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Viscoelastic Fluid Flow past an Infinite Vertical Plate 
with Heat Dissipation 

 

 

 

 

ABSTRACT 
In this paper the effect of Viscoelastic fluid flow past an 

infinite plate with heat dissipation is investigated. The 

dimensionless governing equations are solved using 

perturbation technique. The analytical results for velocity and 

temperature and there different parameters such as Prandtl 

number, Eckert number and Viscoelastic parameter number 

are studied. It is observed that the velocity decreases with 

increasing material parameters Pr, Ko and Ec. While 

temperature increases with increasing material parameters Pr 

and Ec. Only the increase of Viscoelastic parameter Ko 

decreases the temperature. The skin friction and Nusselt 

number tends to increase with the increase of material 

parameter in both tables while the Nusselt number decreases 

with only increase in Eckert number. 

  

Keywords: heat dissipation, Viscoelastic, infinite plate 

1. INTRODUCTION 
Of all the fluid Properties, viscosity requires the greatest 

consideration in the study of fluid flow. Loundin Prandtl in 

20th century gives a new dimension to fluid mechanic by 

introducing viscosity and thus unifying hydraulics and 

theoretical hydrodynamics. 

In many of the studies carried on hydromagnetic flow of a 

radiating gas inside a vertical channel or the boundary layer 

problem the effect of this viscous dissipation term in an 

unsteady state was often neglected. From practical point of 

view the effect of this heat dissipation function cannot be 

ignored because of its important in many flow problems. It 

serves as a source of „Geodynamic‟ heating and of the 

temperature rise that occurs in the lubricant in bearings. 

Also in most work, fluid properties (such as viscous and 

thermal conductivity) are in most cases considered constant 

when the flow of Radiative fluid is considered. In practical 

point of view the effect of viscous dissipation upon the 

temperature distribution is relatively small for many of the 

low – velocity Process. However, in process involving a 

dynamic temperature which is comparable to the imposed heat 

transfer temperature difference, the effect of viscous 

dissipation may not be ignored. Boundary layer theory has 

been used to analyze the effect of viscous dissipation for both 

compressible and incompressible flows. The study of visco-

elastic fluids had become of increasing importance in the last 

few years. Qualitative analyses of these studies have 

significant bearing on several industrial applications such as 

polymer sheet extrusion from a dye, drawing of plastic films 

etc. When the manufacturing process at high temperature need 

cooling the stretching sheet, the flows may need visco-elastic  

 

 

fluids to produce a good effect to reduce the temperature from 

the sheet. And also, the fluids have processed many types of 

effects (i.e. magnetic force, buoyancy and mass diffusion) into 

the Problem, and have become a hybrid system need to 

analysis by many different ways. Hsiao (2010) performed a 

study on heat and mass transfer of a steady laminar boundary-

layer flow of a viscous flow past a nonlinearly stretching 

sheet. Fonsho (2004) identified the effect of viscous 

dissipation functions with a view to assessing their global 

contribution to velocity, temperature and magnetic flow 

distributions of the fluid flow. Sen (1977) studied the 

behaviours of unsteady free convective flow of an elastics-

viscous fluid past an infinite, porous plate with constant 

suction. It is assumed that the plate temperature oscillates in 

magnitude about a constant mean but not in direction. Free 

convective flow of a viscous incompressible flow past an 

infinite vertical oscillating plate with variable temperature and 

uniform mass diffusion is studied by Muthucumaraswany 

(2010). Ahmad (2010) carried out a study on MHD and 

chemical reaction effects on unsteady flow, heat and mass 

transfer characteristics in viscous, compressible and 

electrically conduction fluid over a semi-finite vertical porous 

plate in a slip-flow region. Ganesan and Luganathen (2002) 

presented numerical solution of a transient natural convection 

flow of an incompressible viscous fluid past an impulsively 

started semi-infinite isothermal plate with mass diffusion. 

Ghaly and Seddeek (2004) analyzed the effect of variable 

viscosity; chemical reaction, heat and mass transfer on 

Laminar flow along a semi-infinite horizontal plate. 

