owners'

intention and without their knowledge [22]. A bot becomes active

over the network when it launches DoS or SPAM attacks, and

when it tries to contact other bots searching for an update. In all

cases, it generates a significant amount of anomalous traffic.

Storm and Conficker worms are among the most recent severe

examples of this kind of worms. When a host is infected by Storm

worm, it receives an initial list of 290 possible "peer nodes" from

the botnet and attempts to contact each peer node to obtain a more

updated list of "peer nodes" [23]. The Storm's body contains a

special function to turn the victim machine to a TCP/IP client to

specify a TCP connection to each peer node. These connections

evidently will generate significant amount of anomalous traffic in

a few seconds.

Almost the same behavior is found in Conficker worm. Within its

life-cycle, the Conficker generates randomly a list of 250 domain

names (rendezvous points), and then it attempts to contact these

domains [24]. When the contacted domain is available, Conficker

will send a URL request to TCP port 80 of the target IP. The aim

of this request is to download a malicious Windows executable. If

the domain is not connected to the Internet, Conficker will check

for connection every 60 second. Based on our experiments, more

than 1000 TCP port 80 requests could be generated by an infected

host within 20 minutes. Such a number of requests for same port

in a short period indicates that the host behaves abnormally.

4. SYSTEM STRUCTURE
Fig. 2 shows the overall structure of the system proposed. It

contains three modules: data collecting, data sampling, and the

classifier. The data collecting module collects the raw data and

extracts the NetFlow information fields and then inserts these

fields into a database. Table 2 shows the columns of the database

that is used to store the NetFlow information. The data sampling

module categorizes every database entry according to special

rules into four categories: DNS requests, DNS responses, DNS

normals, and DNS anomalies. Based on these four categories, the

classifier will decide whether the traffic is benign or malicious.

Fig 2: System Structure

Table 2 Database columns used to store NetFlow records

Column Name Data stored

Timestamp The time of sending the packets

SrcIP Source IP

DstIP Destination IP

SrcPort Source port

DstPort Destination port

Pckts Number of packets

Bytes Number of bytes

Srvc Service

L4 Pro Layer 4 protocol (TCP, UDP, ICMP, etc)

TCPFlag TCP flags

The system has the following characteristics:

1. The system modules can be installed on one PC or on

separated PCs.

2. The data collecting module is customizable to the network

configuration in terms of routers' types, number of listening

ports, and data collection's time period.

3. The system is intended to organize, store, and retrieve the

NetFlow records efficiently by using database.

4. The data collecting module supports NetFlow 5 which is the

most common version of NetFlow.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.2, December 2011

52

5. The SVM classifier that has been embedded into the system

is BSVM [25] which is error free and commonly used for

research purposes.

5. USE OF SUPPORT VECTOR MACHINES
In this section, we first present background information on

Support Vector Machines. Next, we present how we applied the

support vector machines along with the IP-flow features

extraction process.

5.1 Support Vector Machines
Support Vector Machines (SVM) [26] is a supervised learning

method for automatic pattern recognition. It appeared in the mid

1990s as an advanced computation learning theory combined with

kernel functions. The SVM have been successfully applied to

solve a large number of pattern recognition problems including

image classification and hand-written character recognition. The

SVM classification process involves dividing a given training data

set by a separating hyperplane. The main difference that

distinguishes between SVM and other machine learning is that the

SVM is able to find the optimal separating hyperplane by

minimizing the margin between the hyperplane and the training

data points. If the data is linearly separable, the hyperplane will be

a line, as shown in figure 3. And in the case that the data is not

linearly separable, a kernel function should be used to remap non-

linear data points into different dimensions where they can be

separated linearly by a line, see figure 4. The kernel is the key

parameter in SVM since it performs a crucial job of finding a way

to separate the data points and thus to classify unknown data.

hyperplane

Class-1

Class-2

hyperplane

Class-1

Class-2

Fig 3: Dividing a data set into two classes by a hyperplane

Class-1

Class-2

Non-linear separable data points

hyperplane

Class-2

Class-1

Remapped non-linear separable data points

Class-1

Class-2

Non-linear separable data points

hyperplane

Class-2

Class-1

Remapped non-linear separable data points

Fig 4: Kernel function remaps non-linear data points to divide

them linearly by a hyperplane

The SVM cycle consists of learning and classifying phases.

