
International Journal of Computer Applications (0975 – 8887)

Volume 35– No.7, December 2011

22

MAHEFT-based Adaptive Grid Workflow

Scheduling Approach

Ahmed A. Ghanem

Computers and Systems
Engineering Department

Mansoura University
Mansoura, Egypt

Ahmed I. Saleh
Computers and Systems
Engineering Department

Mansoura University
Mansoura, Egypt

Hesham A. Ali
Computers and Systems
Engineering Department

Mansoura University
Mansoura, Egypt

ABSTRACT

The Grid Workflow scheduling is considered an important issue

in Workflow management. Workflow scheduling is a process of

assigning workflow tasks to suitable computational resources.

Workflow scheduling significantly affects the performance and

the execution time of the workflow. A Workflow scheduling

approach falls in one of three categories: static, dynamic or

adaptive. Grid environment is a highly changing environment in

which static approaches performance is questioned. Effective

workflow scheduling approaches are essential to make use of the

Grid heterogeneous resource capabilities. The main objective of

this paper is to introduce an adaptive heuristic list scheduling

approach which utilizes the MAHEFT algorithm. MAHEFT

algorithm considers the new changes in the Grid environment in

order to minimize the total execution time (makespan) and to

increase the speedup. The improvement rate in makespan of

MAHEFT algorithm ranges between 2% to 21%. With respect to

Speedup, MAHEFT is faster than both static HEFT and adaptive

AHEFT algorithms with speedup values between 2.08 and 4.16.

General Terms

High Performance Computing, Grid Computing.

Keywords

Grid Workflow, Workflow Scheduling, DAG, Adaptive

Scheduling, Makespan, Speedup.

1. INTRODUCTION
Science has greatly developed in the last three decades in a way

that there is a need for high performance resources to solve big

and complex problems. Grids are one of the solutions to this

problem as Grids integrate large-scale distributed heterogeneous

resources to enable users to access remote resources through

secure and scalable networks. Many scientific fields such as

high-energy physics, gravitational-wave physics, geophysics,

astronomy, and bioinformatics are utilizing Grids to manage and

process large data sets. Workflow applications [1] incorporate

multiple dependent tasks to be executed in a predefined order

and may entail the transfer and storage of a huge amount of data.

The very important issue in executing a scientific workflow in

Grids is how to map and schedule workflow tasks onto multiple

distributed resources and handle task dependencies in a timely

manner to deliver users’ expected performance [2]. Workflow

can be represented as a direct acyclic graph (DAG), in which

nodes are the tasks and the edges are the inter-task

dependencies. Each node label shows the task computation cost

and each edge label shows the communication cost between

tasks. The makespan is the total execution time of a workflow

application, which is used to measure the performance of

workflow applications.

Workflow scheduling is one of the key functions in the

workflow management system [3]. Scheduling is a process that

maps and manages the execution of inter-dependent tasks on the

distributed resources. It allocates suitable resources to workflow

tasks in order to achieve high performance. Proper scheduling

can have significant impact on the performance of the system.

According to [4], there are three types of workflow scheduling:

full-plan-ahead scheduling, Just-in-time scheduling and

adaptive scheduling. The first approach is a static one in which

the whole workflow tasks are scheduled prior to the execution

phase. In contrast, the second one is completely dynamic as it

postpones the scheduling decision for a workflow task, as long

as possible, and performed when the task is ready to be

executed. The third approach is a hybrid one that combines the

two former approaches. Full-plan-ahead scheduling is

represented in GridFlow [5] and Vienna Grid Environment [6].

DAGMan [7] and Taverna [8] support dynamic scheduling, and

Pegasus [9] supports both. The static scheduling performs near

optimal when the meta-data about the Grid resources is known

in advance. This meta-data includes the performance of task

execution and data communication which is supposed to be

accurate. But, it is not true for the Grid. Furthermore, static

approaches are proven to perform better than dynamic ones even

with inaccurate meta-data [10].

