
International Journal of Computer Applications (0975 – 8887)

Volume 35– No.8, December 2011

10

High Throughput Iterative VLSI Architecture for

Cholesky Factorization based Matrix Inversion

D. N. Sonawane1 and M. S. Sutaone2

1
Department of Instrumentation & Control

2
Department of Electronics and Telecommunication

College of Engineering, Pune, India

ABSTRACT
Cholesky factorization is the computationally most expensive

step in numerically solving positive definite systems. Due to

inherently recursive computation process and associated

floating point division and square root operations in Cholesky

factorization, it is very difficult to obtain acceleration by

exploiting parallelism on FPGA’s. To solve this problem,

approach suggests iterative architecture with parallelly fetching

the matrix elements using customized Diagonal Processing

Elements (DPU), Non Diagonal Processing Elements (NDPU)

and Triangular Processing Elements (TPU) as computational

processing units. The use of LNS approach using LUT

technique for floating point square root and division arithmetic

eventually improves resource and clock cycle utilization.

Scheme is implemented using Xilinx Virtex-4 FPGA and

achieves 0.032µs clock latency and obtained a throughput of

31.25Mupdates/s operating at 125 MHz for 4x4 matrix

inversion problem.

Keywords

Choleskey Factorization, FPGA’s, Iterative Architetcure,

Virtex-4,

Nomencleture

FPGA Field programmable Gate Array

DPU Diagonal Processing Units

NDPU Non-Diagonal Processing Units

TPU Triangular Prcessing Units

PE’s Processing Elements

1. INTRODUCTION

A broad range of complex scientific applications requires

Cholesky factorization, such as solving set of linear equations

[1], the least square methods used in signal processing and

image processing applications [4], getting inverse of positive

definite Hessian matrix. In particular, obtaining inverse of

Hessian matrix is a key computational task involved in interior

point optimization method (IPM) and Active Set Method

(ASM) used to solve quadratic programming (QP) problems.

However, the computational cost to obtain inverse of Hessian

matrix is heavy due to associated floating point square root and

division operations. It is therefore very difficult to obtain

hardware acceleration of Cholesky factorization. Variety of

methods is available for implementing Cholesky factorization

algorithm by exploiting the specific features of different

computational systems.

Field Programmable Gate Arrays (FPGA’s) are perfect

platforms to implement arithmetic operations such as matrix

multiplication, matrix inversion, factorization, square root,

multiply/divide, etc. Due to their powerful architectural

features like Block RAM, embedded multipliers, shift registers

(LUTs), Digital Clock Manager (DCM), re-configurability and

parallelism; FPGAs have become more powerful tool for

algorithm prototyping and IP core development.

In the earlier studies [1~10] researchers have targeted to

implement Cholesky factorization algorithm using different

architectures and various FPGA platforms. Antonio Roldao

andGeorge A. Constantinides [1] propose Cholesky

Factorization based high throughput floating point Conjugate

Gradient method architecture for dense matrices. Their design

mainly targets the parallelism and deeply-pipelined

architecture for CG method using Virtex5 FPGA, achieves a

comparable performance compared to CPU Implementation.

Depeng Yang et.al [3] [4] has compared the performance of

Cholesky factorization implementation using FPGA and

GPUs, authors has proposed highly parallel architecture and

claims that FPGA implementation achieves higher clock cycle

efficiency than GPU implementation. Cholesky factorization

for solving least square problems and their FPGA

implementation described by [5], author achieves good

performance over general purpose CPU implementation by

optimizing the algorithm using dedicated hardware architecture

for solving triangular linear equations. Junqing Sun, et.al [2],

introduces high-performance mixed-precision linear solver

using FPGA’s. In this paper author proposes the idea of

utilizing lower performance floating point data format to

achieve higher computational performance by introducing

mixed-precision iterative refinement algorithms.

Here therefore, we proposed a custom made iterative floating

point FPGA based architecture for matrix inversion using

Cholesky factorization. The underline plan of implementation

is accelerating matrix inversion of positive definite (Hessian

matrix) system in QP solvers to achieve high throughput and to

improve area/speed metric to meet real time demands of QP

solvers used in Model Predictive Controllers. Our design

offers a trade-offs between area and speed for different data

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.8, December 2011

11

width problems while performing matrix inversion using

FPGA’s. Use of LNS approach for single precision

ANSI/IEEE-754 floating point square root and division

arithmetic not only improves hardware utilization but also

gives better throughput compared to conventional FP

implementation.