During the learning phase, the SVM are supplied with labeled

training data to build a trained model that will be used in the

classifying phase. In most cases, this model is derived with help

of kernel function. Classifying unknown classes depends on the

trained model, the more comprehensively the model is trained; the

more successful the classification process. The process of

building a trained model includes converting the input data into a

format that comprises a set of features to be read by the SVM.

The effectiveness of a feature set is measured by how accurately

the SVM classifies unknown data into benign or malicious, and

this effectiveness highly depends on features' comprehensiveness

as well as uniqueness.

5.2 Feature Extraction
Our set of features used to build the trained model is based on our

observations of scanning and email worms' behavior when they

become active over the networks. As discussed in sections II and

III, a host infected by either type of worms initiates a significant

amount of traffic that does not rely on DNS queries. Based on this

fact, we extracted the features shown in table 3 from the NetFlow

records for each host connected to the network in a certain period

of time.

Table 3 The set of features we used to train SVM

Feature Explanation

DNSREQ# Number of DNS requests initiated

DNSRES# Number of DNS responses to DNS requests

DNSNOR# Number of flows sent based on previous DNS

resolve. In other words, number of flows sent by

using fully qualified domain names. However,

any flows sent after 500 milliseconds of the last

DNS resolve or they are not a DNSNOR tail are

considered as DNS Anomaly.

DNSANO# Number of flows sent by a host without a DNS

resolve. In other words, number of flows sent by

using IP address rather than fully qualified

domain name

The features are extracted explicitly by the sampling module

which operates on regular basis. The operation time periods can

be customized according to the sensitivity of the network

information and the possibility of being attacked. Throughout our

experiments, we used setting between 60-120 seconds for the

operation time period. The process of feature extraction includes

two steps: classifying and calculating. During the classifying step,

for all the NetFlow records captured, the sampling module

investigates chronologically every record to classify it as:

DNSREQ, DNSRES, DNSNOR, or DNSANO. The rules that

were followed during the classification are described in table 4.

Table 4 The rules followed to classify every NetFlow record

NetFlow Record The condition

DNSREQ IF SrcPort is greater than 1023

 & DstIP equals DNS server IP

 & DstPort equals 53

DNSRES IF SrcIP equals DNS server IP

 & SrcPort equals 53

 & DstIP equals IP that made a

DNSREQ & DstPort equals port# that a

DNSREQ was sent from

DNSNOR IF SrcIP = IP that made a DNSREQ and

 has received DNSRES or it is a tail of

DNSNORs & DNSREQ last time is less

than DNS Age (DNS Age = 500 ms)

DNSANO Otherwise

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.2, December 2011

53

According to Microsoft, the standard port for DNS server is 53

and the DNS request should be initiated from port number greater

than 1023. The value of DNS Age 500 millisecond has been

selected carefully after investigating about 500 DNS requests

from different IPs. However, we used the DNS Age as a variable

to suit the different settings of networks. To facilitate the process

of feature extraction, we cite some examples of NetFlow records

in table 5 along with their category.

Table 5 Examples of NetFlow records captured, including an explanation of feature extraction process

Type Timestamp SrcIP DstIP SrcPort DstPort Justification

DNSANO 4/1/2011 12:17.320 192.168.1.11 192.168.1.56 1105 5358
DNSANO because of no previous

DNSREQ

DNSREQ 4/1/2011 12:56.140 192.168.1.11 192.168.0.2 2115 53

DNSREQ because it has been sent from

port# greater than 1023 to destination
port of 53 on the server

DNSRES 4/1/2011 12:56.165 192.168.0.2 192.168.1.11 53 2115

DNSRES because there was a DNSREQ

within last 500 milliseconds from the
same IP and port#

DNSNOR 4/1/2011 12:56.210 192.168.1.11 192.168.1.13 138 230

DNSNOR because there was a

DNSRES within last 500 milliseconds

from the same IP

DNSNOR 4/1/2011 12:56.610 192.168.1.11 192.168.1.13 138 230

DNSNOR because it is a tail for the

previous DNSNOR within the last 500

milliseconds

After finishing the classifying step, the calculating step starts.