However, due to the nature of the Grid environment, static

scheduling may perform poorly because of the continuous

change in the Grid environment and the fact that the Grid

resources are not dedicated but they are shared between many

users and all of them compete for using them. Many challenges

may face the static scheduling of workflow application including

events like: resources join or leave at any time; the resource

performance may vary over time due to internal or external

factors. We claim that the performance of the static scheduling

can be improved by combining them with adaptive strategy

which reschedules the remaining of the workflow tasks when the

Grid changes (i.e. when some resources appear or disappear).

Heterogeneous Earliest Finish Time (HEFT) [11] static

scheduling algorithm has been selected and modified to suit the

proposed hybrid scheduling strategy. In static scheduling, the

planning phase is a one-time process which does not consider

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.7, December 2011

23

the future change in the Grid after the execution has started.

With the new approach, the Monitor will notify the planner if

any run-time event which interests the planner (i.e., the former

events). Rescheduling may be needed and the schedule may

change to make use of the new resources and resubmitting the

tasks that were scheduled to leaving resources to other ones in

order to reduce the makespan. This requires the planning phase

to be an event-driven process. The experiment results show the

improvement by the new adaptive approach in makespan and

speedup.

The main contributions of this paper are: (1) proposing an

adaptive rescheduling approach, (2) evaluating the performance

of the adaptive approach, and (3) studying how the adaptive

approach performs better than static approach and the other

adaptive approach when a resource change happens.

The remainder of this paper is organized as follows. The next

section presents related work. Problem definition is

demonstrated in section 3. Then we describe the proposed

scheduling approach in section 4. Section 5 indicates the

experiments results and the evaluation of the proposed

scheduling approach performance. Summary and Future work is

given in section 6 of this paper.

2. RELATED WORK
In general, the problem of mapping workflow tasks on

distributed resources belongs to a class of problems known as

NP-hard problems [12], and because of its importance on

performance it has been extensively studied and many heuristics

were proposed in the literature. Heterogeneous Earliest Finish

Time (HEFT) [11] is one of the most popular heuristics. It is

implemented in ASKALON on WIEN2K application. Other

heuristics such as Min-min, Max-Min [13], Critical-Path-on-a-

processor (CPOP) [11] and Levelized Min Time (LMT) [14] are

studied exhibiting the same strengths and weaknesses differing

by few percent. HEFT is selected in this paper to implement the

adaptive scheduling algorithm.

Static approaches used in Grid workflow applications have some

challenges that are discussed in [15]. The hybrid approach

proposed in [9] combines the just-in time scheduling and the

full-ahead planning by partitioning the workflow into sub-

workflows and by performing full-graph scheduling of the

individual sub-workflows in a just-in-time manner. Adaptive

Heterogeneous Earliest Finish Time (AHEFT) is another hybrid

approach presented in [10]. AHEFT achieves the same goal by

triggering rescheduling when the state of the Grid changes (i.e.,

when some resources appear or disappear). Rescheduling of

applications is the most widely used method to make full-ahead

planning more dynamic. To trigger rescheduling of an

application, certain acceptance criteria defined for the

application execution are needed, as well as a monitoring system

which can control the fulfillment of these criteria.

Another rescheduling policy is proposed in [16], which

considers rescheduling at a few, carefully selected points during

the execution. The research tackles one of the shortcomings that

static scheduling always assumes accurate prediction of task

performance. After the initial schedule is made, it selectively

reschedules some tasks if the run time performance variance

exceeds predefined threshold. However, this approach deals

with only the inaccurate estimation and does not consider the

change of resource pool. Paper [17] describes how adaptive

workflow execution can be expressed as an optimization

problem where the objective of the adaptation is to maximize

some property expressed as a utility function. It evaluates using

an adaptive approach for alternative utility measures based on

response time and profit.

We will focus on how the planner will adapt to the change in the

Grid resources and if the new resources can be utilized to

achieve higher performance and minimized makespan.

3. PROBLEM DEFINITION
Even though theoretically static scheduling performs near

optimal [18], its effectiveness in a dynamic Grid environment is

questioned. The next subsection discusses and analyzes the

issues with static scheduling. Then, the new improvements that

have been added to the system are presented. Next, the system

architecture and its main components will be explained.