Muthucumaraswamy and Ganesan (2002) studied numerically 

the transient incompressible viscous fluid flow regime past a 

Semi-Infinite Isothermal plate under the conditions of natural 

convection. Mululani (2000) studied the Laminar natural 

convection flow over a semi-infinite vertical plate at constant 

species concentration. They found that in the absence of 

chemical reaction, a similarity transfer is possible, when 

chemical reaction occurs, perturbation expansions about an 

additional similarity variable dependent on reaction rate most 

be employed. The study of unsteady hydro magnetic free 

convection flow of viscous incompressible and electrically 

conducting fluid pass an infinite vertical porous plate in the 

Presence if constant suction and heat absorbing Sinks has 

been study by Sahoo et al. (2003). Anwar and Ghosh (2009) 

studied the steady and unsteady magneto hydrodynamic 

(MHD) viscous, incompressible free and forced convective 

flow of an electrically – conducting, Newtonian fluid in the 

Presence of appreciable thermal radiation heat transfer and 

surface temperature oscillation. 

Soundalgekar (1965) has studied analytically the magneto 

hydrodynamic viscous flow due to uniformly accelerated 

motion of an infinite flat plate in the presence of a magnetic 

field fixed relative to the plate sharing that the velocity at any 
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point and at any instant decreases with a rise in magnetic field 

strength. Modether et al. (2001) present the solution of 

problem of heat and mass transfer of an oscillatory 2-

dimensional viscous. Seddeek and Almushigeh (2010) 

investigate the effect of radiation, chemical reaction and 

variable viscosity on hydro magnetic heat and mass transfer in 

the presence of magnetic field. 

Sunil et al. (2005) have shown that when effect of variable 

viscosity are taken into consideration, the critical Rayleigh 

number for the onset of convection is substantially reduced 

from the classical value, although the associated wave number 

is nearly the same. Seddeek et al. (2010) has studied the effect 

of chemical reaction and variable viscosity on hydro magnetic 

mixed convection heat and mass transfer for Hiemenz flow 

through porous media with radiation. Pantokratoras (2004) 

has examined the variable viscosity on flow and heat transfer 

to a continuous moving flat plate. Suneeth et al. (2008) 

analyzed the thermal radiation effects on hydro magnetic free 

convection flow past on impulsively started vertical plate with 

variable surface temperature and concentration, taking into 

account the heat due to viscous dissipation. 

Viscous mechanical dissipation effects are very important in 

geophysical flows and also in certain industrial operation and 

are usually characterized by the Eckert Number. Mahajan and 

Gebhart (1989) reported the influence of viscous heating 

dissipation in natural convective flows, showing that the heat 

transfer rates are reduced by an increase in the dissipation 

parameters. The influence of viscous dissipation and radiation 

on an unsteady MHD free convection flow past an infinite 

heated vertical plate in porous medium with time dependent 

suction was studies by Cookey et al. (2008). Zueco (2007) 

used network simulation method (NSM) to study the effects 

of viscous dissipation and radiation on unsteady MHD free 

convection flow past a vertical porous plate. Panda et al. 

(2003) here analyzed the unsteady free convective flow and 

mass transfer of a rotating elastico viscous liquid through 

porous media past vertical porous plate. Soundalgekar et al. 

(1999) here analysed the transient free convection flow of a 

viscous dissipation fluid past a semi-infinite vertical plate. 

