
International Journal of Computer Applications (0975 – 8887)

Volume 36– No.10, December 2011

37

Graph based Prediction Model to Improve

Web Prefetching

 P.Venketesh R.Venkatesan

Assistant Professor (SG) Professor and Head
 Department of CIS Department of CSE

 PSG College of Technology PSG College of Technology
Coimbatore, India Coimbatore, India

ABSTRACT

Web prefetching is an effective technique used to mitigate

the user perceived latency by making predictions about the

user’s future requests and prefetching them before the user

actually demands them. In this paper, we present an

algorithm that learns from user access patterns and builds a

Precedence Graph (PG) that is used to generate the

predictions. The difference in the relationship between

objects of the same web page and the objects of different

web pages are reflected in the graph implementation. It uses

simple data structure to implement the graph, which is cost

effective and consumes less computational resources. The

proposed approach significantly improves the performance

of web prefetching by utilizing limited amount of resources

as compared to other existing algorithms used for

prefetching.

General Terms
Web Mining, Prefetching

Keywords
Web prefetching, web prediction, access latency, precedence

graph

1. INTRODUCTION

The enormous growth of World Wide Web and the

development of new applications and services have

dramatically increased the number of users, resulting in

increased global traffic that damages the quality of service

(availability, reliability, security) and the latency perceived

by the users. Web prefetching is a technique that is widely

used to reduce the user perceived latency. It exploits the

spatial locality inherent in the user’s accesses to the web

objects. It uses prediction techniques to process the past user

requests and generate useful hints, which are used to

download the web objects and store it in cache before they

are actually requested by the users. The task of predicting

user’s navigational behavior has been used in various

applications such as web caching, web page

recommendation, web search engines and personalization.

Prefetch systems are designed to generate the web

predictions based on different criteria such as access

patterns, object popularity and structure of accessed web

documents. Based on the type of content used for gathering

the web information, they are categorized as: web content,

web structure and web usage mining techniques.

In the basic web architecture that comprises of server, proxy

and client, the prediction and prefetching engine can be

located in any component to deliver the prefetch service to

the users. In most cases [4, 11, 23, 24], the web server holds

the prediction engine and is responsible for generating the

predictions and providing it to the clients. The client holds

the prefetching engine that uses the predictions to decide the

web objects to be prefetched during the browser idle time.

When user selects a hyperlink in the currently viewed web

page or types a URL for a new web page, and if the

requested web page is available in the cache due to

prefetching, then it reduces the web page access time

observed by the user.

In this paper, we present a prediction model that builds a

Precedence Graph (PG) from user access patterns to predict

the future accesses of users. The precedence relation is

observed by considering the object URI and referrer in each

user request; i.e. referrer representing the source of link

precedes the requested web object. The algorithm also

considers the characteristics of current websites when

constructing the graph by differentiating the dependencies

between objects of the same web page from objects of

different web pages. The graph uses simple data structure for

its implementation and provides good prefetching

performance with minimal resource consumption.

The remaining of this paper is organized as follows. Section

2 presents the previous related work. Section 3 describes the

methodology for building the Precedence Graph that is used

for generating the predictions. Section 4 discusses the

experimental environment and section 5 analyzes the

experimental results. Finally, section 6 presents conclusion

of the paper.

2. RELATED WORK

Several research activities has been carried out in the

concept of web prefetching, which aimed to minimize the

user perceived latency by prefetching web objects before the

user requested them. The important task in web prefetching

is to build an effective prediction model and the data

structure for storing selective historical information. A

server side prefetching approach that used dependency graph

to represent the access patterns of users and make

predictions based on it was presented in [1]. The server

dynamically updated the dependency graph based on the

client access patterns. To characterize the user behavior and

predict user’s next actions, two models were presented in [2]

based on random walk approximation and digital signal

processing techniques. In [3] a methodology was presented

to build sequence prefix tree (path profile) based on the

HTTP requests from the server logs. It used the longest

matched most-frequent sequences to predict the user’s next

requests. A top-10 prefetching approach was proposed in [4]

that allowed servers to push popular documents to the

proxies at regular intervals based on the client’s aggregated

access profiles. In [5] a proxy-initiated prefetching technique

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.10, December 2011

38

was proposed that used Prediction-by-Partial-Matching

(PPM) algorithm to generate the predictions.

