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ABSTRACT 

We present a worm warning system that leverages the reliability 

of IP-Flow and the effectiveness of machine learning techniques. 

Our system aims at setting an alarm in case a node is behaving 

maliciously. Typically, a host infected by a scanning or an email 

worm initiates a significant amount of traffic that does not rely on 

DNS to translate names into numeric IP addresses. Based on this 

fact, we capture and classify NetFlow records to extract features 

that uniquely identify worm's flow. The features are encapsulated 

into a set of feature patterns to train the support vector machines 

(SVM). A feature pattern includes: no of DNS requests, no of 

DNS responses, no of DNS normals, and no of DNS anomalies, 

for each PC on the network within a certain period of time. The 

SVM training is performed by using five of the most dangerous 

scanning worms: CodeRed, Slammer, Sasser, Witty, and 

Doomjuice as well as five email worms: Sobig, NetSky, 

MyDoom, Storm and Conficker. Eleven worms have been used 

during the test: Welchia, Dabber, BlueCode, Myfip, Nimda, 

Sober, Bagle, Francette, Sasser, MyDoom, and Conficker. The 

results of experiments manifest the soundness of the worm 

warning system. 

General Terms 

Machine Learning, IP Flow, Worm Detection. 

Keywords 

Intrusion detection systems, NetFlow, support vector machines, 

scanning worms, email worms. 

1. INTRODUCTION 
Nowadays, worms' inventors are continuously inventing 

malicious codes. They cause billions of dollars in damage to 

businesses around the world every year. They strive to discover 

the software defects in order to compromise systems, steal 

sensitive information, send spam emails, and generate distributed 

denial-of-service (DDoS) attacks. The security community has 

adopted Network Intrusion Detection (NID) systems to defend 

worms. These systems can be classified into two categories: 

behavior-based and content-based systems. In behavior-based 

systems, detection is based on watching anomalous behavior of 

the network. The poor accuracy is the major criticism against 

most of the existing behavior-based systems. They generate an 

alarm in the absence of worm attack (false-positive) and miss 

worm attack (false-negative). On the other hand, content-

based systems look for signatures of worms within 

malicious traffic payload. These systems use a pre-compiled 

database of signatures, so they detect known worms but miss the 

unknown worms.  

Generally, the NID systems inspect the payloads of every network 

packet to find known or unknown attacks [1], [2]. This task is 

hard or even impossible due to high speed lines, large number of 

packets, and the huge volume of packet information makes it too 

difficult to analyze. One option that has been recently attracted 

the attention of the researchers is IP Flow-based technique. The IP 

Flow is unidirectional chains of IP packets of TCP/UDP protocol 

travelling between a pair of networked IP addresses within a 

certain period of time. 

The flow can be exported by using an export mechanism such as 

CISCO NetFlow [3] and sFlow [4]. Although the information 

carried by flows is limited to the network nodes interactions, the 

volume of Flow Records is extremely huge. According to our 

experiments, the number of NetFlow Records exceeds 2000 

within two hours in small network consisting of four PCs 

connected to one domain controller. Systems that employ IP 

Flow-based technique aggregate data-exchange information for 

every pair of IP addresses, and then encapsulate this information 

into a Flow Record. Figure 1 shows an example of IP Flow based 

system architecture. Two segments are connected through flow 

enable router that is responsible for capturing the IP flows and 

exporting them to a listening port on the flow record analyzer. 

The flow record analyzer performs a process of analyzing flow 

records to explore the status of the network and detect any 

intrusion.  

The Flow Enable Router exports, for every node in segment1 

exchange information with node in segment2, data-exchange 

information, such as: packet timestamp, source IP, destination IP, 

source port, destination port, and other useful protocol 

information.  

 

Fig 1:  IP Flow-based intrusion detection system–basic 

architecture 
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Compared with other kinds of security threats, the worms are the 

most dangerous threat as they spread so quickly in the Internet. 

Typically, to perform spreading, updating, or any other mission, 

the worms do not rely on DNS to resolve a host name to a 

registered IP address as the vast majority of publicly available 

applications behave. However, based on our observations, there 

are legitimate applications and users that generally do not rely on 

DNS. Such exceptional scenarios are observed usually in carrying 

out connection maintenance procedures. In view of an enterprise 

network, these scenarios may lead to a decline in the detection 

accuracy for DNS-based systems. In this paper, we propose a 

system to set an initial alarm if a node initiates malicious traffic. It 

is an IP flow-based approach relying on the fact that the attacking 

worm uses IP addresses as the target for its infection attempt. We 

utilize the classification effectiveness of Support Vector Machines 

(SVM) to classify the worms' flows and the legitimate flows 

initiated by resources that do not rely on DNS. 18 worms were 

used to implement and evaluate the proposed system. The results 

of experiments reflect the effectiveness of the proposed approach.  