Chaudhary and Jain (2007) studied the behaviours of unsteady 

hydro magnetic flow of a Viscoelastic fluid from a Radiative 

vertical porous plate. Brinkman (1947) estimated the viscous 

force imparted by a flowing fluid in a dense swarm of 

particles. Recently Cortell (2007) investigated theoretically 

the effect of viscous dissipation as well as radiation on the 

thermal boundary layer flows over non-linearly stretching 

sheets considering prescribed surface temperature and heat 

flux. Raptis and Perdikis (2006) studied numerically the 

steady two dimensional flow of an incompressible viscous and 

electrically conducting fluid over a non-linear semi-infinite 

stretching in the Presence of a chemical reaction and under the 

influence of magnetic field. Rajagopal et al. (1983) studied a 

Falkner-Skan flow field of a second-grade visco-elastic 

fluid.Shit and Haldar (2010) investigated the effects of 

thermal radiation and Hall current on magneto hydrodynamic 

free-convective flow and mass transfer over a stretching sheet 

with variable viscosity in the Presence of heat 

generation/absorption.  Rapits and Perdikis (1998) and Rapits 

(1998) studied respectively the flow of a visco-elastic fluid 

and micropolar fluid past a stretching sheet in the Presence of 

thermal radiation. Mukhopadhaya et al. (2005) investigated 

the Problem of MHD boundary-layer flow over a heated 

stretching sheet with variable viscosity. However; Salem 

(2007) investigated the effect of variable viscosity on MHD 

Viscoelastic fluid flow and heat transfer over a stretching 

sheet without considering thermal radiation effect. Shit and 

Haldar (2009) carried out the study of the effect of thermal 

radiation on MHD Viscoelastic fluid flow past a stretching 

surface with variable viscosity. Seddeek et al. (2007) analyzed 

the effects of chemical reaction, radiation and variable 

viscosity on hydromagnetic mixed convection heat and mass 

transfer. Nasrin and Alim (2009) studied the effects of 

temperature dependent viscosity and thermal conductivity on 

the coupling of conduction and Joule heating with MHD free 

convection flow along a semi-infinite vertical flat plate has 

been analyzed. Mamun et al. (2007) considered combined 

effect of conduction and viscous dissipation on MHD free 

convection flow along vertical flat plate. Alim et al. (2008) 

studied the combined effect of viscous dissipation and Joule 

heating on the coupling of conduction and free convection 

along a vertical flat plate. Molla et al. (2009) considered the 

natural convection laminar flow with temperature dependent 

viscosity and thermal conductivity along a vertical wavy 

surface. Numerical study on a vertical plate with variable 

viscosity and thermal conductivity has been reported by 

Palani and Kim (2010). Rajagopal (1983) investigated the heat 

transfer in the forced convection flow of a visco-elastic fluid 

of Walters's model. Chowdhury et al. ((2000) studied the 

MHD free convection flow of visco-elastic fluid past a 

vertical porous plate. 

This present work extends the work of Ramdas Sen (1977) to 

include viscous dissipation on the natural convection flow of 

an incompressible fluid flow past an infinite vertical plate. 

The equations were solved by perturbation technique and the 

solutions were obtained for velocity and temperature. We 

discuss the effect of the material parameters involved on the 

flow and compute the skin friction at the wall and rate of heat 

transfer.  

2. PROBLEM FORMULATION  
We consider the origin to be taken at any point in the plate as 

Sen. (1977). The X  -axis is chosen vertically upwards and 

the Y  -axis perpendicular to it. U  is the velocity in the X  -

direction and V  , the normal to the plate; t  is the time 

variable: 
0

the limiting viscosity at small rate of shear; and 

0k the elastic constant. fx
 is acceleration due to gravity:   

the coefficient of expansion; CP
, the specific heat at constant 

Pressure ,  the thermal conductivity ; T  the temperature  

far away from the plate while the normal component is 

,0  where 0  is the constant velocity . The governing 

equations are given in equation (1 to 4) with boundary 

condition and assume solution respectively. It is assumed that 

heat dissipation is taken into consideration while viscous 

assumed neglected. Velocity follows the exponential increase 

or decrease of perturbation law. It is also assumed that the 

plate temperature and suction velocity varies exponentially 

with time. The governing equations are represented by the 

continuity equation, momentum and energy equations. 

0
y

 



                                                                                (1) 
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Where  is thermal conductivity, 0k is the elastic parameter, 

U  is the velocity, t  is the time variable, 
0

the limiting 

viscosity, fx
 is acceleration due to gravity,   the coefficient 

of expansion, CP
 the specific heat at constant pressure and 

T  the temperature  far away from the plate. 

 
0, 0

0,

u T T at yt

u T as y


     

      



   

                                           (5)                                                                                                                                                                                                                  

To obtain the constant suction velocity 
0

we integrate (1)  

0                                                                                   (6)                                                                                                                                        

The dimensionless variables and parameters of the problems 

are 

 
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                      (7)                                                                                                                                       

Substituting (6) and (7) into equation (2) to (5). We obtain the 

following equations  

2 3 3
1 1

02 2 3
4 4

u u u u u
k T

y ty y t y
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 
 
 

             (8)                                                                               
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           (9)                                                         

 

Subject to the boundary conditions   

 
0, 0

0,

u T T at yt

u T as y

  

    





                                        (10)                                                                                                                       

Where Pr is Praandtl number, Ec is Eckert number, k0 

Viscoelastic parameter, T represents the temperature and R is 

a constant which is taken as one (1) for convenience 

throughout the work.   