The prefetching of web documents based on the estimated

round-trip retrieval time was presented in [6]. The technique

was limited to prefetch only the static web pages. In [7] a

model based on data mining concept was proposed to

capture the user navigation behavior patterns, where the high

probability strings represented the user’s preferred trails.

Use of Markov chains to build a probabilistic sequence

generation model was proposed in [8], which predicted next

requests based on the history of access requests from clients.

Based on the popularity of URL access patterns a PPM

model was designed in [9] that generated accurate

predictions and efficiently managed the storage space than

the standard PPM model. In [10] a framework was

presented to demonstrate the web prefetching algorithms

based on Markov predictors. A novel non-intrusive web

prefetching system was developed in [11] that utilized only

the spare resources to perform prefetching and thereby

avoided interference with the demand requests from user.

The use of prefetching in a wide area network (WAN) was

presented in [12], which suggested that if applied at the edge

network connection it provided maximum efficiency. In [13]

several techniques were proposed to select parts of different

order Markov models to create a new model with reduced

state complexity and improved prediction accuracy. New

models based on Markov probabilistic techniques were built

in [14] to examine the issues when predicting the web

requests. It considered the information from user access

history and web page content to accurately predict the user’s

next request.

The impact of web prefetching architecture in reducing the

user perceived latency was analyzed in [15]. It addressed

two main issues: a) Identifying best architecture to perform

prefetch and b) providing insight into the efficiency of

system. In [16,17] a prediction algorithm based on Double

Dependency Graph (DDG) was proposed that considered the

characteristics of current web sites to improve the web

prefetching performance. It was based on the Dependency

Graph (DG) algorithm [1], but able to differentiate the

dependencies between objects of the same page and objects

of different pages. A new web prediction algorithm based on

Referrer Graph (RG) was proposed in [18] as a low-cost

solution to predict user’s next access. The graph was built

using the user’s access requests by considering the Object

URI and the referrer in each request. It minimized the

number of arcs used in the graph compared to DG and DDG

mechanisms.

In [19] a cost-benefit analysis was carried out to compare the

prefetching algorithms from the user’s view point.

Performance difference among prediction algorithms were

mainly due to the size of predicted objects. A new approach

called Prediction at Prefetch was proposed in [20] that

allowed prediction algorithm to provide hints for both

standard object requests and the prefetching requests. In [21]

a novel PPM prediction model was developed based on

stochastic gradient descent to perform web prefetching. It

considered various factors such as page access frequency,

prediction feedback, context length and conditional

probability.

3. PREDICTION MODEL

The proposed prediction model builds a Precedence Graph

(PG) to represent the user access patterns by creating arcs

(links) from one node (web page) to one or more other nodes

(web pages). Each arc in the graph has a transition weight

associated with it that represents the association between the

predecessor and successor nodes. When user requests for a

particular web page, it is used to update the graph by adding

a new node or arc; else increment the transition weight of

existing arc and occurrence count of the nodes. The graph is

then used to provide predictions (hints) for a user request by

analyzing the transition weights of arcs associated with this

request. It considers the arcs with transition weights greater

than the threshold value to supply the predictions. The

prediction (hint) list is then provided to the prefetching

engine residing at the client machine to prefetch the web

objects from the server during browser idle time.

3.1 Precedence Graph

The graph structure is built using algorithm (Figure 1) that

learns from user access patterns to predict the future

accesses.

Input:

 Precedence Graph (PG)

 Requested object & Referrer in the request

 Object MIME type

Output:

 PG with updated information

Step 1:

 Adding new node (or) Updating existing node

 x→ node

Find x Є graph that matches with the requested object.

If x available, then

 x occurrence ← x occurrence + 1

else

 x ← new node representing the requested object

 x occurrence =1

 end if

Step 2:

 Adding new arc (or) updating existing arc

y→ node

Find y Є graph that matches with the referrer in user

request.

 If y available, then

 Find arc yx, transition from node y to x

 If yx available, then

 yx occurrence ← yx occurrence + 1

 else

 yx ← new arc from y to x

 yx occurrence = 1

 end if

 else

 no arc added or updated in the graph

 end if

Compute the transition confidence of all arcs from node y

 arc transition confidence ← arc occurrence / y occurrence

Figure 1: Algorithm for building Precedence Graph

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.10, December 2011

39

Figure 2: Precedence Graph

Each user requested web object is represented as a node in

the graph and its occurrence count get incremented each

time the user requests the same web object. The arcs

between the nodes represent the transition from one web

object to another. A web object (B) will be requested by the

user from a source web object (A) i.e. B depends on A (A →

B, A precedes B). The HTTP referrer recorded in the access

log file for each user request represents the source of the

web object being requested. Based on the referrer

information available for each web request, an arc is created

from the source node (referrer) to the requested node

(successor). The arc weight represents the transition

confidence of moving from the predecessor node to the

successor node.

