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ABSTRACT 

The Grid Workflow scheduling is considered an important issue 

in Workflow management. Workflow scheduling is a process of 

assigning workflow tasks to suitable computational resources. 

Workflow scheduling significantly affects the performance and 

the execution time of the workflow. A Workflow scheduling 

approach falls in one of three categories: static, dynamic or 

adaptive. Grid environment is a highly changing environment in 

which static approaches performance is questioned. Effective 

workflow scheduling approaches are essential to make use of the 

Grid heterogeneous resource capabilities. The main objective of 

this paper is to introduce an adaptive heuristic list scheduling 

approach which utilizes the MAHEFT algorithm. MAHEFT 

algorithm considers the new changes in the Grid environment in 

order to minimize the total execution time (makespan) and to 

increase the speedup. The improvement rate in makespan of 

MAHEFT algorithm ranges between 2% to 21%. With respect to 

Speedup, MAHEFT is faster than both static HEFT and adaptive 

AHEFT algorithms with speedup values between 2.08 and 4.16. 
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1. INTRODUCTION 
Science has greatly developed in the last three decades in a way 

that there is a need for high performance resources to solve big 

and complex problems. Grids are one of the solutions to this 

problem as Grids integrate large-scale distributed heterogeneous 

resources to enable users to access remote resources through 

secure and scalable networks.  Many scientific fields such as 

high-energy physics, gravitational-wave physics, geophysics, 

astronomy, and bioinformatics are utilizing Grids to manage and 

process large data sets. Workflow applications [1] incorporate 

multiple dependent tasks to be executed in a predefined order 

and may entail the transfer and storage of a huge amount of data. 

The very important issue in executing a scientific workflow in 

Grids is how to map and schedule workflow tasks onto multiple 

distributed resources and handle task dependencies in a timely 

manner to deliver users’ expected performance [2]. Workflow 

can be represented as a direct acyclic graph (DAG), in which 

nodes are the tasks and the edges are the inter-task 

dependencies. Each node label shows the task computation cost 

and each edge label shows the communication cost between 

tasks. The makespan is the total execution time of a workflow 

application, which is used to measure the performance of 

workflow applications. 

Workflow scheduling is one of the key functions in the 

workflow management system [3]. Scheduling is a process that 

maps and manages the execution of inter-dependent tasks on the 

distributed resources. It allocates suitable resources to workflow 

tasks in order to achieve high performance. Proper scheduling 

can have significant impact on the performance of the system. 

According to [4], there are three types of workflow scheduling: 

full-plan-ahead scheduling, Just-in-time scheduling and 

adaptive scheduling. The first approach is a static one in which 

the whole workflow tasks are scheduled prior to the execution 

phase. In contrast, the second one is completely dynamic as it 

postpones the scheduling decision for a workflow task, as long 

as possible, and performed when the task is ready to be 

executed. The third approach is a hybrid one that combines the 

two former approaches. Full-plan-ahead scheduling is 

represented in GridFlow [5] and Vienna Grid Environment [6]. 

DAGMan [7] and Taverna [8] support dynamic scheduling, and 

Pegasus [9] supports both. The static scheduling performs near 

optimal when the meta-data about the Grid resources is known 

in advance. This meta-data includes the performance of task 

execution and data communication which is supposed to be 

accurate. But, it is not true for the Grid. Furthermore, static 

approaches are proven to perform better than dynamic ones even 

with inaccurate meta-data [10]. 

However, due to the nature of the Grid environment, static 

scheduling may perform poorly because of the continuous 

change in the Grid environment and the fact that the Grid 

resources are not dedicated but they are shared between many 

users and all of them compete for using them. Many challenges 

may face the static scheduling of workflow application including 

events like: resources join or leave at any time; the resource 

performance may vary over time due to internal or external 

factors. We claim that the performance of the static scheduling 

can be improved by combining them with adaptive strategy 

which reschedules the remaining of the workflow tasks when the 

Grid changes (i.e. when some resources appear or disappear). 

Heterogeneous Earliest Finish Time (HEFT) [11] static 

scheduling algorithm has been selected and modified to suit the 

proposed hybrid scheduling strategy. In static scheduling, the 

planning phase is a one-time process which does not consider 
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the future change in the Grid after the execution has started. 