The remainder of the paper is organized as follows: section

two describes Cholesky algorithm and its associated

computational complexities. Proposed FPGA based four PE

iterative architecture is explained in section three. For floating

point implementation, LNS based algorithm is described in

section four. Section five analyses the performance of our

implementation with previously proposed architectures.

Section six concludes the paper.

2. CHOLESKYFACTORIZATION

Cholesky factorization (𝐿𝐿𝑇) is one of the alternatives to

Gauss-Jordan elimination method for solving dense linear

systems i.e.𝐴𝑥 = 𝑏, where A is a 𝑁 𝑥 𝑁 positive definite

matrix and 𝑏 is called as right hand side. It is also used to find

inverse of positive definite matrix. If 𝐴 ∈ 𝑅𝑛𝑥𝑛 is symmetric

and positive definite, then it can be factored as

𝐴 = 𝐿 𝐿𝑇 (1)

Where, L is lower triangular and nonsingular with positive

diagonal elements. Inverse of matrix A is obtained by

 𝐴−1 = (𝐿−1)𝑇𝐿−1 (2)

The diagonal elements of lower triangular matrix 𝑳 are

computed as

 𝐿𝑖𝑖 = 𝐴𝑖𝑖 − (𝐿𝑖𝑘)2

𝑖−1

𝑘=1

 (3)

The non- diagonal elements of L matrix are given by

 𝐿𝑖𝑗 =
1

𝐿𝑖 ,𝑖
[𝐴𝑖𝑗 − (𝐿𝑖𝑘

𝑖−1

𝑘=1

∗ 𝐿𝑗𝑘)] (4)

𝑓𝑜𝑟 𝑗 = 𝑖 + 1, 𝑖 + 2 …………… . 𝑁

Cholesky factorization is the computationally most expensive

step in numerically solving a positive definite system. From

Eq. (3) and (4) it is clear that, due to inherently recursive

computation process and associated floating point division and

square root operations in Cholesky factorization, it is very

difficult to obtain hardware acceleration, but factorization

allows computing diagonal elements 𝐿𝑖𝑖 , and non-diagonal

elements (𝐿𝑖𝑗) of L matrix in parallel. The equations shows

input matrix A gets recursively modified during

Ncomputational step in order to obtain lower triangular matrix,

L.

3. FPGA IMPLEMENTATION

This section details the custom architecture developed for

matrix inversion using Cholesky factorization with IEEE-754

single precision floating point data format. The key important

feature of proposed architecture includes:

 Iterative architecture using four processing elements

(PE’s) throughout the design

 Use of LNS approach for IEEE-754 single precision

floating point square root and division algorithm

 By exploiting computational parallelism, for 𝑁𝑥𝑁

matrix inversion, architecture uses floor [(𝑁 + 2)2/
8]clock cycles compare to conventional O(1/3N3)

clock complexities

The proposed four Processing Elements basediterative matrix

inversion architecture uses unit element i.e. PE,which consists

of multiplier block, adder block, one register and sequential

control logic block, which controls the data feed operation to

multiplier,adder and register as shown in figure 1.

Fig. 1 Structure of Single PE

Assume that for matrix A of size (𝑁𝑥𝑁), whose inverse has to

obtain is stored in internal RAM. To calculate diagonal and

non-diagonal elements of resultant matrix L, The flow of data

arranges in such a way that, input to the PE’s are the diagonal

and non- diagonal elements of input matrix A with non-

diagonal and triangular elements of resultant matrix L operated

in iteratively Fig. 2 shows proposed iterative architecture of

four PE’s that have been used in realization of matrix inversion

algorithm.