A web page consists of a main object (demand requested by

the user) referred to as the primary and many embedded

objects called as secondary objects. The graph shown in

Figure 2 contains two types of node: primary and secondary.

The primary nodes are used to represent the web objects that

are demand requested by the users, while the secondary

nodes are used to represent the embedded web objects that

are requested by the web browser. The arcs between two

primary nodes are termed as primary arcs and those between

the primary and secondary nodes are termed as secondary

arcs.

The graph is initially empty and is built and updated through

a learning process. Each node in the graph maintains

information such as: object URI, node type, occurrence

count, list of primary and secondary arcs. Each arc maintains

information such as: destination URI, arc type, occurrence

count and transition confidence. The node occurrence

indicates the number of requests to the represented web

object and the arc occurrence indicates the number of

requests to the successor node from the predecessor node.

The arc transition confidence is computed by dividing the

arc occurrence with predecessor node occurrence.

The graph is dynamically updated whenever new user

requests are received and it involves the following steps:

a) Increment the node occurrence if the user requested

web object finds a matching node; else a new node

representing the web object is added with its

occurrence count initialized to one.

b) Increment the arc occurrence if it already exists in the

graph; else a new arc is added with its occurrence count

initialized to one.

 The graph size is restricted by removing the nodes that are

least representing the user access sequence and not

important to the prediction process.

3.2 Prediction process

When user demands a web page identified by its URI, the

web browser first requests the primary object of that page

and then gets the secondary objects from the server or from

the local cache. The perfect prediction algorithm [22] needs

to report three main types of hints for each web page:

primary object of the next web page to be requested by the

user, secondary objects present in that next page, and the

next pages.

In our model, the predictions (hints) are generated for a user

requested web object if it finds a matching node in the

graph; else no hints are generated. The steps for generating

the hint list are:

a) Find primary node in the graph that matches with the

user request.

b) If primary node exists, analyze all the primary arcs

associated with that node. Arcs having transition

confidence greater than or equal to the threshold value

are selected.

c) Object URI’s stored in the primary nodes linked to the

arcs selected in step (b) are added to the hint list and

arranged based on their confidence value (high to

low).

d) Analyze the secondary arcs associated with the

primary nodes used in step (c). Arcs having transition

confidence greater than or equal to the threshold value

are selected.

e) Object URI’s stored in the secondary nodes linked to

the arcs selected in step (d) are added to the hint list

and arranged based on their confidence value (high to

low).

f) Hint list now comprises of the object URI’s of both

primary and secondary nodes. It is given as input to

the prefetching engine for downloading the web

objects.

3.3 Prefetching

When prefetching engine receives the hint list, it

automatically starts downloading the hinted web objects

during the browser idle time to avoid interfering with regular

user requests. It determines whether a web object is eligible

for caching by checking its MIME type in the HTTP

response header. The prefetched objects are stored

separately in a prefetching cache without disturbing the

existing objects in regular cache, which helps to improve the

hit rate.

Secondary Node

Primary Node P1.html

P2.html

P3.html

P1.gif

P2.jpg

Primary Arc

Secondary Arc

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.10, December 2011

40

Figure 3: Precedence Graph for the user requests in Table 1

Figure 4: Precedence Graph implemented as Adjacency Map

If a hint is already available in the regular or prefetch cache,

then it will not be prefetched. When a new web page is

demand requested by the user, then prefetching of the hints

get terminated. When client does not use prefetching, then

the requested web object will be served from the local

(regular) cache or proxy cache or from the web server.

3.4 Working Example

The working of proposed prediction model is illustrated

using sample web requests in a client session as shown in

Table 1. The precedence graph generated using the web

requests of Table 1 is shown in Figure 3. The primary and

secondary nodes are represented with Object URI and their

occurrence count. The primary and secondary arcs are

represented with their occurrence count.