To solve the above system of partial differential equations (8) 

and (9) subject to  boundary conditions (10), let the 

temperature and the velocity on the neighborhood of the plate 

Pop ( 1968)  be taken as 

       , 1 11 2
i t

T y t Q y e Q y


                   (11)                                                                                 

     , 1 2
i t

u y t S y e S y


                                       (12)                                                                                                         

Substitution of  (11) and (12) into (9) and (10) we obtain the 

following ordinary differential equations by collecting and 

comparing the harmonic terms and neglecting the coefficients 

higher order of
   . .

e ,    

2
1 1 1 0 1 2Q PrQ PrE S Prk RS Sc                                    (13)                                                                                              



1 2

2 1 22 2 2
4 4

0 1 2 1 24

i i Pr
Q PrQ PrQ Pr E S Sc

k RS S RS S
R

S S

 
       

                 (14)

                        

10 1 1 1 1k S S S Q                                                      (15)                                                                                                                 

0
1 10 2 2 2 2 2

4

k
k S S S S Q       

 
 
 

                       (16)                                                                                                         

and the corresponding boundary conditions are 

0 , 0 01 1 2

1, 1, 0, 01 2 1 2

Q Q S S at y

Q Q S S as y

    

                (17)                                                                     

 

To solve equations, we shall use the perturbation technique 

employed by Soundalgekar (1971) for non-magnetic case. The 

aim is that when Ec = 0, Equation (3) reduces to Newtonian 

fluid flow. When the solutions of (13) to (17) are expanded in 

powers of the small parameter Ec, the zero-order terms will be 
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those of Newtonian case. We assume, therefore, the solution 

of (13) to (17) to be expanded in power of Ec, where Ec is 

small. Hence    

,1 11 11 2 20 22S S E S S S E Sc c                                 (18)                                                                                                                                                                                                                    

,1 10 11 2 20 22Q Q E Q Q Q E Qc c                           (19)                                                                                                                                                                                                               

Collecting and comparing the harmonic terms and neglecting 

the coefficients of the higher order of
 .

Ec in (13) to (17), we 

obtain the following   
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 The boundary conditions are 
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Next we further reduce the ordinary differential equation 

using the following assume solution Soundalgekar, (1971) by 

expanding on power of k0, where k0 is small as follows.   
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Using (28) and (29) in equations (20), (21), (22), (23), (24), 

(25), (26), (27),with boundary condition (28) and (29), by 

collecting and comparing the harmonic terms and neglecting 

the coefficient the higher order of
 .

k , we obtain the 

following;  
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                                      (42)                                                                 (45) 

2 23 3 3 0 1 1 0
4

0 2 0 2 2 0
4

0 2 2 0

i Pr
b Prb b Prh C Prh C

PrR
h C PrRh C PrRh C

PrRh C PrRh C


        

       

   

                (43)                            
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2 2 2 2C C C b                                                                (44)                                                                                                            

(47)
2

2 3 3 3 3
4

C
C C C C b


        (45)                                                                                                               

Subject to the boundary conditions  

0 00 1 2 3 0 1 2 3

, , , , , , , 00 1 2 3 0 1 2 4

h h h h C C C C at y

h h h h C C C and C as y

        

  





 (46)                                  

and 

0 00 1 2 3 0 1 2 3

1, 0, 0, 0, 1,0 1 2 3 0

2, 0, 01 2 3

L L L L b b b b at y

L L L L b
as y

b b b

        

     
 

   





  (47)                         

 

The velocity and temperature profiles are as follows 

 

 
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   
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   

   
  

 

3 2
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    
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( 1)
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( 2) ( 1) ( 2)
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(48)                   
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  (49) 

Where  
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1

1 1 1 5
2 2

Pr
z i and n

Pr
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The skin friction expression is; 

   
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       (50)

 

The constant ,1 1 24G H H  are constants too long to 

present 

While the Nusselt number is expressed as; 

 
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 
 
 
 
 
       (51)

                                   

 

3. RESULTS AND DISCUSSION  
For numerical validation of our analytical results, we have 

taken the real part of the results obtained in equation (48) to 

(51). 