With the new approach, the Monitor will notify the planner if 

any run-time event which interests the planner (i.e., the former 

events). Rescheduling may be needed and the schedule may 

change to make use of the new resources and resubmitting the 

tasks that were scheduled to leaving resources to other ones in 

order to reduce the makespan. This requires the planning phase 

to be an event-driven process. The experiment results show the 

improvement by the new adaptive approach in makespan and 

speedup.   

The main contributions of this paper are: (1) proposing an 

adaptive rescheduling approach, (2) evaluating the performance 

of the adaptive approach, and (3) studying how the adaptive 

approach performs better than static approach and the other 

adaptive approach when a resource change happens.  

The remainder of this paper is organized as follows. The next 

section presents related work. Problem definition is 

demonstrated in section 3. Then we describe the proposed 

scheduling approach in section 4. Section 5 indicates the 

experiments results and the evaluation of the proposed 

scheduling approach performance. Summary and Future work is 

given in section 6 of this paper. 

2. RELATED WORK 
In general, the problem of mapping workflow tasks on 

distributed resources belongs to a class of problems known as 

NP-hard problems [12], and because of its importance on 

performance it has been extensively studied and many heuristics 

were proposed in the literature. Heterogeneous Earliest Finish 

Time (HEFT) [11] is one of the most popular heuristics. It is 

implemented in ASKALON on WIEN2K application. Other 

heuristics such as Min-min, Max-Min [13], Critical-Path-on-a-

processor (CPOP) [11] and Levelized Min Time (LMT) [14] are 

studied exhibiting the same strengths and weaknesses differing 

by few percent. HEFT is selected in this paper to implement the 

adaptive scheduling algorithm.  

Static approaches used in Grid workflow applications have some 

challenges that are discussed in [15]. The hybrid approach 

proposed in [9] combines the just-in time scheduling and the 

full-ahead planning by partitioning the workflow into sub-

workflows and by performing full-graph scheduling of the 

individual sub-workflows in a just-in-time manner. Adaptive 

Heterogeneous Earliest Finish Time (AHEFT) is another hybrid 

approach presented in [10]. AHEFT achieves the same goal by 

triggering rescheduling when the state of the Grid changes (i.e., 

when some resources appear or disappear). Rescheduling of 

applications is the most widely used method to make full-ahead 

planning more dynamic. To trigger rescheduling of an 

application, certain acceptance criteria defined for the 

application execution are needed, as well as a monitoring system 

which can control the fulfillment of these criteria. 

Another rescheduling policy is proposed in [16], which 

considers rescheduling at a few, carefully selected points during 

the execution. The research tackles one of the shortcomings that 

static scheduling always assumes accurate prediction of task 

performance. After the initial schedule is made, it selectively 

reschedules some tasks if the run time performance variance 

exceeds predefined threshold. However, this approach deals 

with only the inaccurate estimation and does not consider the 

change of resource pool. Paper [17] describes how adaptive 

workflow execution can be expressed as an optimization 

problem where the objective of the adaptation is to maximize 

some property expressed as a utility function. It evaluates using 

an adaptive approach for alternative utility measures based on 

response time and profit. 

We will focus on how the planner will adapt to the change in the 

Grid resources and if the new resources can be utilized to 

achieve higher performance and minimized makespan. 

3. PROBLEM DEFINITION 
Even though theoretically static scheduling performs near 

optimal [18], its effectiveness in a dynamic Grid environment is 

questioned. The next subsection discusses and analyzes the 

issues with static scheduling. Then, the new improvements that 

have been added to the system are presented. Next, the system 

architecture and its main components will be explained. 

3.1 Issues with Static Scheduling 
In static scheduling, planning is a one-time process which does 

not consider the future change of Grid environment after the 

resource mapping is done. Rescheduling in the execution phase 

is used to support fault tolerance. The overall issues with static 

scheduling are: (1) low accuracy of estimating the 

communication and computation costs of a DAG which is the 

key success factor of the scheduling strategy, (2) no adaptation 

to dynamic environment as the static scheduling approaches 

assume that the resource set is fixed over time. This assumption 

is not always valid, which results in low utilization for those 

resources that join after the plan is made. 