3.1 Issues with Static Scheduling
In static scheduling, planning is a one-time process which does

not consider the future change of Grid environment after the

resource mapping is done. Rescheduling in the execution phase

is used to support fault tolerance. The overall issues with static

scheduling are: (1) low accuracy of estimating the

communication and computation costs of a DAG which is the

key success factor of the scheduling strategy, (2) no adaptation

to dynamic environment as the static scheduling approaches

assume that the resource set is fixed over time. This assumption

is not always valid, which results in low utilization for those

resources that join after the plan is made.

3.2 Proposed System Improvements

The proposed scheduling strategy made planning an event-

driven process rather than a one-time process by adding a

Monitor component. The Monitor works collaboratively with the

Planner and the Executer to make the system aware of any Grid

environment change, including the task performance and

resource availability. Another component has been also added,

which is the Intermediate Results Repository. It stores the

intermediate results of the running tasks in parallel with their

execution. It allows starting the rescheduled task from the point

it had reached before rescheduling.

3.3 Proposed System Architecture
The general architecture of the proposed system which adapts

the planner to dynamic Grid environment is shown in Fig. 1.

The system design, used by Yu et al. in [10], is considered with

some modifications and improvements. The system consists of

three main components: Planner, Executer, and Monitor. The

GRID Services on top of which the system is built are essential

services for any Grid system and are out of the scope of this

paper. The role of each system component is defined as follows:

Planner. The Planner has a set of subcomponents including:

Scheduler, Performance History Repository and Predictor. For

each workflow application represented as a DAG, the Planner

instantiates a Scheduler instance. The Scheduler inquires the

Predictor to estimate the computation and the communication

cost with the given resource set based on the performance

history. Then, it decides an initial resource mapping in order to

achieve the optimal performance of the entire workflow and

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.7, December 2011

24

submits the schedule to the Executer. The initial resource

mapping is made by first prioritizing the workflow tasks

according to their dependencies. Then, the Scheduler selects the

tasks with the highest priority to be scheduled on the resource

that will achieve earliest finish time (EFT).

Fig 1: Proposed system architecture

Because of the Grid dynamic nature, the initial schedule may not

be the optimal schedule. Adaptivity is achieved here by using

rescheduling in order to adapt to the changes in the Grid

resources. During the execution phase, the Monitor notifies the

Scheduler with events that trigger rescheduling such as; (1)

resource joins or leave or (2) change in the resource capabilities.

Scheduler may decide a new schedule to make use of the new

available resources if it minimizes the makespan of the

workflow.

Executer. The Executer is an enactment environment for

workflow applications. It consists of: Execution Manager and

Intermediate Results Repository. Execution Manager receives a

DAG schedule and executes it. It is also responsible for storing

the output of each executed task to the Intermediate Results

Repository to be ready for executing the child tasks on the

mapped resource. If the schedule is a result of rescheduling, it

stores the progress and the intermediate results of the running

task that will be scheduled to a new resource such that the task

can start executing from the end point it had reached before the

reschedule has been made.

Monitor. The Monitor consists of two main components:

Resource Manager and Performance Monitor. We have

separated the Monitor from the executer to decrease the system

complexity. The role of Manager and Performance Monitor is to

update the Scheduler with the events such as:

 Resource pool change. The Resource Manager uses the

GRID Services for discovering the resource pool changes. If

new resources are discovered after the initial schedule,

rescheduling may reduce the makespan of the workflow. In

case of resource removal, fault tolerance mechanism is

triggered and the Execution Manager takes care of it.

Execution Manager stores the intermediate results of the

running task on the leaving resource. It updates the

Performance Monitor which notifies the Scheduler in turn.

Using this mechanism, allows scheduling the remaining of

the task only to another resource and no need to repeat the

whole task.

 Resource performance variance. The performance

estimation accuracy is largely dependent on history data. An

inaccurate estimation leads to a bad schedule. If the run-time

Performance Monitor can notify the Planner of any

significant performance variance, the Planner will evaluate

its impact and reschedule if necessary. In the meantime, the

Performance History Repository is updated to improve the

estimation accuracy in the subsequent planning.

