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ABSTRACT 
Cholesky factorization is the computationally most expensive 

step in numerically solving positive definite systems. Due to 

inherently recursive computation process and associated 

floating point division and square root operations in Cholesky 

factorization, it is very difficult to obtain acceleration by 

exploiting parallelism on FPGA’s. To solve this problem, 

approach suggests iterative architecture with parallelly fetching 

the matrix elements using customized Diagonal Processing 

Elements (DPU), Non Diagonal Processing Elements (NDPU) 

and Triangular Processing Elements (TPU) as computational 

processing units.  The use of LNS approach using LUT 

technique for floating point square root and division arithmetic 

eventually improves resource and clock cycle utilization. 

Scheme is implemented using Xilinx Virtex-4 FPGA and 

achieves 0.032µs clock latency and obtained a throughput of 

31.25Mupdates/s operating at 125 MHz for 4x4 matrix 

inversion problem. 
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1. INTRODUCTION 

A broad range of complex scientific applications requires 

Cholesky factorization, such as solving set of linear equations 

[1], the least square methods used in signal processing and 

image processing applications [4], getting inverse of positive 

definite Hessian matrix. In particular, obtaining inverse of 

Hessian matrix is a key computational task involved in interior 

point optimization method (IPM) and Active Set Method 

(ASM) used to solve quadratic programming (QP) problems. 

However, the computational cost to obtain inverse of Hessian 

matrix is heavy due to associated floating point square root and 

division operations. It is therefore very difficult to obtain 

hardware acceleration of Cholesky factorization. Variety of 

methods is available for implementing Cholesky factorization 

algorithm by exploiting the specific features of different 

computational systems.  

Field Programmable Gate Arrays (FPGA’s) are perfect 

platforms to implement arithmetic operations such as matrix 

multiplication, matrix inversion, factorization, square root, 

multiply/divide, etc. Due to their powerful architectural 

features like Block RAM, embedded multipliers, shift registers 

(LUTs), Digital Clock Manager (DCM), re-configurability and 

parallelism; FPGAs have become more powerful tool for 

algorithm prototyping and IP core development.  

In the earlier studies [1~10] researchers have targeted to 

implement Cholesky factorization algorithm using different 

architectures and various FPGA platforms. Antonio Roldao 

andGeorge A. Constantinides [1] propose Cholesky 

Factorization based high throughput floating point Conjugate 

Gradient method architecture for dense matrices. Their design 

mainly targets the parallelism and deeply-pipelined 

architecture for CG method using Virtex5 FPGA, achieves a 

comparable performance compared to CPU Implementation. 

Depeng Yang et.al [3] [4] has compared the performance of 

Cholesky factorization implementation using FPGA and 

GPUs, authors has proposed highly parallel architecture and 

claims that FPGA implementation achieves higher clock cycle 

efficiency than GPU implementation. Cholesky factorization 

for solving least square problems and their FPGA 

implementation described by [5], author achieves good 

performance over general purpose CPU implementation by 

optimizing the algorithm using dedicated hardware architecture 

for solving triangular linear equations. Junqing Sun, et.al [2], 

introduces high-performance mixed-precision linear solver 

using FPGA’s. In this paper author proposes the idea of 

utilizing lower performance floating point data format to 

achieve higher computational performance by introducing 

mixed-precision iterative refinement algorithms. 

Here therefore, we proposed a custom made iterative floating 

point FPGA based architecture for matrix inversion using 

Cholesky factorization. The underline plan of implementation 

is accelerating matrix inversion of positive definite (Hessian 

matrix) system in QP solvers to achieve high throughput and to 

improve area/speed metric to meet real time demands of QP 

solvers used in Model Predictive Controllers.  Our design 

offers a trade-offs between area and speed for different data 
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width problems while performing matrix inversion using 

FPGA’s. Use of LNS approach for single precision 

ANSI/IEEE-754 floating point square root and division 

arithmetic not only improves hardware utilization but also 

gives better throughput compared to conventional FP 

implementation. 

The remainder of the paper is organized as follows: section 

two describes Cholesky algorithm and its associated 

computational complexities. Proposed FPGA based four PE 

iterative architecture is explained in section three. For floating 

point implementation, LNS based algorithm is described in 

section four. Section five analyses the performance of our 

implementation with previously proposed architectures. 

Section six concludes the paper.   