3.2 Proposed System Improvements 

The proposed scheduling strategy made planning an event-

driven process rather than a one-time process by adding a 

Monitor component. The Monitor works collaboratively with the 

Planner and the Executer to make the system aware of any Grid 

environment change, including the task performance and 

resource availability. Another component has been also added, 

which is the Intermediate Results Repository. It stores the 

intermediate results of the running tasks in parallel with their 

execution. It allows starting the rescheduled task from the point 

it had reached before rescheduling.  

3.3 Proposed System Architecture 
The general architecture of the proposed system which adapts 

the planner to dynamic Grid environment is shown in Fig. 1. 

The system design, used by Yu et al. in [10], is considered with 

some modifications and improvements. The system consists of 

three main components: Planner, Executer, and Monitor. The 

GRID Services on top of which the system is built are essential 

services for any Grid system and are out of the scope of this 

paper. The role of each system component is defined as follows: 

Planner. The Planner has a set of subcomponents including: 

Scheduler, Performance History Repository and Predictor. For 

each workflow application represented as a DAG, the Planner 

instantiates a Scheduler instance. The Scheduler inquires the 

Predictor to estimate the computation and the communication 

cost with the given resource set based on the performance 

history. Then, it decides an initial resource mapping in order to 

achieve the optimal performance of the entire workflow and 
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submits the schedule to the Executer. The initial resource 

mapping is made by first prioritizing the workflow tasks 

according to their dependencies. Then, the Scheduler selects the 

tasks with the highest priority to be scheduled on the resource 

that will achieve earliest finish time (EFT). 

Fig 1: Proposed system architecture 

Because of the Grid dynamic nature, the initial schedule may not 

be the optimal schedule. Adaptivity is achieved here by using 

rescheduling in order to adapt to the changes in the Grid 

resources. During the execution phase, the Monitor notifies the 

Scheduler with events that trigger rescheduling such as; (1) 

resource joins or leave or (2) change in the resource capabilities. 

Scheduler may decide a new schedule to make use of the new 

available resources if it minimizes the makespan of the 

workflow. 

Executer. The Executer is an enactment environment for 

workflow applications. It consists of: Execution Manager and 

Intermediate Results Repository. Execution Manager receives a 

DAG schedule and executes it. It is also responsible for storing 

the output of each executed task to the Intermediate Results 

Repository to be ready for executing the child tasks on the 

mapped resource. If the schedule is a result of rescheduling, it 

stores the progress and the intermediate results of the running 

task that will be scheduled to a new resource such that the task 

can start executing from the end point it had reached before the 

reschedule has been made. 

Monitor. The Monitor consists of two main components: 

Resource Manager and Performance Monitor. We have 

separated the Monitor from the executer to decrease the system 

complexity. The role of Manager and Performance Monitor is to 

update the Scheduler with the events such as: 

 Resource pool change. The Resource Manager uses the 

GRID Services for discovering the resource pool changes. If 

new resources are discovered after the initial schedule, 

rescheduling may reduce the makespan of the workflow. In 

case of resource removal, fault tolerance mechanism is 

triggered and the Execution Manager takes care of it. 

Execution Manager stores the intermediate results of the 

running task on the leaving resource. It updates the 

Performance Monitor which notifies the Scheduler in turn. 

Using this mechanism, allows scheduling the remaining of 

the task only to another resource and no need to repeat the 

whole task.   

 Resource performance variance. The performance 

estimation accuracy is largely dependent on history data. An 

inaccurate estimation leads to a bad schedule. If the run-time 

Performance Monitor can notify the Planner of any 

significant performance variance, the Planner will evaluate 

its impact and reschedule if necessary. In the meantime, the 

Performance History Repository is updated to improve the 

estimation accuracy in the subsequent planning. 

4. HEFT-BASED ADAPTIVE 

SCHEDULING MAHEFT 
The adaptive scheduling algorithm is described in Fig. 2. For a 

given DAG, an initial schedule is made. When there is a new 

resource available, the resource set is updated and the Planner 

tries to reschedule a randomly chosen running task. 