The remainder of the paper is organized as follows: Section II 

describes related work by examining existing IP-flow, machine 

learning, and DNS anomaly based techniques with focus on the 

drawbacks. Section III provides background information on 

scanning and email worms. Section IV introduces a system that 

applies IP-flow and SVM to detect worms' flows. Section V 

explains our using of SVM. System implementation and 

evaluation are presented in Sections VI and VII. Finally, Section 

VIII concludes the paper and gives directions for future work. 

2. RELATED WORK 
In this section, we review some related work in the fields of IP 

Flow-based methods, machine learning and DNS anomaly-based 

methods with focus on the drawbacks that we are trying 

to overcome in our research. 

2.1 IP Flow-based 
Since the scans' threat is similar to worms' victim finding phase 

[1], some IP flow-based methods that are dedicated to defend 

against scan threats can be extended to worms detection [5,6,7]. 

The methods in [8] [9] employ IP flow-based technique to detect 

worms'. In [8], the authors focused on hit list worms' detection. A 

hit list worm probes a predefined list of hosts sequentially to find 

next victim. The algorithm slices the network according to a 

monitored protocol such as FTP, HTTP, or SMTP. Liu Bin et al 

[9] introduced a flow analysis and monitoring system based on 

NetFlow. Their system consists of a real-time anomalous traffic 

monitoring module equipped with two traffic static-based 

algorithms: variance similarity and Euclidean distance-based. It 

should be noted that, unlike our approach where we analyze the 

features of DNS queries, this approach uses ICMP and 

TCP_FLAGS information in the pattern matching. The main point 

that needs to be considered regarding these IP Flow-based 

methods is the extra load created on the monitoring and analysis 

systems as a consequence of worm attack. Searching within huge 

volume of flows for characteristics that identify worms uniquely 

is a very difficult and prone to error process. To interact 

efficiently with the huge volume of NetFlow records, we design a 

special sampling module which is responsible of categorizing the 

NetFlow records into: DNS requests, DNS responses, DNS 

normals, and DNS anomalies. 

2.2 Machine Learning-based 
Although machine learning has already been used for detecting 

malicious attacks, the authors in [10] mentioned that there have 

been few attempts to use data mining and machine learning 

techniques for the purpose of identifying unknown worms. A look 

at the literature reveals that the most of the machine learning-

based research have been focusing on payload features to classify 

the malicious codes [11], [12], [13], [14]. The payload features 

that are extracted to train the classifiers in these approaches could 

be the variable length of instruction sequences, some strings, or 

the JUMP address. Several learning methods have been applied 

by the researchers such as: naive Bayes, SVM, Instance-Based k 

(IBk), and Term Frequency-Inverted Document Freq-uency 

(TFIDF).  It is obvious that these methods are not suitable for 

high speed networks as they require high processing to analyze 

the network packet payloads online. Our approach aims at 

analyzing the communication flows rather than payloads thus it 

runs with low computational processing. The most relevant to our 

work is [29] where the authors found that the worm actions 

grouped into 3 categories: Registry, file system, and network. 

They used SVM in malicious programs classification. However, 

our approach differs from their in that we consider the network 

activities to avoid installing the system on each network node to 

watch the Registry and file system. 

2.3 DNS Anomaly-based 
Using IP addresses by email worms obviates the need for a DNS 

query [15]. Based on this idea, some research is devoted to detect 

scanning worms by studying the DNS traffic.  The method 

proposed by David Whyte et al [15] relies on the correlation of 

DNS queries with outgoing connections from an enterprise 

network to detect scanning worms. In 2008, H. Binsalleeh B. et al 

[16] proposed a system that followed the same architecture in [15] 

but the new system performs online processing of TCP dumps. 

The email worms also attracted the attention of the researchers. 