In Figures 1 to 3 the variation of velocity field along y-axis 

are shown, the effects of Prandtl number (Pr = 0.6, 0.63, 0.66, 

0.7), Viscoelastic parameters (k0 = -0.012, -0.008, -0.004, 0) 

and Eckert numbers (Ec = 0, 0.012, 0.014, 0.016) were 

indicated. The velocity decreases with the increase of Prandtl 

Pr in Figure 1. The varying values of viscous parameter  k0,  in 

increase order decreases the velocity as indicated in Figure 2. 

Increasing   Eckert number decreases the velocity as in Figure 

3. Figures 4 to 6 shows the temperature profiles. Temperature 

increases with increase on Prandtl number (Pr = 0.6, 0.71, 

0.85) in figure 4. The increasing effect of Eckert number (Ec 

= 0, 0.12, 0.14, 0.1) also increases the temperature in Figure 5. 

In Figure 6 the increase of Viscoelastic parameter (k0 = 0, 0.4, 

0.8, 1.2) has an opposing influence on the temperature. 
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Table 1 depicts the effects of the Prandtl number Pr, Eckert 

number Ec, and Viscoelastic parameter 0k  on skin friction 

coefficients parameter . It is observed from table 1 that as 

Ec, Pr and 0k  increases the skin friction increases. 

The effects of the Prandtl number Pr, Eckert number Ec, and 

Viscoelastic parameter 0k , on the Nusselt number Nu are 

given in Table 2. It is seen from this table that as Ec and 0k

increases, the Nusselt number increase whereas the Nusselt 

number decrease as Pr increases.      

 

Figure 1; Velocity profile for different values of Prandtl 

number 

 

 Figure 2; Velocity profile for different values of 

Viscoelastic parameter. 

 

    Figure 3; Velocity profile for different values of Eckert 

number. 

 

Figure 4; temperature profile for different values of 

Prandtl number 

 

Figure 5; temperature profile for different values of 

Eckert number 



 International Journal of Computer Applications (0975 – 8887) 

Volume 36– No.2, December 2011 

 

23 

 
Figure 6; temperature profile for different values of 

Viscoelastic parameter 

Table 1: Values of the Skin friction 

 

S/NO. Pr Ec R 
0k  

  

1 0.71 

0.71 

0.71 

0.04 

0.08 

0.12 

1 

1 

1 

0.02 

0.02 

0.02 

4.1138 

9.7780 

15.4422 

2 0.71 

0.71 

0.71 

0.04 

0.04 

0.04 

1 

1 

1 

0.04 

0.08 

0.12 

8.9115 

18.5069 

37.6979 

3 0.60 

0.71 

0.85 

0.04 

0.04 

0.04 

1 

1 

1 

0.02 

0.02 

0.02 

0.9992 

4.1138 

37.3304 

 

Table 2: Values of the Nusselt Number    
 

S/NO. Pr Ec R 
0k  Nu  

1 0.71 

0.71 

0.71 

0.04 

0.08 

0.12 

1 

1 

1 

0.02 

0.02 

0.02 

0.6896 

0.4522 

0.2147 

2 

 

 

0.71 

0.71 

0.71 

0.04 

0.04 

0.04 

1 

1 

1 

0.04 

0.08 

0.12 

0.1663 

0.8801 

1.9266 

3 0.60 

0.71 

0.85 

0.04 

0.04 

0.04 

1 

1 

1 

0.02 

0.02 

0.02 

0.6454 

0.6896 

0.8492 

 

4.CONCLUSION 
This paper studied Viscoelastic fluid flow past an infinite 

vertical plate with heat dissipation. The dimensionless 

governing equations are solved using perturbation technique. 

The effect of different parameters such as the thermal Prandtl 

number, Viscoelastic parameter and Eckert number are 

studied. The conclusions of the study are as follows. 

  The increase of material parameters result to 

the decrease of the stream wise velocity. 

 The temperature field increases with the 

increase of the material parameters. 

 Only the increase of Viscoelastic parameter k0 decreases 

the temperature. 

 The skin friction and Nusselt number tends to increase 

with the increase of material parameter in both Table 1 

and 2 while the Nusselt number decreases with only 

increase in Eckert number on table 2. 
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