 

Fig 2: Adaptive scheduling algorithm (MAHEFT) 

The remaining part of the chosen task will not be scheduled to 

the new resource unless its earliest finish time according to 

Equation (4) is less than the earliest finish time of the initial 

schedule. When scheduled to the new resource, the Executer 

will save the intermediate results to the Intermediate Results 

Repository and sends them to the new resource. Then, the 

Planner schedules the remaining tasks of the DAG. The Planner 

will continuously listen to an event from the Monitor to adapt to 

the Grid environment changes. 

MAHEFT scheduling algorithm 

  

Abstract workflow, T - set of tasks in the DAG, 

R - set of all available resources, H - Heuristic 

employed by scheduler. 

 
S - Schedule plan of the workflow tasks to Grid 

resources, and decide whether to reschedule the 

running task nk to a new resource. 

 
 set initial schedule S0 = schedule (T, R, H) 

 while (resource pool change) 

 do 
# R is updated via communication with 

Resource Manager 

 update the resource set R 

# randomly choose nk as one of the running 

tasks 

 choose task nk 

# decide either to reschedule task nk or not 

 if (nk.EFT1 < nk.EFT0) 

 store the intermediate results of task nk 

and schedule the remaining part to the 

new resource 

# new schedule is made for the not started 

tasks only  

 S1 = schedule (T, R, H) 

 end if 

 end while 
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Next we define our scheduling strategy, which is HEFT-based 

scheduling algorithm, referred to as Modified Adaptive  

Heterogeneous Earliest Finish Time (MAHEFT). We use HEFT 

to implement the schedule (T, R, H) method in the scheduling 

algorithm in Fig. 2. We directly use the scheduling system 

model defined in paper [11] with revision and extension. The 

input for a workflow scheduling algorithm is an abstract 

workflow which is a group of workflow tasks without allocating 

them to specific resources. A Workflow application is 

represented by a Directed Acyclic Graph (DAG), G = (V, E), 

where V is the set of ν tasks (nodes) and E is the set of e edges. 

Each edge e (i, j)  E represents precedence constraint such that 

task ni should complete its execution before task nj starts (i.e., ni 

is the parent of nj and nj is the child of ni). In any given task 

graph, a task without any parent is called an entry task and a task 

without any child is called an exit task. Also, we refer to data is 

a υ × υ matrix of communication data, where datai,k is the 

amount of data required to be transmitted from task ni to nk. R is 

a set of r heterogeneous resources which represent computation 

units connected in a fully connected topology in which all inter-

processor communication are assumed to be performed without 

contention.  

We define the symbols used by MAHEFT in Table 1, and 

explain how they are calculated according to the following 

equations. For the entry task, the EST is calculated according to 

Equation (1). 

0),( 
jentry

rnEST    (1) 

For the other tasks in the graph, the EST and EFT are computed 

recursively, as shown in Equation (2) and (3) respectively. In 

order to compute the EFT of a task ni, all immediate predecessor 

tasks of ni must have been scheduled. 

)})((max],[max{),(
,

)(
imm

inpredmn
ji

cnAFTjavailrnEST 


  (2) 

),(),(
, jijiji

rnESTrnEFT     (3) 

The inner max block in the Equation (2) returns the ready time, 

i.e., the time when all the data needed by ni has arrived at 

resource rj. After task nm is scheduled to resource rj, the earliest 

finish time of nm on resource rj, is equal to the actual finish time, 

AFT (nm). The new EFT of the randomly selected task is 

calculated according to Equation (4). If the new EFT is less than 

the EFT resulted from the initial schedule, the remaining part of 

the chosen task is scheduled to the new resource. Equation (4) 

consists of three terms; the first term is the computation cost of 

the remaining part of the task ni on the new resource rk, the 

second term is the communication cost needed to transfer the 

output of the first part of the task ni to the new resource rk, and 

the third part is the point time of the reschedule. The second 

term is considered a penalty to reschedule the task to another 

resource. 