The methods in [17,18] are straightforward with focus on the 

volume of DNS queries for mail exchange (MX) to detect email 

worm infections. Ishibashi et al. [19] proposes an approach for 

detecting worm based on prior knowledge of worm signature 

DNS queries. However, the problem of legitimate traffic that does 

not rely on DNS queries has not been resolved completely. This 

legitimate traffic could be originated by either normal users or 

network applications. The authors in [15] suggested whitelist to 

address those clients that legitimately do not rely on DNS. The 

disadvantage of using whitelist is that it needs to be updated 

regularly to reflect changes to the network. We have employed 

the learning machine in our approach to overcome this 

shortcoming. We performed the training of SVM by using five of 

the most dangerous scanning worms: CodeRed, Slammer, Sasser, 

Witty, and Doomjuice as well as five email worms: Sobig, 

NetSky, MyDoom, Storm and Conficker. The results showed a 

good solution for the problem of isolating the legitimate traffic 

that does not rely on the DNS and could be initiated in certain 

exceptional circumstances. 

3. SCANNING WORMS & EMAIL WORMS 
A worm is a malicious program that self-propagates across the 

networks by exploiting the software vulner-abilities. According to 

the way that is used in finding new host to infect, the worms are 

categorized into four groups: Scanning Worms, Email Worms, 

P2P Worms, and Instant Messaging Worms. To limit our scope, 

we will consider two types of worms, scanning worms and email 
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worms, and since we concentrate on the IP flows, the discussion 

will be limited to the flows generated during the life-cycle of 

these two types. Readers who are interested in computer worms 

and their categories can refer to [20, 21]. 

3.1 Scanning Worms 
The life-cycle of scanning worm consists of four phases: victim 

finding, transferring, activation, and infection. The scanning 

worm is active over the network in victim finding and transferring 

phases, while its activities are limited to local hosts in the other 

phases. Most worms use either blind or hit-list scanning 

strategies. In the former strategy, the worm has no knowledge 

about the targets while in the later strategy the worm knows 

where the victims are. In both strategies, the worms scan a TCP or 

UDP port on the targets to find a host that runs vulnerable 

software and penetrate it. This scanning process causes a dramatic 

increase in anomaly traffic rate which makes it possible for a 

vigilant NID system to catch the worm [21].  

Table 1 shows examples of scanning worms along with their 

scanning ports and the software vulnerabilities that they utilize. 

Table 1 Examples of scanning worm   

Worm Scanning Port  Software Vulnerability 

CodeRed 

2003 

TCP 80 Buffer overflow in MS 

Index Server or MS IIS. 

Slammer 

2003 

UDP 1434 Buffer overflow in MS 

SQL server 

Sasser 

2004 

TCP 445 Local Security Authority 

Subsystem Service LSASS 

Witty 

2004 

Uses a UDP port 

to scan randomly 

generated list of 

UDP ports  

Internet Security Systems 

(ISS) Protocol Analysis 

Module (PAM) 

Doomjuice 

2005 

TCP 3127 This worm spreads by 

entering systems through a 

backdoor created by the 

Mydoom worm. 
 

3.2 Email Worms 
This kind of worms spread by using email messages, they spread 

through HTML links or an email attachment. If the user opens the 

HTML link or email attachment, the worm will infect the 

computer and propagates by emailing itself using the user's 

address book. Email worms, such as Sobig, NetSky, and My-

Doom, are programmed to drop backdoors, launch DoS, or send 

documents via email. Recently, most of the email worms' victims 

become part of botnet: a group of computers (bots) infected by 

malicious programs that cause them to operate against the owners' 

intention and without their knowledge [22]. A bot becomes active 

over the network when it launches DoS or SPAM attacks, and 

when it tries to contact other bots searching for an update. In all 

cases, it generates a significant amount of anomalous traffic. 

Storm and Conficker worms are among the most recent severe 

examples of this kind of worms. When a host is infected by Storm 

worm, it receives an initial list of 290 possible "peer nodes" from 

the botnet and attempts to contact each peer node to obtain a more 

updated list of "peer nodes" [23]. The Storm's body contains a 

special function to turn the victim machine to a TCP/IP client to 

specify a TCP connection to each peer node. These connections 

evidently will generate significant amount of anomalous traffic in 

a few seconds.  

Almost the same behavior is found in Conficker worm. Within its 

life-cycle, the Conficker generates randomly a list of 250 domain 

names (rendezvous points), and then it attempts to contact these 

domains [24]. When the contacted domain is available, Conficker 

will send a URL request to TCP port 80 of the target IP. The aim 

of this request is to download a malicious Windows executable. If 

the domain is not connected to the Internet, Conficker will check 

for connection every 60 second. Based on our experiments, more 

than 1000 TCP port 80 requests could be generated by an infected 

host within 20 minutes. Such a number of requests for same port 

in a short period indicates that the host behaves abnormally. 