Form eq. (3) and (4), the diagonal elements 𝐿𝑖𝑖 , indicates the

square root of summation of square of non- diagonal elements

of the same row of L matrix. The non-diagonal elements (𝐿𝑖𝑗)

are obtained by summation of product of two non- diagonal

elements obtained from previous iterations and divided by

diagonal elements of L matrix. For FPGA implementation, we

proposed an iterative architecture using Diagonal Processing

Unit (DPU), Non-diagonal Processing Unit (NDPU) and

Triangular Processing Unit (TPU) as a

computationalprocessing units to calculate diagonal, non-

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.8, December 2011

12

diagonal and triangular elements of resultant matrix L

respectively.

Fig. 2 4-PE Structure of Propsed Iterative Matrix

Inversion Architetcure

3.1 DPU
The non-diagonal elements of decomposition matrix Land

diagonal elements of input matrix A are imported to DPU in

parallel. The DPE, first calculates summation of square of non-

diagonal elements of that row subsequently subtracting the

resultant square sum from diagonal elements of input matrix

Acomputing its square root using proposed LNS algorithm,

produces the resultant diagonal elements of Lmatrix.

Fig. 3 shows hardware architecture of DPU for Cholesky

factorization

Fig. 3 Hardware architecture of DPU for Cholesky Factorization

For a matrix of size of 4x4 it utilizes six multipliers, three

adders and three subtractors with a square root operator. In

general, DPU can process for NxN matrix iteratively with

[(N)*(N-1)/2] multipliers, [(N-1)*(N-2)/2] adders, (N-1)

subtractors and a square root operator

3.2 NDPU and TPU
An iterative architecture for NDPU and TPU are shown in fig.

4. The adjacent non-diagonal elements of matrix L are fed

parallel to TPU which computes product of these non-diagonal

elements of same column of L matrix and processes to NDPU

Fig. 4 Iterative architecture of TPU and NDPU

For matrix of size 4x4, it takes four multipliers and three

adders. To be specific, for NxN matrix it will execute using (N)

multipliers and [(N-2)*(N-1)/2] adders. The non-diagonal

elements of input matrix A and results of TPU both are fed

parallel to NDPU. Using (N) subtractors and (N) multipliers

NDPU calculates non-diagonal elements of factored L matrix

of size NxN. The generalized iterative architecture for TPU and

NDPU is shown in fig. 5.

The overall clock latency of Cholesky factorization to obtain

inverse of 𝑁 𝑥 𝑁 positive definite input matrix is given by

floor[(𝑁 + 2)2/8]; where, N is size of input matrix. The

problems of sparsity in case of sparse matrix are solved by

preconditioning the input matrix.

Fig. 5 Hardware Architecture of NDPU and TPU

Fig.6 shows data dependency graph (DG) for Cholesky

factorization to obtain lower triangular matrix L by considering

N=4. The graph shows that, the elements of lower triangular

matrix L are obtained in four clock cycles using four PE’. As

matrix size increases the size of triangular arrays also increases

leads to more clock cycles to obtain elements of lower

triangular matrix L.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.8, December 2011

13

Fig. 5 Data dependency (DG) graph (N=4)

3.3 Tradeoff for selection of PE’s

In case of square rational number matrix, we get N/4 times

Nx4 matrix blocks. This holds good for matrix of size 4x4 and

more. In case of odd number of matrix size results in N/4 times

Nx4 matrix blocks and to get remaining elements of output

matrix we have to reorder the PE’s subject to remaining

columns of matrix A. The PEs’ get effectively utilized when

number is limited to four. If we select any number of PE’s

which are greater than four, then the utilization of PE’s are

reduces drastically as function of increase in matrix size. 4

PE’s are optimistic for matrix size 4x4 and more that holds

tradeoffs between execution time and resource utilization. If

we select PE’s more than 4, underutilization increases

exponentially as matrix size increases. But selection of PE’s

less than 4 (i.e. 3 or 2), underutilization reduces compared to 4-

PE architecture but as matrix size increases more than 4 due to

iterative nature of architecture clock cycles increases. The

figure clock cycle*resources comes to be optimize for 4-PE

architecture than any other number of PE’s.