CBArnEFT
ki

),(
1

   (4) 

Table 1. Definition of symbols in MAHEFT 

Symbol Definition 

EST (ni, rj) 

the earliest start time for not-started task ni on resource 

rj 

EFT (ni, rj) 

the earliest finish time for not- started task ni on 
resource rj 

AFT (ni) the actual finish time of task ni 

avail[j] 
the earliest time when resource rj is ready for executing 
new tasks 

ωi,j the average computation cost of task ni on resource rj 

i
  the average computation cost of task ni 

ci,j 
the communication cost for data dependence of  task nj 

on task ni 

ij
c  the average communication cost of edge (i, j) 

ic  the average communication cost of task ni 

succ(ni) the immediate successors of task ni 

pred(ni) the set of immediate predecessor tasks of task ni 

remi,j the remaining time for task ni on resource rj 

The first term which is the computation cost of the remaining 

part of task ni on the new resource rk which is proportional to the 

computation cost of the task ni on the new resource rk and the 

remaining time for task ni on resource rj. It is inversely 

proportional to the computation cost of the task ni on the new 

resource rj. Where; 

ki
A

,
  

ji
remA

,
  

ji

A
,

1


  

Then A can be calculated as follows: 

ji

kiji
rem

KA
,

,,

1



  

The second term which is the communication cost needed to 

transfer the output of the first part of task ni to the new resource 

rk is proportional to the time for completing the first part of task 

ni on resource rj and the average communication cost of task ni. 

It is inversely proportional to the computation cost of the task ni 

on the new resource rj. Where; 

)(
,, jiji

remB    

i
cB   

ji

B
,

1


  

Then B can be calculated as follows: 
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The average communication of first part of task ni is calculated 

by summing the communication cost between task ni and all of 

its predecessor tasks divided by the number of the predecessor 

tasks as indicated in Equation (5).  





)(

,
)(

inpredjn

ijii
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Assuming that constants K1, K2 are equal to 1, so the final 

Equation of the earliest finish time of the chosen task will be: 

Cc
remrem

rnEFT
i
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After all tasks in a graph are scheduled, the schedule length (i,e., 

makespan) will be the actual finish time of the exit task nexit as 

defined in Equation (6). 

)}(max{
exit

nAFTmakespan    (6) 

The objective function of the workflow scheduling problem is to 

determine the assignment of tasks of a given application to 

resources such that its makespan is minimized. 

It is obvious that MAHEFT is identical to HEFT when it is the 

initial schedule, (see Fig. 3). Tasks are ordered in the schedule 

(T, R, H) by their priorities based on upward rank of a task ni is 

recursively defined by Equation (7) 

))(()( max
)(

juij

insuccjn
iiu

nrankcnrank 


   (7) 

Since the rank is computed recursively by traversing the task 

graph upward, starting from the exit task, it is called upward 

rank. The first term of the equation can be calculated according 

to Equation (8). The sum of the computation cost of task ni on 

every resource is divided on the number of the resources. For the 

exit task, the upward rank is defined in Equation (9). 





r

j

jii
r

1

,
    (8) 

exitexitu
nrank )(           (9) 

As illustration, we use a sample DAG and resource set, shown in 

Fig. 4, to compare schedule performance of traditional HEFT, 

AHEFT and MAHEFT. The adjacent table shows the 

computation cost for each task on each resource. Resources r1, r2 

and r3 are available from the beginning while r4 emerges at 13.  

First, the tasks ranks are calculated starting from the exit task as 

in the previous example, the task ranks are calculated to be as 

shown in Table 2. For the entry task (n1), the resource that will 

be chosen for executing it will be r3 because it will give the 

earliest finish time equal to 9. 

 

Fig 3: Procedure schedule (T, R, H) of MAHEFT 

The next task to be scheduled is task n3. For tasks with one 

parent only such as task n3, its EST will be either 9 if scheduled 

to resource r3 or 9 + 12 = 21, which is the EST of task n1 in 

addition to the communication cost between n1 and n3, if 

scheduled to any resource other than r3. The EFT of the task n3 

is the basis for choosing the resource it will be allocated to. 