The graph shown in Figure 3 is implemented using the

adjacency map as shown in Figure 4, with primary nodes of

the graph stored as keys in the map and the edges (arcs)

starting from each node stored as a list associated with

appropriate key in the map. The secondary nodes of the

graph are not stored as keys in the map, since in most cases

they don’t act as the source for a new web link. The

elements of the list are represented with three fields: Object

URI is represented in the first field, occurrence count of the

element is represented in the second field and the transition

confidence of the list element is represented in the third

field.

i.e. p1.gif = 3/3 =1, p2.html = 2/3 = 0.6, p4.html = 1/3 = 0.3

Table 1: sample web requests in a client session

Requested URI Referrer of URI

/P1.html -

/P1.gif /P1.html

/P1.jpg /P1.html

/P2.html /P1.html

/P2.jpg /P2.html

/P3.html /P2.html

/P3.jpg /P3.html

/P3.gif /P3.html

/P1.html /P3.html

/P1.gif /P1.html

/P1.jpg /P1.html

/P4.html /P1.html

/P4.png /P4.html

/P4.jpg /P4.html

/P5.html /P4.html

/P1.html -

/P1.gif /P1.html

/P1.jpg /P1.html

/P2.html /P1.html Transition Confidence =
 arc occurrence count

 node occurrence count

Value Key

P1.html 3

P2.html 2

P3.html 1

P4.html 1

P1.gif 3 1 P1.jpg 3 1 P2.html 2 0.6

 P2.jpg 1 0.5 P3.html 1 0.5

P3.jpg 1 1

P3.gif 1 1

P1.html 1 1

P4.png 1 1

P4.jpg 1 1
P5.html 1

P4.html 1 0.3

P5.html 1 1

1

1 1

1 1

1

1

1

2

1
3

1
3

1

1 P1.html 3

P2.html 2

P4.html 1

 P1.jpg 3 P1.gif 3

P4.png 1 P4.jpg 1

P5.html 1

P3.html 1

P2.jpg 1

P3.gif 1 P3.jpg 1

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.10, December 2011

41

The hints generated for the user requests based on the

available information in the graph is shown in Table 2.

Table 2: Hints generated for the user requests

4. EXPERIMENTAL ENVIRONMENT

The framework used for evaluating the proposed model and

the workload used for constructing the graph and generating

the predictions are discussed in this section.

4.1 Evaluation Framework

The framework consists of web server with the prediction

engine and client with the prefetching engine. Web server

builds the graph using web access log data and then

generates the predictions for user requests. Client gets the

predictions from web server and uses it to download the web

objects during browser idle time. To simulate the set of users

accessing the web server, real or synthetically generated web

traces are fed to the client that uses prefetching enabled web

browser. The time interval between two successive web

requests obtained from the timestamp values recorded in the

log file is used to mimic the actual client behavior. During

simulation, basic information related to each web request

and its response is recorded in a log file. The performance

metrics (precision, recall) are computed by analyzing the log

file after completing the simulation.

4.2 Workload Description

Web users exhibiting different access patterns during

website navigation are stored in web access log files. These

log files can be maintained at three different points in the

web architecture: server, proxy and client. The log files

maintained at the web server is used as the main data source

in most of the research activities. We collected log file from

our institutional web server that reflect the users accessing

the institutional web site to obtain various information like

academics, administration, examination details and news

articles.

The web logs are preprocessed to reformat them for

effectively identifying the web access sessions and use it for

building the graph and generating the predictions. The first

task of preprocessing is to perform data cleaning by

removing redundant and useless records from web log file

and retain only valid information related to the visited web

pages. The entries removed from log file during the data

cleaning operation are: a) Requests executed by automated

programs such as web robots, spiders and crawlers b)

Requests with unsuccessful HTTP status codes and c)

Entries with request methods except “Get”. The second task

is to perform session identification by segmenting the long

sequence of web requests into individual user access

sessions. Each user session consists of sequence of web

pages visited over a period of time. If the user remains idle

for more than 30 minutes without making any request, then

the next request from the user is considered as the start of

new access session.

5. RESULTS

The performance of the proposed Precedence Graph based

predictions is discussed in this section by considering

metrics such as recall and precision. When the user

requested web object is served from the prefetching cache, it

indicates prefetch hit else it is prefetch miss. The prediction

algorithm must provide meaningful hints for each web

request to reduce the user access latency in a higher rate.

Prefetch hit ratio (Recall) indicates the ratio of total number

of prefetch hits to the total number of user requests. It

measures the usefulness of predictions. Prefetch accuracy

(Precision) indicates the ratio of total number of prefetched

pages requested by the user from the prefetch cache to the

total prefetched pages.

