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ABSTRACT 

Web prefetching is an effective technique used to mitigate 

the user perceived latency by making predictions about the 

user’s future requests and prefetching them before the user 

actually demands them. In this paper, we present an 

algorithm that learns from user access patterns and builds a 

Precedence Graph (PG) that is used to generate the 

predictions. The difference in the relationship between 

objects of the same web page and the objects of different 

web pages are reflected in the graph implementation. It uses 

simple data structure to implement the graph, which is cost 

effective and consumes less computational resources. The 

proposed approach significantly improves the performance 

of web prefetching by utilizing limited amount of resources 

as compared to other existing algorithms used for 

prefetching.  
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1. INTRODUCTION 

The enormous growth of World Wide Web and the 

development of new applications and services have 

dramatically increased the number of users, resulting in 

increased global traffic that damages the quality of service 

(availability, reliability, security) and the latency perceived 

by the users. Web prefetching is a technique that is widely 

used to reduce the user perceived latency. It exploits the 

spatial locality inherent in the user’s accesses to the web 

objects. It uses prediction techniques to process the past user 

requests and generate useful hints, which are used to 

download the web objects and store it in cache before they 

are actually requested by the users. The task of predicting 

user’s navigational behavior has been used in various 

applications such as web caching, web page 

recommendation, web search engines and personalization. 

Prefetch systems are designed to generate the web 

predictions based on different criteria such as access 

patterns, object popularity and structure of accessed web 

documents. Based on the type of content used for gathering 

the web information, they are categorized as: web content, 

web structure and web usage mining techniques.  

In the basic web architecture that comprises of server, proxy 

and client, the prediction and prefetching engine can be 

located in any component to deliver the prefetch service to 

the users. In most cases [4, 11, 23, 24], the web server holds 

the prediction engine and is responsible for generating the 

predictions and providing it to the clients. The client holds 

the prefetching engine that uses the predictions to decide the 

web objects to be prefetched during the browser idle time. 

When user selects a hyperlink in the currently viewed web 

page or types a URL for a new web page, and if the 

requested web page is available in the cache due to 

prefetching, then it reduces the web page access time 

observed by the user. 

In this paper, we present a prediction model that builds a 

Precedence Graph (PG) from user access patterns to predict 

the future accesses of users. The precedence relation is 

observed by considering the object URI and referrer in each 

user request; i.e. referrer representing the source of link 

precedes the requested web object. The algorithm also 

considers the characteristics of current websites when 

constructing the graph by differentiating the dependencies 

between objects of the same web page from objects of 

different web pages. The graph uses simple data structure for 

its implementation and provides good prefetching 

performance with minimal resource consumption.  

The remaining of this paper is organized as follows. Section 

2 presents the previous related work. Section 3 describes the 

methodology for building the Precedence Graph that is used 

for generating the predictions. Section 4 discusses the 

experimental environment and section 5 analyzes the 

experimental results. Finally, section 6 presents conclusion 

of the paper. 

2. RELATED WORK 

Several research activities has been carried out in the 

concept of web prefetching, which aimed to minimize the 

user perceived latency by prefetching web objects before the 

user requested them. The important task in web prefetching 

is to build an effective prediction model and the data 

structure for storing selective historical information. A 

server side prefetching approach that used dependency graph 

to represent the access patterns of users and make 

predictions based on it was presented in [1]. The server 

dynamically updated the dependency graph based on the 

client access patterns. To characterize the user behavior and 

predict user’s next actions, two models were presented in [2] 

based on random walk approximation and digital signal 

processing techniques. In [3] a methodology was presented 

to build sequence prefix tree (path profile) based on the 

HTTP requests from the server logs. It used the longest 

matched most-frequent sequences to predict the user’s next 

requests. A top-10 prefetching approach was proposed in [4] 

that allowed servers to push popular documents to the 

proxies at regular intervals based on the client’s aggregated 

access profiles. In [5] a proxy-initiated prefetching technique 
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was proposed that used Prediction-by-Partial-Matching 

(PPM) algorithm to generate the predictions.  

The prefetching of web documents based on the estimated 

round-trip retrieval time was presented in [6]. The technique 

was limited to prefetch only the static web pages. In [7] a 

model based on data mining concept was proposed to 

capture the user navigation behavior patterns, where the high 

probability strings represented the user’s preferred trails. 