 

Fig 4: A sample DAG, the weight of each edge represents its 

communication cost 

The EFT of task n3 on the three available resources r1, r2, and r3, 

at the time point 9, are calculated to be 21 + 11 = 32, 21 + 13 = 

Procedure schedule (T, R, H) of MAHEFT 

 

T - set of the tasks of sate not started in the DAG, 

R - set of all available resources, H - HEFT 

heuristic employed by scheduler. 
 

Computes the tasks upward rank ranku(ni), and 

computes earliest finish time of each task on 

every resource to choose the more suitable 

resource with minimum earliest finish time. 

  
 compute ranku for all tasks by traversing graph 

upward, starting from the exit task 

 sort the tasks in a scheduling list by nonincreasing 

order of ranku 

 while (there are unscheduled tasks in the list)  

 do 

 select the first task ni from the scheduling list  

 for each resource rk in R  

 do  

 compute EFT(ni, rk) 

 assign task ni to the resource that minimizes 

EFT of task ni 

 end while 

INPUT 

OUTPUT 

STEPS 

Computation Cost 

Task 
Resource 

r1 r2 r3 r4 

n1 14 16 9 14 

n2 13 19 18 17 

n3 11 13 19 9 

n4 13 8 17 15 

n5 12 13 10 14 

n6 13 16 9 16 

n7 7 15 11 15 

n8 8 11 7 20 

n9 18 12 20 13 

n10 21 7 16 15 
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34, and 9 + 19 = 28 respectively. So, the resource r3 is chosen 

for executing task n3. Resources are chosen for the tasks such as 

n2, n4… and n6 will be chosen in the same way. 

Table 2. Tasks upward ranking and selected resources 

Task Ranking Resource 

n1 108 3 

n3 80 3 

n4 80 2 

n2 77 1 

n5 69 3 

n6 62 2 

n9 44.333 2 

n7 42.667 3 

n8 34.333 1 

n10 14.667 2 

For tasks with more than one parent such as task n9, the ready 

times of the three resources r1, r2, and r3 are calculated to be 40, 

42, and 49 which are the actual finish time of the tasks n2, n6, 

and n7. The actual finish time of the predecessors of task n9 

which are task n2, n4, and n5 are calculated to be 40, 26, and 38 

respectively. For each resource, the maximum of the ready times 

of the three resources and the actual finish time of the 

predecessors in addition to the communication cost needed will 

be the EST of task n9. So, if task n9 is scheduled to resource r1, 

the EST will be max (40, max (40 + 0 = 40, 26 + 23 = 49, 38 + 

13 = 51)) which will be equal to max (40, 51) = 51. If task n9 is 

scheduled to resource r2, the EST will be max (42, max (40 + 16 

= 56, 26 + 0 = 26, 38 + 13 = 51)) which will be equal to max 

(42, 56) = 56. If task n9 is scheduled to resource r3, the EST will 

be max (49, max (40 + 16 = 56, 26 + 23 = 49, 38 + 0 = 38)) 

which will be equal to max (49, 56) = 56. The EFT of task n9 on 

the three resources will be 51 + 18 = 69, 56 + 12 = 68, and 56 + 

20 = 76 respectively. The resource r2 has the minimum 

execution time so it is chosen for executing task n9. The chosen 

resources for executing the tasks are indicated in Table 2. 

Fig. 5(a) shows the schedule obtained from HEFT that produces 

the schedule with makespan as 83 without considering the 

addition of resource r4 at later time. 

For AHEFT and MAHEFT, the initial schedule made at time 

point 0 is identical as the one by HEFT. When resource r4 is 

added, the only task that is completed is n1 and the task n3 is 

scheduled on resource r2. AHEFT considers rescheduling for 

only the non started tasks while, MAHEFT considers task n3 

also. HEFT produces schedule with makespan equal to 78 as 

shown in Fig. 5(b). The EFT of task n3 on the new resource r4 is 

calculated according to Equation 3.7, it is 25 which is less than 

the initial EFT equal to 36. So, task n3 will be resumed on 

resource r4 and the other tasks are then rescheduled as before in 

HEFT. The other non-started tasks are then ranked as illustrated 

before and they are allocated to the resources that have 

minimum EFT. The MAHEFT will reduce the schedule to 75 as 

shown in Fig. 5(c). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: Schedule of the DAG in Fig. 4 using HEFT, AHEFT, 