This step is very simple and straightforward. It involves one

function to calculate the number of DNSREQ, DNSRES,

DNSNOR, and DNSANO records and create the feature pattern

(fp) which represents the traffic activities initiated by a host

within 120 seconds. The fp consists of four columns as in the

following:

fp(1) = DNSREQ# fp(2) = DNSRES#

fp(3) = DNSNOR# fp(4) = DNSANO#

Since the SVM is supervised learning method, we labeled the fp

created either 0 (benign) or 1 (malicious). Figure 5 shows the

architecture of our SVM enabled worm detector. In the training

phase, we captured the NetFlow records, produced the feature

patterns and labeled them either malicious or benign depending

on whether they are worm flows or legitimate flows, and finally,

supplied the SVM with them. Consequently, the trained model is

derived and used by the classifying phase to distinguish

malicious and benign flows.

Fig 5: Our SVM algorithm operation cycle, the training and

classifying phases

The experimental test has proved the effectiveness of the

features and their impact on the classification of worms, as

detailed in the following sections.

6. IMPLEMENTATION

6.1 Experiment Setup
Before performing the experiments, we built a virtual network

environment by using GNS 3 0.7.1 and VMWare workstation

7.0.0 software to simulate the functions of 3600 CISCO router

and two switched segments of network. This was done to test the

software system. After the completion of programming the

system, we put the same network design on the ground to

conduct the experiments. The real network design is used in

training and testing phases. Figure 6 depicts the network design

used in our experiments. To make our setup closer to reality, we

set up the domain server to act as: proxy server, DHCP server,

and DNS server. We also allocated one PC to function as Oracle

database server, one PC to function as web server, and one PC to

provide a shared folder that hosts different software and

documents. We increased the system comprehensiveness by

installing Debian GNU/Linux 4.0 on one PC. Furthermore, 5

students from IT specialty have been engaged to act as real

network users.

Fig 6: The experiment setup, two switched segments

connected by a NetFlow enabled CISCO router

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.2, December 2011

54

6.2 The Worms' Variants Used
Two different types of worm variants were used throughout the

research. First, we created semi-real variants of Slammer and

Storm worms to use them in developing and testing the software

system. We created the semi-real variants of these two worms

by injecting the Assembly codes that are responsible for

activating the worm into a customized program. The result was

two worms without harmful parts. Figure 7 gives an example of

creating semi-slammer worm. The second set was 18 real-life

variants obtained from a publicly available malware databases

[27,30]. We used these variants in training and testing our

algorithm.

Fig 7: Assembly code that represents Slammer's Pseudo-

Random Number Generator injected into Delphi procedure

6.3 Data Set
Two different data sets were used, one for training and one for

testing. The training data set was created by capturing 15 days

NetFlow records. By more than 120 hours, we captured 125661

NetFlow records and created 6017 feature patterns 50% of

which were benign and 50% were malicious. On each capturing

day, there were two working sessions. During the first session,

we clean the network to ensure it is free of worms, and then we

capture the benign traffic. In the second session, we inject 10

worms to capture malicious traffic: CodeRed, Slammer, Sasser,

Witty, Doomjuice, Sobig, NetSky, MyDoom, Storm and

Conficker. See table 6 for more details about the data set used in

the training phase.

For testing, we used a data set of 1000 feature patterns created

by capturing three days NetFlow records. First, we cleaned the

network and captured 500 benign feature patterns. Then, we

injected 11 real-life worms to create 500 feature patterns:

Welchia, Dabber, BlueCode, Myfip, Nimda, Sober, Bagle,

Francette, Sasser, MyDoom, and Conficker.

6.4 Choosing the SVM kernel
The kernel and its optimal parameter values are the key to

success in building an accurate trained model. There are three

kernels that are commonly used: Linear, Polynomial, and Radial

Basis Function (RBF). All of these kernels have been used and

they have demonstrated similar accuracies in the experiments.

However, we have reached the same conclusion reported in [28],

which is that the linear kernel is an ideal choice since it

outperformed the other two kernels in terms of training and

prediction times.