0

0.2

0.4

0.6

0.8

1

5000 10000 15000 20000

User Requests

R
e

c
a

ll

Th = 0.5 Th = 0.4 Th = 0.3 Th = 0.2

Figure 5(a): Recall

0

0.2

0.4

0.6

0.8

1

5000 10000 15000 20000

User Requests

P
re

c
is

io
n

Th = 0.5 Th = 0.4 Th = 0.3 Th = 0.2

Figure 5(b): Precision

Requested

URI

Hints generated

/P1.html /P2.html, /P2.jpg, /P4.html, /P4.png,

/P4.jpg

/P2.html /P3.html, /P3.jpg, /P3.gif

/P3.html /P1.html, /P1.gif, /P1.jpg

/P4.html /P5.html

Precision =
 Prefetch Hits

 Prefetchs

Recall =
Prefetch Hits

User Requests

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.10, December 2011

42

The recall and precision achieved for the user requests by

varying the prediction threshold is shown in Figure 5 (a, b).

Threshold value used for limiting the number of hints to be

generated from the graph is varied from 0.5 to 0.2 for

analyzing the prefetch performance. For threshold value of

0.2 the recall achieved is very high, since the graph

generates more predictions resulting in more objects to be

prefetched to satisfy the user requests. But the precision

degrades due to the fact that some of the prefetched objects

may not be requested by the user. For threshold value of 0.5,

it achieves better precision with moderate recall

performance.

The advantage of Precedence Graph (PG) is its ability to

provide performance that matches with the existing

algorithms such as DG [1] and DDG [16] with less

computational requirements. It is due to the fact that the

algorithm adds an arc between the nodes only based on its

precedence relation i.e. successor node access depends on its

predecessor node. This helps to reduce the number of arcs in

the graph than DG and DDG algorithm. The number of arcs

generated in the graph for different algorithms is shown in

Figure 6, and it clearly indicates that the PG algorithm

performs better than other algorithms. During

implementation, only the primary objects are added to the

adjacency map with key values. Secondary objects are only

added as a link element to the respective key. It helps to

avoid the wastage of key entry in the map for secondary

objects that do not add any link elements.

0

3000

6000

9000

12000

15000

5000 10000 15000 20000

User Requests

N
o

.
o

f
A

rc
s

DG DDG PG

Figure 6: Number of Arcs in the Graph

The time taken by an algorithm to provide predictions for a

user request depends on the total number of arcs in the

graph. It is due to the fact that the algorithm requires time to

analyze the arcs for generating the predictions. Since our

graph structure has fewer arcs than the existing algorithms

(DG and DDG), it is able to provide predictions in a shorter

time duration.

6. CONCLUSION

In this paper we have presented a prediction model that built

a Precedence Graph (PG) by considering the characteristics

of current websites in order to predict the future user

requests. The algorithm differentiated the relationship

between the primary objects (HTML) and the secondary

objects (e.g., images) when creating the prediction model.

The graph structure was built with fewer arcs than the

existing algorithms, because PG considered the precedence

relation for each request instead of using the sequence of

user accesses as recorded in a log file. Experimental results

show that PG achieved good recall and precision values. It

reduced user access latency with minimal resource

consumption when compared to the existing algorithms.

7. REFERENCES

[1] V. Padmanabhan and J. Mogul, “Using Predictive

Prefetching to Improve World Wide Web Latency,”

Computer Communication Review, vol. 26, no. 3,

pp. 22-36, July 1996

[2] C.R. Cunha and C.F.B. Jaccoud, “Determining

WWW User’s Next Access and its Application to

Prefetching”, Proceedings of International

Symposium on Computers and Communication, pp.

6-11, July 1997

[3] S. Schechter, M. Krishnan, and M. Smith, “Using

Path Profiles to Predict HTTP Requests,”

Proceedings of 7th International World Wide Web

Conference, also appeared in Computer Networks

and ISDN Systems, vol. 20, pp. 457-467, 1998

[4] E.P. Markatos and C.E. Chronaki, “A Top-10

Approach to Prefetching on the Web”, Proceedings

of INET ’98, July 1998

[5] L. Fan, P. Cao, W. Lin, and Q. Jacobson, “Web

Prefetching between Low-Bandwidth Clients and

Proxies: Potential and Performance”, Proceedings of

SIGMETRICS ’99, pp. 178-187, May 1999

[6] R.P. Klemn, “Web Companion: A Friendly Client-

Side Web Prefetching Agent”, IEEE Transactions on

Knowledge and Data Engineering, vol. 11, no. 4, pp.