4. SYSTEM STRUCTURE 
Fig. 2 shows the overall structure of the system proposed. It 

contains three modules: data collecting, data sampling, and the 

classifier. The data collecting module collects the raw data and 

extracts the NetFlow information fields and then inserts these 

fields into a database. Table 2 shows the columns of the database 

that is used to store the NetFlow information. The data sampling 

module categorizes every database entry according to special 

rules into four categories: DNS requests, DNS responses, DNS 

normals, and DNS anomalies. Based on these four categories, the 

classifier will decide whether the traffic is benign or malicious. 

 

Fig 2: System Structure 

Table 2 Database columns used to store NetFlow records 

Column Name Data stored 

Timestamp The time of sending the packets 

SrcIP Source IP 

DstIP Destination IP 

SrcPort Source port 

DstPort Destination port 

Pckts Number of packets 

Bytes Number of bytes 

Srvc Service 

L4 Pro Layer 4 protocol (TCP, UDP, ICMP, etc) 

TCPFlag TCP flags 

The system has the following characteristics: 

1. The system modules can be installed on one PC or on 

separated PCs. 

2. The data collecting module is customizable to the network 

configuration in terms of routers' types, number of listening 

ports, and data collection's time period. 

3. The system is intended to organize, store, and retrieve the 

NetFlow records efficiently by using database. 

4. The data collecting module supports NetFlow 5 which is the 

most common version of NetFlow. 
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5. The SVM classifier that has been embedded into the system 

is BSVM [25] which is error free and commonly used for 

research purposes. 

5. USE OF SUPPORT VECTOR MACHINES 
In this section, we first present background information on 

Support Vector Machines. Next, we present how we applied the 

support vector machines along with the IP-flow features 

extraction process. 

5.1 Support Vector Machines 
Support Vector Machines (SVM) [26] is a supervised learning 

method for automatic pattern recognition. It appeared in the mid 

1990s as an advanced computation learning theory combined with 

kernel functions. The SVM have been successfully applied to 

solve a large number of pattern recognition problems including 

image classification and hand-written character recognition. The 

SVM classification process involves dividing a given training data 

set by a separating hyperplane. The main difference that 

distinguishes between SVM and other machine learning is that the 

SVM is able to find the optimal separating hyperplane by 

minimizing the margin between the hyperplane and the training 

data points. If the data is linearly separable, the hyperplane will be 

a line, as shown in figure 3. And in the case that the data is not 

linearly separable, a kernel function should be used to remap non-

linear data points into different dimensions where they can be 

separated linearly by a line, see figure 4. The kernel is the key 

parameter in SVM since it performs a crucial job of finding a way 

to separate the data points and thus to classify unknown data.  

hyperplane

Class-1

Class-2

hyperplane

Class-1

Class-2

 

Fig 3: Dividing a data set into two classes by a hyperplane 

Class-1

Class-2

Non-linear separable data points

hyperplane

Class-2

Class-1

Remapped non-linear separable data points

Class-1

Class-2

Non-linear separable data points

hyperplane

Class-2

Class-1

Remapped non-linear separable data points  

Fig 4: Kernel function remaps non-linear data points to divide 

them linearly by a hyperplane 

The SVM cycle consists of learning and classifying phases. 

During the learning phase, the SVM are supplied with labeled 

training data to build a trained model that will be used in the 

classifying phase. In most cases, this model is derived with help 

of kernel function. Classifying unknown classes depends on the 

trained model, the more comprehensively the model is trained; the 

more successful the classification process. The process of 

building a trained model includes converting the input data into a 

format that comprises a set of features to be read by the SVM. 

The effectiveness of a feature set is measured by how accurately 

the SVM classifies unknown data into benign or malicious, and 

this effectiveness highly depends on features' comprehensiveness 

as well as uniqueness. 

5.2 Feature Extraction 
Our set of features used to build the trained model is based on our 

observations of scanning and email worms' behavior when they 

become active over the networks. As discussed in sections II and 

III, a host infected by either type of worms initiates a significant 

amount of traffic that does not rely on DNS queries. Based on this 

fact, we extracted the features shown in table 3 from the NetFlow 

records for each host connected to the network in a certain period 

of time. 