Table 6 Monitoring and capturing of NetFlow records

Day Beginning Time Ending Time Capturing Period NetFlow Records Sampling Period Feature Pattern

25/05/11 10:27:18 17:20:00 6:52:42 5940 0:02:00 206

26/05/11 10:01:00 17:31:00 7:30:00 8350 0:02:00 225

28/05/11 9:55:00 18:16:54 8:21:54 5891 0:01:00 502

29/05/11 10:15:12 17:35:35 7:20:23 6660 0:01:00 440

30/05/11 9:59:14 18:25:10 8:25:56 7105 0:01:00 506

...

...

07/06/11 10:05:45 18:00:00 7:54:15 9198 0:01:30 316

08/06/11 9:36:30 18:02:00 8:25:30 9461 0:01:00 506

09/06/11 9:28:00 18:10:00 8:42:00 9482 0:01:30 348

11/06/11 9:51:43 18:15:00 8:23:17 9332 0:01:00 503

 Total 125661 6017

7. EVALUATION
To evaluate the SVM classifier, we repeated the test phase two

times with same data set of 1000 feature patterns 50% of which

were benign and 50% were malicious. Unlike the first test, the

second one was preceded by a refinement process for the NetFlow

records captured. The refinement process aimed at excluding the

following unneeded traffic which was observed during the first

test:

1. Traffic that was initiated by the router interfaces.

2. Traffic that was initiated by outsider IP addresses and

destined to the DNS server, and

3. Traffic that was initiated by DNS in response to these

outsiders IP addresses.

After the first test we found that involving the unneeded traffic in

producing the feature patterns will greatly affect the accuracy of

the SVM classifier. We excluded them by monitoring the DHCP

server log file. According to Microsoft, typically, the DHCP logs

are saved as text files in the folder of "C:\WINNT\System32

\DHCP" on DHCP servers with naming format of "DhcpSrvLog-

*.txt". From this log file we created a dynamic "node-living list"

by collecting the event IDs: 10 (new lease) and 11 (renew a lease)

periodically. Any traffic initiated by a node that is not listed in

"node-living list" will be excluded.

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.2, December 2011

55

Refining NetFlow records to create feature patterns is the most

influential factor on the classifier accuracy. To demonstrate level

of influence of refinement process, we draw for each PC the false-

positive (FPV) and the false-negative (FNV) rates resulted by test

phase 1 and phase 2 in figures 8 and 9 respectively. The upper

curves show the FPV and FNV rates before the process of

refinement, while the lower curves show the new values of FPV

and FNV rates after the refinement process.

0.23

0.27

0.14

0.25

0.28

0.09

0.03
0.02

0.00
0.01

0.00

0.05

0.10

0.15

0.20

0.25

0.30

PC1 PC2 PC3 PC4 PC5

FPV Rate before refining FPV Rate after refining

Fig 8: False-positive rates resulted before and after the

refinement process for each PC

0.12

0.11

0.10

0.14

0.18

0.02

0.01

0.00 0.00

0.01

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

PC1 PC2 PC3 PC4 PC5

FNV Rate before refining FNV Rate after refining

Fig 9: False-negative rates resulted before and after the

refinement process for each PC.

Table 7 shows the results of computing the percentage change

positively in the values of FPV and FNV rates. It is noticeable

that the refinement process has improved the results of the tests

where a 100% percentage change has been achieved in some PCs.

Table 7 The improvement in FPV and FNV rates after

performing the refinement process

PCs 1 2 3 4 5

FPV Improvement 61% 89% 86% 100% 96%

FNV Improvement 83% 92% 100% 100% 94%

We can justify the presence of small rates of FPV and FNV to

unusual situation caused by one user. An Oracle user has replaced

the host parameter name of the tnsnames.ora file with an IP

address and launched multiple nested SQL queries. As a result,

the client PC generated a number of DNSANO close to the

number of DNSANO created by the Sasser and MyDoom worms.

However, this scenario is totally unusual as the humans tend to

remember the names rather than the numeric IP addresses. Apart

from this scenario, all the activities of other worms have been

detected successfully by our system as the FPV and FNV rates are

close to nil, see figure 10.