2. CHOLESKYFACTORIZATION 

Cholesky factorization (𝐿𝐿𝑇) is one of the alternatives to 

Gauss-Jordan elimination method for solving dense linear 

systems i.e.𝐴𝑥 = 𝑏, where A is a 𝑁 𝑥 𝑁 positive definite 

matrix and 𝑏 is called as right hand side. It is also used to find 

inverse of positive definite matrix. If 𝐴 ∈ 𝑅𝑛𝑥𝑛  is symmetric 

and positive definite, then it can be factored as  

 

𝐴 = 𝐿 𝐿𝑇  (1) 

 

Where, L is lower triangular and nonsingular with positive 

diagonal elements. Inverse of matrix A is obtained by  

 

   𝐴−1 = (𝐿−1)𝑇𝐿−1  (2)                                                         

 

The diagonal elements of lower triangular matrix 𝑳 are 

computed as    

 

                                   𝐿𝑖𝑖 =  𝐴𝑖𝑖 −  (𝐿𝑖𝑘 )2

𝑖−1

𝑘=1

                             (3) 

 

The non- diagonal elements of L matrix are given by 

 

                            𝐿𝑖𝑗 =
1

𝐿𝑖 ,𝑖
[𝐴𝑖𝑗 −  (𝐿𝑖𝑘

𝑖−1

𝑘=1

∗ 𝐿𝑗𝑘 )]                       (4) 

 

𝑓𝑜𝑟 𝑗 = 𝑖 + 1, 𝑖 + 2 …………… . 𝑁 

 

Cholesky factorization is the computationally most expensive 

step in numerically solving a positive definite system. From 

Eq. (3) and (4) it is clear that, due to inherently recursive 

computation process and associated floating point division and 

square root operations in Cholesky factorization, it is very 

difficult to obtain hardware acceleration, but factorization 

allows computing diagonal elements 𝐿𝑖𝑖 , and non-diagonal 

elements (𝐿𝑖𝑗 ) of L matrix in parallel. The equations shows 

input matrix A gets recursively modified during 

Ncomputational step in order to obtain lower triangular matrix, 

L.  

3. FPGA IMPLEMENTATION 

This section details the custom architecture developed for 

matrix inversion using Cholesky factorization with IEEE-754 

single precision floating point data format. The key important 

feature of proposed architecture includes: 

 

 Iterative architecture using four processing elements 

(PE’s) throughout the design 

 Use of LNS approach for IEEE-754 single precision 

floating point square root and division algorithm 

 By exploiting computational parallelism, for 𝑁𝑥𝑁 

matrix inversion, architecture uses floor [(𝑁 + 2)2/
8]clock cycles compare to conventional O(1/3N3) 

clock complexities 

 

The proposed four Processing Elements basediterative matrix 

inversion architecture uses unit element i.e. PE,which consists 

of multiplier block, adder block, one register and sequential 

control logic block, which controls the data feed operation to 

multiplier,adder and register as shown in    figure 1. 

 

 
 

Fig. 1 Structure of Single PE 

Assume that for matrix A of size (𝑁𝑥𝑁),  whose inverse has to 

obtain is stored in internal RAM. To calculate diagonal and 

non-diagonal elements of resultant matrix L, The flow of data 

arranges in such a way that, input to the PE’s are the diagonal 

and non- diagonal elements of input matrix A with non-

diagonal and triangular elements of resultant matrix L operated 

in iteratively Fig. 2 shows proposed iterative architecture of 

four PE’s that have been used in realization of matrix inversion 

algorithm.  

 

Form eq. (3) and (4), the diagonal elements 𝐿𝑖𝑖 , indicates the 

square root of summation of square of non- diagonal elements 

of the same row of L matrix. The non-diagonal elements (𝐿𝑖𝑗 ) 

are obtained by summation of product of two non- diagonal 

elements obtained from previous iterations and divided by 

diagonal elements of L matrix. For FPGA implementation, we 

proposed an iterative architecture using Diagonal Processing 

Unit (DPU), Non-diagonal Processing Unit (NDPU) and 

Triangular Processing Unit (TPU) as a 

computationalprocessing units to calculate diagonal, non-
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diagonal and triangular elements of resultant matrix L 

respectively. 

 

 
 

Fig. 2 4-PE Structure of Propsed Iterative Matrix 

Inversion Architetcure 

3.1 DPU 
The non-diagonal elements of decomposition matrix Land 

diagonal elements of input matrix A are imported to DPU in 

parallel.  The DPE, first calculates summation of square of non-

diagonal elements of that row subsequently subtracting the 

resultant square sum from diagonal elements of input matrix 

Acomputing its square root using proposed LNS algorithm, 

produces the resultant diagonal elements of Lmatrix. 