Table 3 The set of features we used to train SVM 

Feature Explanation 

DNSREQ# Number of DNS requests initiated 

DNSRES# Number of DNS responses to DNS requests 

DNSNOR# Number of flows sent based on previous DNS 

resolve. In other words, number of flows sent by 

using fully qualified domain names. However, 

any flows sent after 500 milliseconds of the last 

DNS resolve or they are not a DNSNOR tail are 

considered as DNS Anomaly. 

DNSANO# Number of flows sent by a host without a DNS 

resolve. In other words, number of flows sent by 

using IP address rather than fully qualified 

domain name 
 

The features are extracted explicitly by the sampling module 

which operates on regular basis. The operation time periods can 

be customized according to the sensitivity of the network 

information and the possibility of being attacked. Throughout our 

experiments, we used setting between 60-120 seconds for the 

operation time period. The process of feature extraction includes 

two steps: classifying and calculating. During the classifying step, 

for all the NetFlow records captured, the sampling module 

investigates chronologically every record to classify it as: 

DNSREQ, DNSRES, DNSNOR, or DNSANO. The rules that 

were followed during the classification are described in table 4. 

Table 4 The rules followed to classify every NetFlow record 

NetFlow Record  The condition 

DNSREQ IF  SrcPort is greater than 1023 

      & DstIP equals DNS server IP  

      & DstPort equals 53  

DNSRES IF SrcIP equals DNS server IP 

     & SrcPort equals 53 

     & DstIP equals IP that made a 

DNSREQ & DstPort  equals port# that a 

DNSREQ was sent from 

DNSNOR IF SrcIP = IP that made a DNSREQ and  

   has received DNSRES or it is a tail of 

DNSNORs & DNSREQ last time is less 

than DNS Age (DNS Age = 500 ms) 

DNSANO Otherwise 
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According to Microsoft, the standard port for DNS server is 53 

and the DNS request should be initiated from port number greater 

than 1023. The value of DNS Age 500 millisecond has been 

selected carefully after investigating about 500 DNS requests 

from different IPs. However, we used the DNS Age as a variable 

to suit the different settings of networks. To facilitate the process 

of feature extraction, we cite some examples of NetFlow records 

in table 5 along with their category.  

 

Table 5 Examples of NetFlow records captured, including an explanation of feature extraction process 

Type Timestamp SrcIP DstIP SrcPort DstPort .....  Justification 

DNSANO 4/1/2011 12:17.320 192.168.1.11 192.168.1.56 1105 5358 .....  
DNSANO because of no previous 

DNSREQ 

DNSREQ 4/1/2011 12:56.140 192.168.1.11 192.168.0.2 2115 53 .....  

DNSREQ because it has been sent from 

port# greater than 1023 to destination 
port of 53 on the server 

DNSRES 4/1/2011 12:56.165 192.168.0.2 192.168.1.11 53 2115 .....  

DNSRES because there was a DNSREQ 

within last 500 milliseconds from the 
same IP and port# 

DNSNOR 4/1/2011 12:56.210 192.168.1.11 192.168.1.13 138 230 ....  

DNSNOR because there was a 

DNSRES within last 500 milliseconds 

from the same IP 

DNSNOR 4/1/2011  12:56.610 192.168.1.11 192.168.1.13 138 230 ....  

DNSNOR because it is a tail for the 

previous DNSNOR within the last 500 

milliseconds 

 
After finishing the classifying step, the calculating step starts. 

This step is very simple and straightforward. It involves one 

function to calculate the number of DNSREQ, DNSRES, 

DNSNOR, and DNSANO records and create the feature pattern 

(fp) which represents the traffic activities initiated by a host 

within 120 seconds. The fp consists of four columns as in the 

following: 

fp(1) = DNSREQ# fp(2) = DNSRES# 

fp(3) = DNSNOR# fp(4) = DNSANO# 

Since the SVM is supervised learning method, we labeled the fp 

created either 0 (benign) or 1 (malicious). Figure 5 shows the 

architecture of our SVM enabled worm detector. In the training 

phase, we captured the NetFlow records, produced the feature 

patterns and labeled them either malicious or benign depending 

on whether they are worm flows or legitimate flows, and finally, 

supplied the SVM with them. Consequently, the trained model is 

derived and used by the classifying phase to distinguish 

malicious and benign flows. 