0.05

0.03

0.11

0.06
0.07

0.14

0.06

0.08
0.07

0.03
0.02

0.19

0.05

0.07

0.17

0.08

0.11

0.09

0.06

0.02

0.07

0.03

0.00

0.05

0.10

0.15

0.20

0.25

Welchia Dabber MyDoom Myfip Nimda Sober Bagle Sasser Francette BlueCode Conficker

FNV Rate FPV Rate

Fig 10: False-negative and false-positive rates for each worm,

the high rates of FNV & FPV that resulted from unusual

situation are in detection of Sasser and MyDoom

8. CONCLUSION AND FUTURE WORKS
In the worm detection research field, the machine learning and IP

flow techniques show encouraging outcomes. We have

investigated the optimal leveraging of the effectiveness of SVM

and the reliability of NetFlow data captured. We have

demonstrated that the captured NetFlow data, after being properly

sampled and analyzed, can be used for setting an alarm for a

worm attack and consequently identifying the source of the

suspicious payloads. In particular, we have addressed the problem

of dealing with huge amount of NetFlow data to create feature

patterns that identify the worms' flows uniquely. We have

introduced a method of automatically generating worm variants

by merging the instructions of Assembly and Delphi

programming languages. This method has been applied to

generate undamaging variants of Slammer and Storm worms used

in testing the software system developed. 18 real-life worms were

involved in the training and testing phases. The evidence of our

approach's reliability was shown in the successful way of dealing

with legitimate traffic that does not rely on DNS queries and

could be originated by either normal users or network

applications. Our future work will focus on enhancing the feature

patterns and increasing the instances of the training and testing

data sets to detect P2P worms and Instant Messaging worms.

9. REFERENCES
[1] Anna Sperotto, Gregor Schaffrath, Ramin Sadre, Cristian

Morariu, Aiko Pras, and Burkhard Stiller, "An Overview of

IP Flow-Based Intrusion Detection," Communications

Surveys & Tutorials, IEEE, Vol. 12, No. 3. (2010).

[2] M. Roesch, "Snort, intrusion detection system," Jul. 2008.

[Online]. Available: http://www.snort.org

[3] B. Claise, "Cisco Systems NetFlow Services Export Version

9," RFC 3954 (Informational), Jul. 2008.

[Online]. Available: http: //www.ietf.org/rfc/rfc3954.txt

[4] P. Phaal, S. Panchen, and N. McKee, " InMon Corporation's

sFlow: A Method for Monitoring Traffic in Switched and

Routed Networks," RFC 3176 (Informational), Sep. 2001.

[Online]. Available: http://tools.ietf.org/html/rfc3176

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.2, December 2011

56

[5] A. Wagner and B. Plattner, "Entropy based worm and

anomaly detection in fast IP networks," in Proc. of 14th

IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprise (WETICE '05),

June 2005, pp. 172–177

[6] Q. Zhao, J. Xu, and A. Kumar, "Detection of super sources

and destinations in high-speed networks: Algorithms,

analysis and evaluation," IEEE Journal on Selected Areas in

Communications, vol. 24, no. 10, pp. 1840–1852, Oct. 2006

[7] Y. Gao, Z. Li, and Y. Chen, "A dos resilient flow-level

intrusion detection approach for high-speed networks," in

Proc. of the 26th IEEE International Conference on

Distributed Computing Systems (ICDCS '06), 2006, p. 39

[8] M. Collins and M. Reiter, "Hit-list worm detection and bot

identification in large networks using protocol graphs," in

Proc. of 10th International Symposium on Recent Advances

in Intrusion Detection (RAID'07), 2007, pp. 276–295

[9] L Bin, L Chuang, Q Jian, H Jianping, P Ungsunan, "A

NetFlow based flow analysis and monitoring system in

enterprise networks," Computer Networks (2008), Volume:

52, Issue: 5, Pages: 1074-1092

[10] Ismahani Ismail, Muhammad Nadzir Marsono, Sulaiman

Mohd Nor, "Detecting Worms Using Data Mining

Techniques: Learning in the Presence of Class Noise," sitis,

pp.187-194, 2010 Sixth International Conference on Signal-

Image Technology and Internet Based Systems, 2010

[11] E. Z. M. Schultz, E. Eskin and S. Stolfo, “Data Mining

Methods for Detection of New Malicious Executables,” in

Proceedings of the IEEE Symposium on Security and

Privacy, Los Alamitos,CA, 2001, pp. 38–49.