Use of Markov chains to build a probabilistic sequence 

generation model was proposed in [8], which predicted next 

requests based on the history of access requests from clients. 

Based on the popularity of URL access patterns a PPM 

model was designed in [9] that generated accurate 

predictions and efficiently managed the storage space than 

the standard PPM model.  In [10] a framework was 

presented to demonstrate the web prefetching algorithms 

based on Markov predictors. A novel non-intrusive web 

prefetching system was developed in [11] that utilized only 

the spare resources to perform prefetching and thereby 

avoided interference with the demand requests from user. 

The use of prefetching in a wide area network (WAN) was 

presented in [12], which suggested that if applied at the edge 

network connection it provided maximum efficiency. In [13] 

several techniques were proposed to select parts of different 

order Markov models to create a new model with reduced 

state complexity and improved prediction accuracy. New 

models based on Markov probabilistic techniques were built 

in [14] to examine the issues when predicting the web 

requests. It considered the information from user access 

history and web page content to accurately predict the user’s 

next request.  

The impact of web prefetching architecture in reducing the 

user perceived latency was analyzed in [15]. It addressed 

two main issues: a) Identifying best architecture to perform 

prefetch and b) providing insight into the efficiency of 

system. In [16,17] a prediction algorithm based on Double 

Dependency Graph (DDG) was proposed that considered the 

characteristics of current web sites to improve the web 

prefetching performance. It was based on the Dependency 

Graph (DG) algorithm [1], but able to differentiate the 

dependencies between objects of the same page and objects 

of different pages. A new web prediction algorithm based on 

Referrer Graph (RG) was proposed in [18] as a low-cost 

solution to predict user’s next access. The graph was built 

using the user’s access requests by considering the Object 

URI and the referrer in each request. It minimized the 

number of arcs used in the graph compared to DG and DDG 

mechanisms.  

In [19] a cost-benefit analysis was carried out to compare the 

prefetching algorithms from the user’s view point. 

Performance difference among prediction algorithms were 

mainly due to the size of predicted objects. A new approach 

called Prediction at Prefetch was proposed in [20] that 

allowed prediction algorithm to provide hints for both 

standard object requests and the prefetching requests. In [21] 

a novel PPM prediction model was developed based on 

stochastic gradient descent to perform web prefetching. It 

considered various factors such as page access frequency, 

prediction feedback, context length and conditional 

probability.  

3. PREDICTION MODEL  

The proposed prediction model builds a Precedence Graph 

(PG) to represent the user access patterns by creating arcs 

(links) from one node (web page) to one or more other nodes 

(web pages). Each arc in the graph has a transition weight 

associated with it that represents the association between the 

predecessor and successor nodes. When user requests for a 

particular web page, it is used to update the graph by adding 

a new node or arc; else increment the transition weight of 

existing arc and occurrence count of the nodes. The graph is 

then used to provide predictions (hints) for a user request by 

analyzing the transition weights of arcs associated with this 

request. It considers the arcs with transition weights greater 

than the threshold value to supply the predictions. The 

prediction (hint) list is then provided to the prefetching 

engine residing at the client machine to prefetch the web 

objects from the server during browser idle time.  

3.1 Precedence Graph  

The graph structure is built using algorithm (Figure 1) that 

learns from user access patterns to predict the future 

accesses.  

 

Input: 

 Precedence Graph (PG) 

 Requested object  & Referrer in the request 

 Object MIME type  

Output: 

 PG with updated information 

Step 1:  

      Adding new node (or) Updating existing node  

      x→ node   

Find x Є graph that matches with the requested object.  

If x available, then 

 x occurrence  ← x occurrence + 1 

else 

                x   ←  new node representing the requested object 

 x occurrence =1 

      end if 

Step 2:  

 Adding new arc (or) updating existing arc  

y→ node 

Find y Є graph that matches with the referrer in user 

request. 