4. LNS APPROACH

Form Eq. (3) and (4),main computational task involved in

Cholesky factorization is to obtain floating point square root

and division. For implementation of these arithmetic, instead

of conventional methods like piecewise polynomial

approximation, Newton’s iterative algorithm, or Goldschmidt’s

algorithm, we propose a parametric computational logarithmic

(LNS) based algorithm which uses a simple logical shift and

compare logic with look up table (LUT)

Logarithmic numbers can be viewed as a specific case of

floating point numbers where the mantissa is always 1, and the

exponent has the fractional part explained by [11]. The

approach suggested in our work, uses single precision floating

point number with 32-bit data width represented as follows:

Sign Bit Fixed Point Logarithmic Value

S Integer: M bits Floating point: F bits

1 7 24

In LNS system, number is expressed as (-1) S× 2M.F which has a
similar representation as floating point number. Using LNS
approach, the basic arithmetic operations are translated into
hardware resource optimized architecture using simple addition,
subtraction, left shift and right shift operators. Let a and b be
the logarithmic representations of numbers A and B,
respectively (provided A> B), then basic LNS operations of
these two numbers [11] are shown in table 1

Table1.Arithmetic Operations Using LNS

Arithmetic
Operation

Logarithmic Representation

A × B log2 (a) + log2 (b)

A / B log2 (a) -log2 (b)

A 2 2 log2 (a))

 A log2 (a) / 2

Conversion of floating point number to equivalent LNS is
performed by dividing the range of given numbers for three
different cases as: Number less than 1, number greater than 2
and number in between 1 and 2. If the number is less than 1,
logarithmic equivalent of such numbers are negative. Integer
part of negative number is obtained by recursive left shift until
number lies between 1 and 2 and fractional part corresponding
to logarithmic equivalent is fetched from LUT. Finally,
logarithmic equivalent of given FLP number is represented in
two’s complement format by setting sign flag bit 1 and
combining number of shifts (count value) with corresponding
log values form LUT.

Fig. 6 32-bit square root and division algorithm using LNS

approach

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.8, December 2011

14

If number is greater than 2, integer part is obtained by recursive
right shift until number lies between 1 and 2, for representation
of number in its logarithmic equivalent the procedure explained
above is repeated. The details of the algorithm are explained
using flow chart as shown in fig. 6. As the data width increases
the time required for LNS conversion also increases due to
more number of shift and add operations. After testing for
different data bit widths, the approach is proved to be better
than conventional approaches up to IEEE single precision
Floating Point Number (32-bit) for its accuracy and clock

latency.

5. EXPRIMENTAL RESULTS AND

ANALYSIS

The proposed architecture is implemented using Xilinx-

Virtex4 FPGA ((XC4VSX35) operating at 125MHz. The

algorithm is described in Verilog using Xilinx ISE 11.4.

Testing and validation is performed using MATLAB’s System

Generator for different size of matrices using single precision

floating point data format. Table 2 shows design summary of

resource utilization of proposed architecture for 40 x 40 single

precision floating point matrix inversion.

Table2.Design Summary of Resource utilization

Resources Utilization

Device Virtex-4(XC4VSX35)

Clock 125MHz

Data width 32-bit floating point

Slices 2993(19%)

Flip/flops

LUT’s

DSP-48

791(2%)

4993 (16%)

136 (70%)

BRAM 2(1%)

Table 3 shows summary of resource and time utilization of
proposed architecture for different matrix sizes. An
experimental result shows that the resources utilization of
proposed architecture is independent of matrix size at particular
clock frequency. The computation time increases as a function
matrix size and latency used to map the design.

Table 3.Summary of Resource and Time Utilization of

Proposed Matrix Inversion Architecture

Matrix

size

CLB’s Clock

MHz

Computational

Time (µs)

Throughput

(Mupdates/s)

4x4 748 125 0.032 31.25

6x6 748 125 0.064 15.62

20x20 748 125 0.480 2.083

40x40 748 125 1.760 0.568

The validity and scalability of proposed architecture is tested
for different size of matrices, the graph shows relation between
clock cycles utilization for different size of matrices.

Fig. 7 Clock cycles vs. matrix size

The performance of proposed architecture is compared with

previously reported designs by normalizing their results for

128 x128 single precision floating point matrix inversion.

Table 4 shows the performance comparison of different

Cholesky factorization based matrix inversion architectures. It

is seen that, proposed architecture archives improvement in

computational time compared to previously reported designs.