577-594, 1999

[7] J. Borges and M. Levene, “Data mining of user

navigation patterns”, Lecture Notes in Computer

Science, Springer-Verlag, Vol. 1836, pp. 92–111,

1999

[8] R. Sarukkai, “Link Prediction and Path Analysis

Using Markov Chains”, Proceedings of 9th

International World Wide Web Conference, 2000

[9] X. Chen and X. Zhang, “A popularity-based

prediction model for web prefetching”, IEEE

Computer, march 2003

[10] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos,

"A data mining algorithm for generalized web

prefetching”, IEEE Transaction on Knowledge and

Data Engineering, vol.15, no.5, pp.1 -16, 2003

[11] R. Kokku, P. Yalagandula, A. Venkataramani, and

M. Dahlin,” NPS: A non-interfering deployable web

prefetching system”, Proceedings of the USENIX

Symposium on Internet Technologies and Systems,

2003

[12] C. Bouras, A. Konidaris, and D. Kostoulas,

”Predictive prefetching on the web and its potential

impact in the wide area”, World Wide Web: Internet

and Web Information Systems, vol.7, pp.143 –179,

2004

International Journal of Computer Applications (0975 – 8887)

Volume 36– No.10, December 2011

43

[13] M. Deshpande and G. Karypis, “Selective markov

models for predicting web page accesses”, ACM

Transactions on Internet Technology, Vol.4,

pp.163–184, 2004

[14] B. D. Davison, “Learning web request patterns”,

Web Dynamics: Adapting to Change in Content,

Size, Topology and Use, Springer, pp. 435–460,

2004

[15] J. Domenech, J. Sahuquillo, J. A. Gil, and A. Pont,

“The impact of the web prefetching architecture on

the limits of reducing user’s perceived latency”,

Proceedings of IEEE/WIC/ACM International

Conference on Web Intelligence, 2006

[16] Josep Domenech, Jose A. Gil, Julio Sahuquillo, Ana

Pont, “DDG: An Efficient Prefetching Algorithm for

Current Web Generation”, In Proceedings of the 1st

IEEE Workshop on Hot Topics in Web Systems and

Technologies (HotWeb), Boston, USA, 2006

[17] J. Domenech, J.A. Gil, J. Sahuquillo, A. Pont,

“Using current web page structure to improve

prefetching performance”, Computer Networks, vol.

54, no. 9, pp. 1404 -1417, 2010

[18] B. de la Ossa, A. Pont, J. Sahuquillo and J. A. Gil,

“Referrer Graph: a low-cost web prediction

algorithm”, in Proceedings of the 2010 ACM

Symposium on Applied Computing, March 22-26,

2010

[19] J. Domenech, A. Pont, J. Sahuquillo, and J. A. Gil,

“A user focused evaluation of web prefetching

algorithms”, Computer Communications,

vol.30, no.10, pp. 2213-2224, 2007

[20] B. de la Ossa, J. A. Gil, J. Sahuquillo and A. Pont,

“Improving Web Prefetching by making Predictions

at Prefetch”, proceedings of 3rd EuroNGI

Conference on Next Generation Internet Networks,

pp. 21-27, 2007

[21] Zhijie Ban, Zhimin GU, Yu Jin, “A PPM Prediction

Model Based on Stochastic Gradient Descent for

Web Prefetching”, Proceedings of 22nd International

Conference on Advanced Information Networking

and Applications, pp.166-173, 2008

[22] B. de la Ossa, J. Sahuquillo, A. Pont, J. A. Gil, "An

Empirical Study on Maximum Latency Saving in

Web Prefetching," vol. 1, pp.556-559,

IEEE/WIC/ACM International Joint Conference on

Web Intelligence and Intelligent Agent Technology,

2009

[23] Darin Fisher and Gagin Saksena, “Link prefetching

in Mozilla: A server driven approach”, in

proceedings of the 8th International Workshop on

Web Content Caching and Distribution (WCW

2003), New York, USA, 2003.

[24] Alexander P. Pons, “Improving the performance of

client web object retrieval”, Journal of Systems and

Software, vol.74, issue.3, 2005.