      If y available, then    

            Find arc yx, transition from node y to x 

            If yx available, then  

                    yx occurrence ← yx occurrence + 1 

            else 

     yx ← new arc from y to x 

      yx occurrence = 1 

            end if 

     else 

            no arc added or updated in the graph 

     end if  

Compute the transition confidence of all arcs from node y 

 arc transition confidence ← arc occurrence / y occurrence 

Figure 1: Algorithm for building Precedence Graph
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Figure 2: Precedence Graph 

Each user requested web object is represented as a node in 

the graph and its occurrence count get incremented each 

time the user requests the same web object. The arcs 

between the nodes represent the transition from one web 

object to another. A web object (B) will be requested by the 

user from a source web object (A) i.e. B depends on A (A → 

B, A precedes B). The HTTP referrer recorded in the access 

log file for each user request represents the source of the 

web object being requested. Based on the referrer 

information available for each web request, an arc is created 

from the source node (referrer) to the requested node 

(successor). The arc weight represents the transition 

confidence of moving from the predecessor node to the 

successor node. 

A web page consists of a main object (demand requested by 

the user) referred to as the primary and many embedded 

objects called as secondary objects. The graph shown in 

Figure 2 contains two types of node: primary and secondary. 

The primary nodes are used to represent the web objects that 

are demand requested by the users, while the secondary 

nodes are used to represent the embedded web objects that 

are requested by the web browser. The arcs between two 

primary nodes are termed as primary arcs and those between 

the primary and secondary nodes are termed as secondary 

arcs. 

The graph is initially empty and is built and updated through 

a learning process. Each node in the graph maintains 

information such as: object URI, node type, occurrence 

count, list of primary and secondary arcs. Each arc maintains 

information such as: destination URI, arc type, occurrence 

count and transition confidence. The node occurrence 

indicates the number of requests to the represented web 

object and the arc occurrence indicates the number of 

requests to the successor node from the predecessor node. 

The arc transition confidence is computed by dividing the 

arc occurrence with predecessor node occurrence. 

The graph is dynamically updated whenever new user 

requests are received and it involves the following steps: 

a) Increment the node occurrence if the user requested 

web object finds a matching node; else a new node 

representing the web object is added with its 

occurrence count initialized to one. 

b) Increment the arc occurrence if it already exists in the 

graph; else a new arc is added with its occurrence count 

initialized to one. 

 The graph size is restricted by removing the nodes that are 

least representing the user access sequence and not 

important to the prediction process.  

3.2 Prediction process 

When user demands a web page identified by its URI, the 

web browser first requests the primary object of that page 

and then gets the secondary objects from the server or from 

the local cache. The perfect prediction algorithm [22] needs 

to report three main types of hints for each web page: 

primary object of the next web page to be requested by the 

user, secondary objects present in that next page, and the 

next pages.  

In our model, the predictions (hints) are generated for a user 

requested web object if it finds a matching node in the 

graph; else no hints are generated. The steps for generating 

the hint list are: 

a) Find primary node in the graph that matches with the 

user request. 

b) If primary node exists, analyze all the primary arcs 

associated with that node. Arcs having transition 

confidence greater than or equal to the threshold value 

are selected. 

c) Object URI’s stored in the primary nodes linked to the 

arcs selected in step (b) are added to the hint list and 

arranged based on their confidence value (high to 

low).  

d) Analyze the secondary arcs associated with the 

primary nodes used in step (c). Arcs having transition 

confidence greater than or equal to the threshold value 

are selected.  

e) Object URI’s stored in the secondary nodes linked to 

the arcs selected in step (d) are added to the hint list 

and arranged based on their confidence value (high to 

low). 

f) Hint list now comprises of the object URI’s of both 

primary and secondary nodes. It is given as input to 

the prefetching engine for downloading the web 

objects. 

3.3 Prefetching 

When prefetching engine receives the hint list, it 

automatically starts downloading the hinted web objects 

during the browser idle time to avoid interfering with regular 

user requests. It determines whether a web object is eligible 

for caching by checking its MIME type in the HTTP 

response header. The prefetched objects are stored 

separately in a prefetching cache without disturbing the 

existing objects in regular cache, which helps to improve the 

hit rate.  

Secondary Node 

Primary Node P1.html 

P2.html 

P3.html 

P1.gif 

P2.jpg 

Primary Arc 

Secondary Arc 
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Figure 3: Precedence Graph for the user requests in Table 1 

 

Figure 4: Precedence Graph implemented as Adjacency Map 

If a hint is already available in the regular or prefetch cache, 

then it will not be prefetched. When a new web page is 

demand requested by the user, then prefetching of the hints 

get terminated. When client does not use prefetching, then 

the requested web object will be served from the local 

(regular) cache or proxy cache or from the web server. 