 

 

Fig 5: Our SVM algorithm operation cycle, the training and 

classifying phases 

The experimental test has proved the effectiveness of the 

features and their impact on the classification of worms, as 

detailed in the following sections. 

6. IMPLEMENTATION 

6.1 Experiment Setup 
Before performing the experiments, we built a virtual network 

environment by using GNS 3 0.7.1 and VMWare workstation 

7.0.0 software to simulate the functions of 3600 CISCO router 

and two switched segments of network. This was done to test the 

software system. After the completion of programming the 

system, we put the same network design on the ground to 

conduct the experiments. The real network design is used in 

training and testing phases. Figure 6 depicts the network design 

used in our experiments. To make our setup closer to reality, we 

set up the domain server to act as: proxy server, DHCP server, 

and DNS server. We also allocated one PC to function as Oracle 

database server, one PC to function as web server, and one PC to 

provide a shared folder that hosts different software and 

documents. We increased the system comprehensiveness by 

installing Debian GNU/Linux 4.0 on one PC. Furthermore, 5 

students from IT specialty have been engaged to act as real 

network users. 

 

Fig 6: The experiment setup, two switched segments 

connected by a NetFlow enabled CISCO router 
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6.2 The Worms' Variants Used 
Two different types of worm variants were used throughout the 

research. First, we created semi-real variants of Slammer and 

Storm worms to use them in developing and testing the software 

system. We created the semi-real variants of these two worms 

by injecting the Assembly codes that are responsible for 

activating the worm into a customized program. The result was 

two worms without harmful parts.  Figure 7 gives an example of 

creating semi-slammer worm. The second set was 18 real-life 

variants obtained from a publicly available malware databases 

[27,30]. We used these variants in training and testing our 

algorithm. 

 

Fig 7: Assembly code that represents Slammer's Pseudo-

Random Number Generator injected into Delphi procedure 

6.3 Data Set 
Two different data sets were used, one for training and one for 

testing. The training data set was created by capturing 15 days 

NetFlow records. By more than 120 hours, we captured 125661 

NetFlow records and created 6017 feature patterns 50% of 

which were benign and 50% were malicious. On each capturing 

day, there were two working sessions. During the first session, 

we clean the network to ensure it is free of worms, and then we 

capture the benign traffic. In the second session, we inject 10 

worms to capture malicious traffic: CodeRed, Slammer, Sasser, 

Witty, Doomjuice, Sobig, NetSky, MyDoom, Storm and 

Conficker. See table 6 for more details about the data set used in 

the training phase.  

For testing, we used a data set of 1000 feature patterns created 

by capturing three days NetFlow records. First, we cleaned the 

network and captured 500 benign feature patterns. Then, we 

injected 11 real-life worms to create 500 feature patterns: 

Welchia, Dabber, BlueCode, Myfip, Nimda, Sober, Bagle, 

Francette, Sasser, MyDoom, and Conficker. 

6.4 Choosing the SVM kernel 
The kernel and its optimal parameter values are the key to 

success in building an accurate trained model. There are three 

kernels that are commonly used: Linear, Polynomial, and Radial 

Basis Function (RBF). All of these kernels have been used and 

they have demonstrated similar accuracies in the experiments. 

However, we have reached the same conclusion reported in [28], 

which is that the linear kernel is an ideal choice since it 

outperformed the other two kernels in terms of training and 

prediction times. 

 

Table 6 Monitoring and capturing of NetFlow records 

Day Beginning Time Ending Time Capturing Period NetFlow Records Sampling Period Feature Pattern 

25/05/11 10:27:18 17:20:00 6:52:42 5940 0:02:00 206 

26/05/11 10:01:00 17:31:00 7:30:00 8350 0:02:00 225 

28/05/11 9:55:00 18:16:54 8:21:54 5891 0:01:00 502 

29/05/11 10:15:12 17:35:35 7:20:23 6660 0:01:00 440 

30/05/11 9:59:14 18:25:10 8:25:56 7105 0:01:00 506 

... ... ... ... ... ... ... 

... ... ... ... ... ... ... 