Fig. 3 shows hardware architecture of DPU for Cholesky 

factorization 

 

 
 
Fig. 3 Hardware architecture of DPU for Cholesky Factorization 

 
For a matrix of size of 4x4 it utilizes six multipliers, three 

adders and three subtractors with a square root operator. In 

general, DPU can process for NxN matrix iteratively with 

[(N)*(N-1)/2] multipliers, [(N-1)*(N-2)/2] adders, (N-1) 

subtractors and a square root operator  

 

 

 

 

3.2 NDPU and TPU 
An iterative architecture for NDPU and TPU are shown in fig. 

4. The adjacent non-diagonal elements of matrix L are fed 

parallel to TPU which computes product of these non-diagonal 

elements of same column of L matrix and processes to NDPU 

 

 
 

Fig. 4 Iterative architecture of TPU and NDPU 

 

For matrix of size 4x4, it takes four multipliers and three 

adders. To be specific, for NxN matrix it will execute using (N) 

multipliers and [(N-2)*(N-1)/2] adders. The non-diagonal 

elements of input matrix A and results of TPU both are fed 

parallel to NDPU. Using (N) subtractors and (N) multipliers 

NDPU calculates non-diagonal elements of factored L matrix 

of size NxN. The generalized iterative architecture for TPU and 

NDPU is shown in fig. 5.  

The overall clock latency of Cholesky factorization to obtain 

inverse of 𝑁 𝑥 𝑁 positive definite input matrix is given by 

floor[(𝑁 + 2)2/8]; where, N is size of input matrix. The 

problems of sparsity in case of sparse matrix are solved by 

preconditioning the input matrix. 

 

 
 

Fig. 5 Hardware Architecture of NDPU and TPU  

Fig.6 shows data dependency graph (DG) for Cholesky 

factorization to obtain lower triangular matrix L by considering 

N=4. The graph shows that, the elements of lower triangular 

matrix L are obtained in four clock cycles using four PE’. As 

matrix size increases the size of triangular arrays also increases 

leads to more clock cycles to obtain elements of lower 

triangular matrix L. 
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Fig. 5 Data dependency (DG) graph (N=4) 

 

3.3 Tradeoff for selection of PE’s 

In case of square rational number matrix, we get N/4 times 

Nx4 matrix blocks. This holds good for matrix of size 4x4 and 

more. In case of odd number of matrix size results in N/4 times 

Nx4 matrix blocks and to get remaining elements of output 

matrix we have to reorder the PE’s subject to remaining 

columns of matrix A. The PEs’ get effectively utilized when 

number is limited to four. If we select any number of PE’s 

which are greater than four, then the utilization of PE’s are 

reduces drastically as function of increase in matrix size. 4 

PE’s are optimistic for matrix size 4x4 and more that holds 

tradeoffs between execution time and resource utilization. If 

we select PE’s more than 4, underutilization increases 

exponentially as matrix size increases. But selection of PE’s 

less than 4 (i.e. 3 or 2), underutilization reduces compared to 4-

PE architecture but as matrix size increases more than 4 due to 

iterative nature of architecture clock cycles increases. The 

figure clock cycle*resources comes to be optimize for 4-PE 

architecture than any other number of PE’s. 

 

4. LNS APPROACH 

Form Eq. (3) and (4),main computational task involved in 

Cholesky factorization is to obtain floating point square root 

and division. For implementation of these arithmetic, instead 

of conventional methods like piecewise polynomial 

approximation, Newton’s iterative algorithm, or Goldschmidt’s 

algorithm, we propose a parametric computational logarithmic 

(LNS) based algorithm which uses a simple logical shift and 

compare logic with look up table (LUT) 

 

Logarithmic numbers can be viewed as a specific case of 

floating point numbers where the mantissa is always 1, and the 

exponent has the fractional part explained by [11]. The 

approach suggested in our work, uses single precision floating 

point number with 32-bit data width represented as follows:  

Sign Bit Fixed Point Logarithmic Value 

S Integer: M bits Floating point: F bits 

1 7 24 

In LNS system, number is expressed as (-1) S× 2M.F which has a 
similar representation as floating point number. Using LNS 
approach, the basic arithmetic operations are translated into 
hardware resource optimized architecture using simple addition, 
subtraction, left shift and right shift operators. Let a and b be 
the logarithmic representations of numbers A and B, 
respectively (provided A> B), then basic LNS operations of 
these two numbers [11] are shown in table 1 

Table1.Arithmetic Operations Using LNS 

Arithmetic 
Operation 

Logarithmic Representation 

A × B log2 (a) + log2 (b) 

A / B log2 (a) -log2 (b) 

A 2 2 log2 (a)) 

 A  log2 (a) / 2 

 

 
Conversion of floating point number to equivalent LNS is 
performed by dividing the range of given numbers for three 
different cases as: Number less than 1, number greater than 2 
and number in between 1 and 2. If the number is less than 1, 
logarithmic equivalent of such numbers are negative. Integer 
part of negative number is obtained by recursive left shift until 
number lies between 1 and 2 and fractional part corresponding 
to logarithmic equivalent is fetched from LUT. Finally, 
logarithmic equivalent of given FLP number is represented in 
two’s complement format by setting sign flag bit 1 and 
combining number of shifts (count value) with corresponding 
log values form LUT.    