3.4 Working Example 

The working of proposed prediction model is illustrated 

using sample web requests in a client session as shown in 

Table 1. The precedence graph generated using the web 

requests of Table 1 is shown in Figure 3. The primary and 

secondary nodes are represented with Object URI and their 

occurrence count. The primary and secondary arcs are 

represented with their occurrence count. 

The graph shown in Figure 3 is implemented using the 

adjacency map as shown in Figure 4, with primary nodes of 

the graph stored as keys in the map and the edges (arcs) 

starting from each node stored as a list associated with 

appropriate key in the map. The secondary nodes of the 

graph are not stored as keys in the map, since in most cases 

they don’t act as the source for a new web link. The 

elements of the list are represented with three fields: Object 

URI is represented in the first field, occurrence count of the 

element is represented in the second field and the transition 

confidence of the list element is represented in the third 

field. 

 

i.e. p1.gif = 3/3 =1,  p2.html = 2/3 = 0.6,  p4.html = 1/3 = 0.3  

Table 1: sample web requests in a client session 

 

 

    

 

 

 

Requested URI Referrer of URI 

/P1.html - 

/P1.gif /P1.html 

/P1.jpg /P1.html 

/P2.html /P1.html 

/P2.jpg /P2.html 

/P3.html /P2.html 

/P3.jpg /P3.html 

/P3.gif /P3.html 

/P1.html /P3.html 

/P1.gif /P1.html 

/P1.jpg /P1.html 

/P4.html /P1.html 

/P4.png /P4.html 

/P4.jpg /P4.html 

/P5.html /P4.html 

/P1.html - 

/P1.gif /P1.html 

/P1.jpg /P1.html 

/P2.html /P1.html Transition Confidence = 
   arc occurrence count 

  node occurrence count 

Value Key 

P1.html        3

  
P2.html        2 

P3.html        1 

P4.html        1 

P1.gif   3    1 P1.jpg   3   1 P2.html    2     0.6 

 

  P2.jpg    1       0.5 P3.html      1    0.5 

P3.jpg    1     1 

  

P3.gif    1   1 

 

  

P1.html    1   1

  

 

  
P4.png     1    1 

 

  

P4.jpg    1    1 
P5.html        1 

P4.html    1     0.3 

 

  

P5.html  1    1

  

1 

1 1 

1 1 

1 

1 

1 

2

1 
3

1 
3

1 

1 P1.html 3 

 

P2.html 2 

 
P4.html 1 

 P1.jpg 3 P1.gif 3 

P4.png 1 P4.jpg 1 

P5.html 1 

 

P3.html 1 

 
P2.jpg 1 

P3.gif 1 P3.jpg 1 
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The hints generated for the user requests based on the 

available information in the graph is shown in Table 2.  

Table 2: Hints generated for the user requests 

4. EXPERIMENTAL ENVIRONMENT 

The framework used for evaluating the proposed model and 

the workload used for constructing the graph and generating 

the predictions are discussed in this section.  

4.1 Evaluation Framework 

The framework consists of web server with the prediction 

engine and client with the prefetching engine. Web server 

builds the graph using web access log data and then 

generates the predictions for user requests. Client gets the 

predictions from web server and uses it to download the web 

objects during browser idle time. To simulate the set of users 

accessing the web server, real or synthetically generated web 

traces are fed to the client that uses prefetching enabled web 

browser. The time interval between two successive web 

requests obtained from the timestamp values recorded in the 

log file is used to mimic the actual client behavior. During 

simulation, basic information related to each web request 

and its response is recorded in a log file. The performance 

metrics (precision, recall) are computed by analyzing the log 

file after completing the simulation. 

4.2 Workload Description 

Web users exhibiting different access patterns during 

website navigation are stored in web access log files. These 

log files can be maintained at three different points in the 

web architecture: server, proxy and client. The log files 

maintained at the web server is used as the main data source 

in most of the research activities. We collected log file from 

our institutional web server that reflect the users accessing 

the institutional web site to obtain various information like 

academics, administration, examination details and news 

articles. 