and MAHEFT algorithms: (a) HEFT schedule 

(makespan=83), (b) AHEFT schedule with resource adding 

at time 13 (makespan=78), (c) MAHEFT schedule with 

resource adding at time 13 (makespan=75) 
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5. EXPERIMENT RESULTS 
To evaluate the performance of the proposed MAHEFT 

scheduling algorithm we needed repeated cases of workflows 

and resource pools. A simulation of the framework will be 

introduced, in this section, to evaluate the proposed scheduling 

algorithm. The first subsection describes the metrics used for 

performance evaluation. The second subsection describes 

randomly generated DAGs and the parameters used to generate 

them. 

5.1 Comparison Metrics 
The comparison of the algorithms is based on the following two 

metrics: 

Makespan. The main performance measure of a scheduling 

algorithm on a graph is the total execution time (makespan) of 

its output schedule. 

Speedup. The speedup value for a given graph is computed by 

dividing the sequential execution time (i.e., cumulative 

computation costs of the tasks in the graph) by the parallel 

execution time (i.e., the makespan of the output schedule). The 

sequential execution time is computed by assigning all tasks to a 

single processor that minimizes the cumulative of the 

computation costs. The speedup is defined by Equation (10) 

 
makespan

w
Speedup

jiVinRjr  


,

min
  (10) 

5.2 Randomized Generated DAGs 
The Standard Task Graph Set (STG) [19] is a kind of benchmark 

for evaluation of multiprocessor scheduling algorithms. STG is 

used to evaluate the algorithms under the same conditions 

covering various DAGs generation methods including DAGs 

generated from actual application programs. The STG consists 

of two sets of DAGs, the first set contains DAGs generated from 

actual application programs while, the second set contains 900 

randomly generated DAGs in which DAG size varies between 

50 and 2700 tasks. DAG shapes (precedence constraints) are 

determined based on four different methods [20-22]. 

A random DAG generator was implemented to generate 

different DAGs with various characteristics based on some input 

parameters. For fair comparison with the static HEFT and the 

adaptive AHEFT algorithms, the generator uses the same values 

of the input parameters used in the approach utilized in [11] to 

determine the DAG shape. These input parameters are also 

suggested in the workflow test bench work [23]. The generator 

follows the fourth method of "layrpred" but, using different 

number of layers and the number of tasks in each layer. The 

generator will use the following set of parameters: 

 The number of tasks in the graph (υ). 

 Shape parameter of the DAG, ( ). The height of the DAG 

(no. of layers) is calculated according to Equation (11). 

Number of layers = 



  (11) 

 Out degree of a node, (out_degree). The width of each layer 

(number of tasks) is generated randomly such that it cannot 

exceed the number of tasks in the previous level multiplied 

by the out degree of a single node. A dense DAG i.e., a 

shorter DAG with high degree of parallelism can be 

generated by choosing 1  because the number of layers 

is inversely proportional to . While, a longer DAG with 

high number of layers can be generated if .1  

 Communication to computation ratio (CCR). It is the ratio of 

the average communication cost to the average computation 

cost. A data-intensive application has a higher CCR, while a 

computing-intensive one has a lower value of CCR. 

 The resource heterogeneous factor, β. A higher value of β 

suggests the bigger difference of resource capability. The 

resources are homogeneous when β is 0. The average 

computation cost of all tasks in a DAG is
DAG

 , then the 

average of each task ni in the graph, represented as 
i

 , is 

selected randomly from a uniform distribution with range [0, 

2 ×
DAG

 ]. Then, the computation cost of each task ni on each 

resource rj in the system, i.e., 
ji ,

 , is randomly selected 

from the following range: )
2

1()
2

1(
,





 

ijii
. 

The set of values for each of the previously stated parameters is 

given in Table 3. These combinations results in 1875 different 

DAGs. 