 
 
Fig. 6 32-bit square root and division algorithm using LNS 

approach 
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If number is greater than 2, integer part is obtained by recursive 
right shift until number lies between 1 and 2, for representation 
of number in its logarithmic equivalent the procedure explained 
above is repeated. The details of the algorithm are explained 
using flow chart as shown in fig. 6. As the data width increases 
the time required for LNS conversion also increases due to 
more number of shift and add operations. After testing for 
different data bit widths, the approach is proved to be better 
than conventional approaches up to IEEE single precision 
Floating Point Number (32-bit) for its accuracy and clock 

latency.  

5. EXPRIMENTAL RESULTS AND 

ANALYSIS 

The proposed architecture is implemented using Xilinx-

Virtex4 FPGA ((XC4VSX35) operating at 125MHz. The 

algorithm is described in Verilog using Xilinx ISE 11.4. 

Testing and validation is performed using MATLAB’s System 

Generator for different size of matrices using single precision 

floating point data format. Table 2 shows design summary of 

resource utilization of proposed architecture for 40 x 40 single 

precision floating point matrix inversion.  

 
Table2.Design Summary of Resource utilization 

Resources Utilization 

Device Virtex-4(XC4VSX35) 

Clock 125MHz 

Data width 32-bit floating point 

Slices 2993(19%) 

Flip/flops 

LUT’s 

DSP-48 

791(2%) 

4993 (16%) 

136 (70%) 

BRAM 2(1%) 

 
Table 3 shows summary of resource and time utilization of 
proposed architecture for different matrix sizes. An 
experimental result shows that the resources utilization of 
proposed architecture is independent of matrix size at particular 
clock frequency. The computation time increases as a function 
matrix size and latency used to map the design.  

 

Table 3.Summary of Resource and Time Utilization of 

Proposed Matrix Inversion Architecture 
 

Matrix 

size 

CLB’s Clock 

MHz 

Computational  

Time (µs) 

Throughput 

(Mupdates/s) 

4x4 748 125 0.032 31.25 

6x6 748 125 0.064 15.62 

20x20 748 125 0.480 2.083 

40x40 748 125 1.760 0.568 

 
The validity and scalability of proposed architecture is tested 
for different size of matrices, the graph shows relation between 
clock cycles utilization for different size of matrices. 

 
Fig. 7 Clock cycles vs. matrix size 

 

The performance of proposed architecture is compared with 

previously reported designs by normalizing their results for 

128 x128 single precision floating point matrix inversion. 

Table 4 shows the performance comparison of different 

Cholesky factorization based matrix inversion architectures. It 

is seen that, proposed architecture archives improvement in 

computational time compared to previously reported designs.   
 

Table 4.Performance Comparison of 128 x128 Matrix 

Inversions for 32-bit Floating Point Data Format 

 
 

Design 

 

Device 

Achievable 

Clock 

(MHz) 

 

Computational  

time (µS) 

 
Depeng Yang 

 [5] 

 

 
XC4VLX200 

 
245 

 
35.529 

 

Depeng Yang  

[3] 

 

XC6VSX475 

 

180 

 

173.25 

 

 

Proposed 

 

XC4VSX35 

 

125 

 

16.90 

 

 

6. CONCLUDING REMARKS 
This paper has investigated the hardware performance of 
custom architecture developed for Cholesky factorization as a 
computing platform used to find inverse of positive definite 
symmetric matrix. Throughout the design process, the 
underlined plan was to design an architecture that is more 
effective in both area and clock cycle utilization. The use of 
LNS approach for floating point square root and division 
arithmetic over conventional FP number system and an iterative 
custom design architecture using DPU, TPU and NDPU as a 
processing units the proposed architecture achieves better 
throughput compared to previously reported designs. The final 
design, after synthesis using Xilinx ISE 11.4, has been 
downloaded into Vertex-4 FPGA operating at 125MHz. Its 
functionality and scalability has been verified through HIL co-
simulation for different size of matrices. 
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