Table 4.Performance Comparison of 128 x128 Matrix

Inversions for 32-bit Floating Point Data Format

Design

Device

Achievable

Clock

(MHz)

Computational

time (µS)

Depeng Yang

 [5]

XC4VLX200

245

35.529

Depeng Yang

[3]

XC6VSX475

180

173.25

Proposed

XC4VSX35

125

16.90

6. CONCLUDING REMARKS
This paper has investigated the hardware performance of
custom architecture developed for Cholesky factorization as a
computing platform used to find inverse of positive definite
symmetric matrix. Throughout the design process, the
underlined plan was to design an architecture that is more
effective in both area and clock cycle utilization. The use of
LNS approach for floating point square root and division
arithmetic over conventional FP number system and an iterative
custom design architecture using DPU, TPU and NDPU as a
processing units the proposed architecture achieves better
throughput compared to previously reported designs. The final
design, after synthesis using Xilinx ISE 11.4, has been
downloaded into Vertex-4 FPGA operating at 125MHz. Its
functionality and scalability has been verified through HIL co-
simulation for different size of matrices.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.8, December 2011

15

7. REFERENCES

[1] Antonio Roldao and George A. Constantinides, “A High

Throughput FPGA-Based Floating Point Conjugate

Gradient Implementation for Dense Matrices”, ACM

Transaction on Reconfigurable Technoogy Systems, Vol.

3 (1), Jan. 2010.

[2] J. Sun, et.al, “High Performance Mixed-Precision Linear

Solver for FPGAs,” IEEE Transaction on Computers, vol.

57, (12) Dec. 2008

[3] D. Yang, et. al, "Performance Comparison of Cholesky

Decomposition on GPUs and FPGAs," Symposium on

Application Accelerators in High Performance

Computing (SAAHPC), knoxville, TN, 2010.

[4] D. Yang, G. D. Peterson, and H. Li, "High Performance

Reconfigurable Computing for Cholesky Decomposition,"

Symposium on Application Accelerators in High

Performance Computing (SAAHPC), UIUC, July, 2009.

[5] D. Yang, et.al, "An FPGA Implementation for Solving

Least Square Problem," The 17th IEEE Symposium on

Field-Programmable Custom Computing Machines

(FCCM), Napa, California, April. 2009.

[6] Antonio Roldao Lopes and George A. Constantinides, “A

High Throughput FPGA-Based Floating Point Conjugate

GradientImplementation”, Proceedings of the 4th

international workshop onReconfigurable Computing:

Architectures, Tools and Applications, Springer-Verlag,

Berlin, Heidelberg,2008, pp 75-86

[7] O. Maslennikow, et.al, “Parallel Implementation of

Cholesky LLT-Algorithm in FPGA-Based Processor,”

Proceedings of the 7th international conference on

Parallel processing and applied mathematics Springer-

Verlag Berlin Heidelberg, , June-2007pp. 137-147

[8] Maslennikow,et.al.,"Implementation of Cholesky LLT-

Decomposition Algorithm in FPGA-Based Rational

Fraction Parallel Processor," Mixed Design of Integrated

Circuits and Systems, 14th International conference on

mixed design (MIXDES 2007),Ciechocinek, POLAND,

21-23 June 2007, pp.287-292

[9] Burian, A. et.al , "A fixed-point implementation of matrix

inversion using Cholesky decomposition," Micro-

NanoMechatronics and Human Science, Proceedings of

the 46th IEEE International Midwest Symposium on In

Circuits and Systems, 2003. MWSCAS , Dec. 2003, pp.

1431- 1434

[10] S. Haridas, “FPGA Implementation of a Cholesky

Algorithm for a Shared-Memory Multiprocessor

Architecture,”, A masters thesis, submitted to the faculty

of New Jersey Institute of Technology, May 2003.

[11] Garcia et al. “LNS Architectures for Embedded Model

PredictiveControl Processors”In Proceedings of

International Conference onCompilers, Architecture, and

Synthesis for Embedded Systems,CASES 2004,

Washington DC, USA, Sep. 2004

[12] A book on “VLSI Digital Signal Processing System

Design and Implementation”, by K. K. Parhi, Wiley,

1999.