The web logs are preprocessed to reformat them for 

effectively identifying the web access sessions and use it for 

building the graph and generating the predictions. The first 

task of preprocessing is to perform data cleaning by 

removing redundant and useless records from web log file 

and retain only valid information related to the visited web 

pages. The entries removed from log file during the data 

cleaning operation are: a) Requests executed by automated 

programs such as web robots, spiders and crawlers b) 

Requests with unsuccessful HTTP status codes and c) 

Entries with request methods except “Get”. The second task 

is to perform session identification by segmenting the long 

sequence of web requests into individual user access 

sessions. Each user session consists of sequence of web 

pages visited over a period of time. If the user remains idle 

for more than 30 minutes without making any request, then 

the next request from the user is considered as the start of 

new access session. 

5. RESULTS  

The performance of the proposed Precedence Graph based 

predictions is discussed in this section by considering 

metrics such as recall and precision. When the user 

requested web object is served from the prefetching cache, it 

indicates prefetch hit else it is prefetch miss. The prediction 

algorithm must provide meaningful hints for each web 

request to reduce the user access latency in a higher rate. 

Prefetch hit ratio (Recall) indicates the ratio of total number 

of prefetch hits to the total number of user requests. It 

measures the usefulness of predictions. Prefetch accuracy 

(Precision) indicates the ratio of total number of prefetched 

pages requested by the user from the prefetch cache to the 

total prefetched pages. 
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Figure 5(a): Recall 
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Figure 5(b): Precision 

Requested 

URI 

Hints generated 

/P1.html /P2.html, /P2.jpg, /P4.html, /P4.png, 

/P4.jpg 

/P2.html /P3.html, /P3.jpg, /P3.gif 

/P3.html /P1.html, /P1.gif, /P1.jpg 

/P4.html /P5.html 

Precision = 
 Prefetch Hits 

   Prefetchs 

Recall = 
Prefetch Hits 

User Requests 
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The recall and precision achieved for the user requests by 

varying the prediction threshold is shown in Figure 5 (a, b). 

Threshold value used for limiting the number of hints to be 

generated from the graph is varied from 0.5 to 0.2 for 

analyzing the prefetch performance. For threshold value of 

0.2 the recall achieved is very high, since the graph 

generates more predictions resulting in more objects to be 

prefetched to satisfy the user requests. But the precision 

degrades due to the fact that some of the prefetched objects 

may not be requested by the user. For threshold value of 0.5, 

it achieves better precision with moderate recall 

performance.   

The advantage of Precedence Graph (PG) is its ability to 

provide performance that matches with the existing 

algorithms such as DG [1] and DDG [16] with less 

computational requirements. It is due to the fact that the 

algorithm adds an arc between the nodes only based on its 

precedence relation i.e. successor node access depends on its 

predecessor node. This helps to reduce the number of arcs in 

the graph than DG and DDG algorithm. The number of arcs 

generated in the graph for different algorithms is shown in 

Figure 6, and it clearly indicates that the PG algorithm 

performs better than other algorithms. During 

implementation, only the primary objects are added to the 

adjacency map with key values. Secondary objects are only 

added as a link element to the respective key. It helps to 

avoid the wastage of key entry in the map for secondary 

objects that do not add any link elements.  
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Figure 6: Number of Arcs in the Graph  

The time taken by an algorithm to provide predictions for a 

user request depends on the total number of arcs in the 

graph. It is due to the fact that the algorithm requires time to 

analyze the arcs for generating the predictions. Since our 

graph structure has fewer arcs than the existing algorithms 

(DG and DDG), it is able to provide predictions in a shorter 

time duration.  

6. CONCLUSION 

In this paper we have presented a prediction model that built 

a Precedence Graph (PG) by considering the characteristics 

of current websites in order to predict the future user 

requests. The algorithm differentiated the relationship 

between the primary objects (HTML) and the secondary 

objects (e.g., images) when creating the prediction model. 

The graph structure was built with fewer arcs than the 

existing algorithms, because PG considered the precedence 

relation for each request instead of using the sequence of 

user accesses as recorded in a log file. Experimental results 

show that PG achieved good recall and precision values. It 

reduced user access latency with minimal resource 

consumption when compared to the existing algorithms.  
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