[12] J. Kolter and M. Maloof, “Learning to Detect Malicious

Executables in the Wild,” in Proceedings of the Tenth ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining, Seattle, WA, USA, August 2004, pp. 470–

478.

[13] W. Wang and D.-S. Luo, “A New Attempt to Detect

Polymorphic Worms Based on Semantic Signature and Data-

Mining,” in First International Conference of IEEE

Communications and Networking (ChinaCom ’06), Beijing,

China, October 2006, pp. 1–3.

[14] M. Siddiqui, M. C. WANG, and J. Lee, “Detecting Internet

Worms Using Data Mining Techniques,” Journal of

Systemics, Cybernetics and Informatics, vol. 6, no. 6, pp.

48–53, 2009

[15] David Whyte, Evangelos Kranakis, Paul C. van Oorschot, "

DNS-based Detection of Scanning Worms in an Enterprise

Network," In Proceedings of The 12th Annual Network and

Distributed System Security Symposium (February 2005)

[16] H. Binsalleeh and A. Youssef. "An implementation for a

worm detection and mitigation system," Proc. of the 24th

Biennial Symposium on Communications, pages 54–57,

2008.

[17] Y. Musashi, R. Matsuba, and K. Sugitani. "Indirect detection

of mass mailing worms-infected pc terminals for learners,"

In 3rd International Conference on Emerging

Telecommunications Technologies and Applications, pages

233{237, 2004

[18] Y. Musashi and K. Rannenberg. "Detection of mass mailing

worm-infected pc terminals by observing dns query access,"

IPSJ SIG Notes, pages 39-44, 2004

[19] K. Ishibashi, T. Toyono, K. Toyama, M. Ishino, H. Ohshima,

and I. Mizukoshi, “Detecting mass-mailing worm infected

hosts by mining dns traffic data,” in MineNet ’05: Proc. of

the 2005 ACM SIGCOMM Workshop on Mining Network

Data. New York, NY, USA: ACM, 2005, pp. 159–164.

[20] P. Li, M. Salour, X. Su, " A survey of internet worm

detection and containment, " Communications Surveys &

Tutorials, IEEE, Vol. 10, No. 1. (2008)

[21] Tang, Yong; Luo, Jiaqing; Xiao, Bin; Wei, Guiyi, " Concept,

Characteristics and Defending Mechanism of Worms, "

IEICE Transactions on Information and Systems, Volume

E92.D, Issue 5, pp. 799-809 (2009).

[22] Botnet Detection. Countering the Largest Security Threat.

Spinger, 2008, vol. 36

[23] Wei, C., Sprague, A. and Warner, G. "Detection of Network

Blocks Used by the Storm Worm Botnet,". In Proc. of 46th

ACM Southeast Conference (2008)

[24] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran, "An

Analysis of Conficker's Logic and Rendezvous Points,"

March 2009.

[Online]. Available: http://mtc.sri.com/Conficker/

[25] Chih-Wei Hsu and Chih-Jen Lin, "BSVM," August, 2006.

[Online]. Available:

http://www.csie.ntu.edu.tw/~cjlin/bsvm/index.html

[26] C. Burges, “A Tutorial on Support Vector Machines for

Pattern Recognition,” Data Mining and Knowledge

Discovery, vol. 2, no. 2, pp. 121–167, 1998.

[27] VX Heavens Virus Collection, VX Heavens website. April

2011. [Online]. Available: http://vx.netlux.org.

[28] O. Sharma, M. Girolami, and J. Sventek, “Detecting worm

variants using machine learning,” in CoNEXT ’07:

Proceedings of the 2007 ACM CoNEXT conference, (New

York, NY, USA), pp. 1–12, ACM, 2007.

[29] Yuanyuan Zeng, Xin Hu, Haixiong Wang, Kang G. Shin,

and Abhijit Bose. 2008. "Containment of network worms via

per-process rate-limiting". In Proceedings of the 4th

international conference on Security and privacy in

communication netowrks (SecureComm '08). ACM, New

York, NY, USA

[30] Global hackers website. May 2011. [Online]. Available:

http://globalhackers.blogspot.com/2008/06/virus-

collections.html