07/06/11 10:05:45 18:00:00 7:54:15 9198 0:01:30 316 

08/06/11 9:36:30 18:02:00 8:25:30 9461 0:01:00 506 

09/06/11 9:28:00 18:10:00 8:42:00 9482 0:01:30 348 

11/06/11 9:51:43 18:15:00 8:23:17 9332 0:01:00 503 

   Total 125661  6017 
 

7. EVALUATION 
To evaluate the SVM classifier, we repeated the test phase two 

times with same data set of 1000 feature patterns 50% of which 

were benign and 50% were malicious. Unlike the first test, the 

second one was preceded by a refinement process for the NetFlow 

records captured. The refinement process aimed at excluding the 

following unneeded traffic which was observed during the first 

test: 

1. Traffic that was initiated by the router interfaces. 

2. Traffic that was initiated by outsider IP addresses and 

destined to the DNS server, and 

3. Traffic that was initiated by DNS in response to these 

outsiders IP addresses. 

After the first test we found that involving the unneeded traffic in 

producing the feature patterns will greatly affect the accuracy of 

the SVM classifier. We excluded them by monitoring the DHCP 

server log file. According to Microsoft, typically, the DHCP logs 

are saved as text files in the folder of "C:\WINNT\System32 

\DHCP" on DHCP servers with naming format of "DhcpSrvLog-

*.txt". From this log file we created a dynamic "node-living list" 

by collecting the event IDs: 10 (new lease) and 11 (renew a lease) 

periodically. Any traffic initiated by a node that is not listed in 

"node-living list" will be excluded.  
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Refining NetFlow records to create feature patterns is the most 

influential factor on the classifier accuracy. To demonstrate level 

of influence of refinement process, we draw for each PC the false-

positive (FPV) and the false-negative (FNV) rates resulted by test 

phase 1 and phase 2 in figures 8 and 9 respectively. The upper 

curves show the FPV and FNV rates before the process of 

refinement, while the lower curves show the new values of FPV 

and FNV rates after the refinement process. 
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Fig 8: False-positive rates resulted before and after the 

refinement process for each PC 

0.12

0.11

0.10

0.14

0.18

0.02

0.01

0.00 0.00

0.01

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

PC1 PC2 PC3 PC4 PC5

FNV Rate before refining FNV Rate after refining  

Fig 9: False-negative rates resulted before and after the 

refinement process for each PC. 

Table 7 shows the results of computing the percentage change 

positively in the values of FPV and FNV rates. It is noticeable 

that the refinement process has improved the results of the tests 

where a 100% percentage change has been achieved in some PCs. 

Table 7 The improvement in FPV and FNV rates after 

performing the refinement process 

PCs 1 2 3 4 5 

FPV Improvement  61% 89% 86% 100% 96% 

FNV Improvement 83% 92% 100% 100% 94% 

 

We can justify the presence of small rates of FPV and FNV to 

unusual situation caused by one user. An Oracle user has replaced 

the host parameter name of the tnsnames.ora file with an IP 

address and launched multiple nested SQL queries. As a result, 

the client PC generated a number of DNSANO close to the 

number of DNSANO created by the Sasser and MyDoom worms. 

However, this scenario is totally unusual as the humans tend to 

remember the names rather than the numeric IP addresses. Apart 

from this scenario, all the activities of other worms have been 

detected successfully by our system as the FPV and FNV rates are 

close to nil, see figure 10. 
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Fig 10: False-negative and false-positive rates for each worm, 

the high rates of FNV & FPV that resulted from unusual 

situation are in detection of Sasser and MyDoom  

8. CONCLUSION AND FUTURE WORKS 
In the worm detection research field, the machine learning and IP 

flow techniques show encouraging outcomes. We have 

investigated the optimal leveraging of the effectiveness of SVM 

and the reliability of NetFlow data captured. We have 

demonstrated that the captured NetFlow data, after being properly 

sampled and analyzed, can be used for setting an alarm for a 

worm attack and consequently identifying the source of the 

suspicious payloads. In particular, we have addressed the problem 

of dealing with huge amount of NetFlow data to create feature 

patterns that identify the worms' flows uniquely. We have 

introduced a method of automatically generating worm variants 

by merging the instructions of Assembly and Delphi 

programming languages. This method has been applied to 

generate undamaging variants of Slammer and Storm worms used 

in testing the software system developed. 18 real-life worms were 

involved in the training and testing phases. The evidence of our 

approach's reliability was shown in the successful way of dealing 

with legitimate traffic that does not rely on DNS queries and 

could be originated by either normal users or network 

applications. Our future work will focus on enhancing the feature 

patterns and increasing the instances of the training and testing 

data sets to detect P2P worms and Instant Messaging worms. 
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