Table 3. Value set of random generated DAGs parameters 

Parameter Value 

  20, 40, 60, 80,100 

  0.5, 1.0, 2.0 

out_degree 1, 2, 3, 4, 5 

CCR 
0.1, 0.5, 1.0, 5.0, 

10.0 

β 
0.1, 0.25, 0.5, 0.75, 

1.0 

 

To model the dynamic change of resources, we introduce three 

additional parameters as follows: (1) Initial resource pool size, 

R; (2) Interval of resource change, ω. The higher value of ω 

indicates the lower frequency of resource change; and (3) 

Percentage of resource change, Δ, to measure the resource 

change percentage each time compared with the initial resource 

pool. The value set for each of these parameters is listed in 

Table 4. 

Table 4. Value set of additional parameters 

Parameter Value 

R 10, 20, 30, 40, 50 

Δ 0.1, 0.15, 0.2, 0.25 

Ω 50, 100, 200, 400 
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To study the effect of the previously stated parameters on the 

makespan and speedup, seven experiments are used each with 

50 random DAGs generated using the implemented randomized 

DAG generator. 

Fig. 6 presents the results of HEFT, AHEFT and MAHEFT for 

randomized generated DAGs. In Fig. 6(a), the makespan 

increases with total number of tasks because more tasks means 

more computation and communication cost needed. In Fig. 6(e), 

the makespan of the three algorithms tends to be the same with 

larger values of resource change interval because the higher the 

resource change interval the more static become the Grid 

environment and this leads to no change in it. 

 

a) Makespan at different number of tasks. 

 

b) Makespan at different Initial Resource pool. 

 

c) Makespan at different heterogeneity factor (β). 

 

d) Makespan at different Communication-to-Computation 

Ratio (CCR). 

 

e) Makespan at different Resource change interval. 

 

f) Makespan at different Resource change percentage. 

Fig 6: Average makespan at different parameters values 
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Fig. 6(f) shows the effectiveness of our algorithm more clear 

when the resource change percentage increases because if the 

new added resources were better than those in the initial pool 

there will be more benefit of using them. 

To indicate how the adaptive algorithms AHEFT and MAHEFT 

perform better than the HEFT static algorithm, the improvement 

rate in makespan is used here. Fig. 7 shows the relationship of 

the improvement rate in makespan of both algorithms with the 

resource change interval. It worth noting that with increasing the 

resource change interval the improvement rate of the two 

adaptive algorithms decreases because the environment is more 

static and the changes are slower. 

 

Fig 7: Improvement rate at different Resource change 

interval. 

Fig. 8 shows that the improvement rate in makespan increases 

with higher values of Δ as when better resources join the 

resource pool they can be used to execute DAG tasks. 

 

Fig 8: Improvement rate at different Resource change 

percentage. 

The speedup of a workflow scheduling algorithm is another 

performance metric to be considered. This experiment indicates 

the speedup at different total number of tasks in the DAG. Table 

5 lists the speedup values of the three algorithms with varying 

the number of tasks. It is observed that with the increase in the 

total number of tasks, the speedup jumps initially and becomes 

stable later. 

Table 5. Speedup at various total number of tasks. 

Number of tasks 20 40 60 80 100 

HEFT Speedup 1.97 2.8 3.27 3.67 3.75 

AHEFT Speedup 2.07 2.86 3.49 3.93 4.02 

MAHEFT 

Speedup 
2.08 2.96 3.51 3.93 4.16 

 

6. SUMMARY AND FUTURE WORK 
This paper analyzes issues of static scheduling strategy for grid 

workflow applications, and proposes an adaptive scheduling 

strategy. The new approach exploits its inherent benefits. 

MAHEFT is developed and tested for its stability and 

effectiveness with various DAGs, and the results are promising. 

The analysis of the experiments shows that the MAHEFT 

outperforms both the static HEFT and the adaptive AHEFT 

algorithms. The improvement rate in makespan of the MAHEFT 

algorithm ranges between 2% to 21% according to the DAG 

type and the Grid environment parameters. It also shows that 

MAHEFT prefers computation-intensive applications. With 

respect to the Speedup, the MAHEFT is faster than both HEFT 

and AHEFT algorithms with speedup values between 2.08 and 

4.16. It worth noting that, our MAHEFT algorithm performs 

better than the other two algorithms. The improvement rate may 

vary according to the DAG type generated. 
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