4. HEFT-BASED ADAPTIVE

SCHEDULING MAHEFT
The adaptive scheduling algorithm is described in Fig. 2. For a

given DAG, an initial schedule is made. When there is a new

resource available, the resource set is updated and the Planner

tries to reschedule a randomly chosen running task.

Fig 2: Adaptive scheduling algorithm (MAHEFT)

The remaining part of the chosen task will not be scheduled to

the new resource unless its earliest finish time according to

Equation (4) is less than the earliest finish time of the initial

schedule. When scheduled to the new resource, the Executer

will save the intermediate results to the Intermediate Results

Repository and sends them to the new resource. Then, the

Planner schedules the remaining tasks of the DAG. The Planner

will continuously listen to an event from the Monitor to adapt to

the Grid environment changes.

MAHEFT scheduling algorithm

Abstract workflow, T - set of tasks in the DAG,

R - set of all available resources, H - Heuristic

employed by scheduler.

S - Schedule plan of the workflow tasks to Grid

resources, and decide whether to reschedule the

running task nk to a new resource.

 set initial schedule S0 = schedule (T, R, H)

 while (resource pool change)

 do
R is updated via communication with

Resource Manager

 update the resource set R

randomly choose nk as one of the running

tasks

 choose task nk

decide either to reschedule task nk or not

 if (nk.EFT1 < nk.EFT0)

 store the intermediate results of task nk

and schedule the remaining part to the

new resource

new schedule is made for the not started

tasks only

 S1 = schedule (T, R, H)

 end if

 end while

INPUT

OUTPUT

STEPS

Planner

 DAG DAG

Scheduler

Scheduler

Performance

History

Repository
Predictor

Execution

Manager

Executer

Intermediate

Results

Repository

Monitor

Resource

Manager

Performance

Monitor

GRID Services

Information

services

Resource

services

Network

services

event

event

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.7, December 2011

25

Next we define our scheduling strategy, which is HEFT-based

scheduling algorithm, referred to as Modified Adaptive

Heterogeneous Earliest Finish Time (MAHEFT). We use HEFT

to implement the schedule (T, R, H) method in the scheduling

algorithm in Fig. 2. We directly use the scheduling system

model defined in paper [11] with revision and extension. The

input for a workflow scheduling algorithm is an abstract

workflow which is a group of workflow tasks without allocating

them to specific resources. A Workflow application is

represented by a Directed Acyclic Graph (DAG), G = (V, E),

where V is the set of ν tasks (nodes) and E is the set of e edges.

Each edge e (i, j)  E represents precedence constraint such that

task ni should complete its execution before task nj starts (i.e., ni

is the parent of nj and nj is the child of ni). In any given task

graph, a task without any parent is called an entry task and a task

without any child is called an exit task. Also, we refer to data is

a υ × υ matrix of communication data, where datai,k is the

amount of data required to be transmitted from task ni to nk. R is

a set of r heterogeneous resources which represent computation

units connected in a fully connected topology in which all inter-

processor communication are assumed to be performed without

contention.

We define the symbols used by MAHEFT in Table 1, and

explain how they are calculated according to the following

equations. For the entry task, the EST is calculated according to

Equation (1).

0),(
jentry

rnEST (1)

For the other tasks in the graph, the EST and EFT are computed

recursively, as shown in Equation (2) and (3) respectively. In

order to compute the EFT of a task ni, all immediate predecessor

tasks of ni must have been scheduled.

)})((max],[max{),(
,

)(
imm

inpredmn
ji

cnAFTjavailrnEST 


 (2)

),(),(
, jijiji

rnESTrnEFT  (3)

The inner max block in the Equation (2) returns the ready time,

i.e., the time when all the data needed by ni has arrived at

resource rj. After task nm is scheduled to resource rj, the earliest

finish time of nm on resource rj, is equal to the actual finish time,

AFT (nm). The new EFT of the randomly selected task is

calculated according to Equation (4). If the new EFT is less than

the EFT resulted from the initial schedule, the remaining part of

the chosen task is scheduled to the new resource. Equation (4)

consists of three terms; the first term is the computation cost of

the remaining part of the task ni on the new resource rk, the

second term is the communication cost needed to transfer the

output of the first part of the task ni to the new resource rk, and

the third part is the point time of the reschedule. The second

term is considered a penalty to reschedule the task to another

resource.

CBArnEFT
ki

),(
1

 (4)

Table 1. Definition of symbols in MAHEFT

Symbol Definition

EST (ni, rj)

the earliest start time for not-started task ni on resource

rj

EFT (ni, rj)

the earliest finish time for not- started task ni on
resource rj

AFT (ni) the actual finish time of task ni

avail[j]
the earliest time when resource rj is ready for executing
new tasks

ωi,j the average computation cost of task ni on resource rj

i
 the average computation cost of task ni

ci,j
the communication cost for data dependence of task nj

on task ni

ij
c the average communication cost of edge (i, j)

ic the average communication cost of task ni

succ(ni) the immediate successors of task ni

pred(ni) the set of immediate predecessor tasks of task ni

remi,j the remaining time for task ni on resource rj

The first term which is the computation cost of the remaining

part of task ni on the new resource rk which is proportional to the

computation cost of the task ni on the new resource rk and the

remaining time for task ni on resource rj. It is inversely

proportional to the computation cost of the task ni on the new

resource rj. Where;

ki
A

,


ji
remA

,


ji

A
,

1




Then A can be calculated as follows:

ji

kiji
rem

KA
,

,,

1





The second term which is the communication cost needed to

transfer the output of the first part of task ni to the new resource

rk is proportional to the time for completing the first part of task

ni on resource rj and the average communication cost of task ni.

It is inversely proportional to the computation cost of the task ni

on the new resource rj. Where;

)(
,, jiji

remB  

i
cB 

ji

B
,

1




Then B can be calculated as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.7, December 2011

26

i

ji

jiji
c

rem
KB 


)(

,

,,

2




The average communication of first part of task ni is calculated

by summing the communication cost between task ni and all of

its predecessor tasks divided by the number of the predecessor

tasks as indicated in Equation (5).





)(

,
)(

inpredjn

ijii
npredcc (5)

Assuming that constants K1, K2 are equal to 1, so the final

Equation of the earliest finish time of the chosen task will be:

Cc
remrem

rnEFT
i

ji

ji

ji

kiji

ki



)1(),(

,

,

,

,,

1




After all tasks in a graph are scheduled, the schedule length (i,e.,

makespan) will be the actual finish time of the exit task nexit as

defined in Equation (6).

)}(max{
exit

nAFTmakespan  (6)

The objective function of the workflow scheduling problem is to

determine the assignment of tasks of a given application to

resources such that its makespan is minimized.

It is obvious that MAHEFT is identical to HEFT when it is the

initial schedule, (see Fig. 3). Tasks are ordered in the schedule

(T, R, H) by their priorities based on upward rank of a task ni is

recursively defined by Equation (7)

))(()(max
)(

juij

insuccjn
iiu

nrankcnrank 


 (7)

Since the rank is computed recursively by traversing the task

graph upward, starting from the exit task, it is called upward

rank. The first term of the equation can be calculated according

to Equation (8). The sum of the computation cost of task ni on

every resource is divided on the number of the resources. For the

exit task, the upward rank is defined in Equation (9).





r

j

jii
r

1

,
 (8)

exitexitu
nrank )((9)

As illustration, we use a sample DAG and resource set, shown in

Fig. 4, to compare schedule performance of traditional HEFT,

AHEFT and MAHEFT. The adjacent table shows the

computation cost for each task on each resource. Resources r1, r2

and r3 are available from the beginning while r4 emerges at 13.

First, the tasks ranks are calculated starting from the exit task as

in the previous example, the task ranks are calculated to be as

shown in Table 2. For the entry task (n1), the resource that will

be chosen for executing it will be r3 because it will give the

earliest finish time equal to 9.

Fig 3: Procedure schedule (T, R, H) of MAHEFT

The next task to be scheduled is task n3. For tasks with one

parent only such as task n3, its EST will be either 9 if scheduled

to resource r3 or 9 + 12 = 21, which is the EST of task n1 in

addition to the communication cost between n1 and n3, if

scheduled to any resource other than r3. The EFT of the task n3

is the basis for choosing the resource it will be allocated to.

Fig 4: A sample DAG, the weight of each edge represents its

communication cost

The EFT of task n3 on the three available resources r1, r2, and r3,

at the time point 9, are calculated to be 21 + 11 = 32, 21 + 13 =

Procedure schedule (T, R, H) of MAHEFT

T - set of the tasks of sate not started in the DAG,

R - set of all available resources, H - HEFT

heuristic employed by scheduler.

Computes the tasks upward rank ranku(ni), and

computes earliest finish time of each task on

every resource to choose the more suitable

resource with minimum earliest finish time.


 compute ranku for all tasks by traversing graph

upward, starting from the exit task

 sort the tasks in a scheduling list by nonincreasing

order of ranku

 while (there are unscheduled tasks in the list)

 do

 select the first task ni from the scheduling list

 for each resource rk in R

 do

 compute EFT(ni, rk)

 assign task ni to the resource that minimizes

EFT of task ni

 end while

INPUT

OUTPUT

STEPS

Computation Cost

Task
Resource

r1 r2 r3 r4

n1 14 16 9 14

n2 13 19 18 17

n3 11 13 19 9

n4 13 8 17 15

n5 12 13 10 14

n6 13 16 9 16

n7 7 15 11 15

n8 8 11 7 20

n9 18 12 20 13

n10 21 7 16 15

 n1

18 9 12

23

17

19

11
14

16
24

23 13

15

11 13

n2

n3

n4

n5

n6

n7

n10

n9

n8

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.7, December 2011

27

(c)

r2 r3 r1

n1

n3

n7

n4 n5

n9

n10

n8

0

10

20

30

40

50

60

70

80

r4

n2

n6

n3

(b)

r2 r3 r1

n1

n3

n7

n4

n2

n9

n10

n8

0

10

20

30

40

50

60

70

80

r4

n5

n6

(a)

r2 r3 r1

n1

n3

n5

n7

n4

n6 n2

n9

n10

n8

0

10

20

30

40

50

60

70

80

90

34, and 9 + 19 = 28 respectively. So, the resource r3 is chosen

for executing task n3. Resources are chosen for the tasks such as

n2, n4… and n6 will be chosen in the same way.

Table 2. Tasks upward ranking and selected resources

Task Ranking Resource

n1 108 3

n3 80 3

n4 80 2

n2 77 1

n5 69 3

n6 62 2

n9 44.333 2

n7 42.667 3

n8 34.333 1

n10 14.667 2

For tasks with more than one parent such as task n9, the ready

times of the three resources r1, r2, and r3 are calculated to be 40,

42, and 49 which are the actual finish time of the tasks n2, n6,

and n7. The actual finish time of the predecessors of task n9

which are task n2, n4, and n5 are calculated to be 40, 26, and 38

respectively. For each resource, the maximum of the ready times

of the three resources and the actual finish time of the

predecessors in addition to the communication cost needed will

be the EST of task n9. So, if task n9 is scheduled to resource r1,

the EST will be max (40, max (40 + 0 = 40, 26 + 23 = 49, 38 +

13 = 51)) which will be equal to max (40, 51) = 51. If task n9 is

scheduled to resource r2, the EST will be max (42, max (40 + 16

= 56, 26 + 0 = 26, 38 + 13 = 51)) which will be equal to max

(42, 56) = 56. If task n9 is scheduled to resource r3, the EST will

be max (49, max (40 + 16 = 56, 26 + 23 = 49, 38 + 0 = 38))

which will be equal to max (49, 56) = 56. The EFT of task n9 on

the three resources will be 51 + 18 = 69, 56 + 12 = 68, and 56 +

20 = 76 respectively. The resource r2 has the minimum

execution time so it is chosen for executing task n9. The chosen

resources for executing the tasks are indicated in Table 2.

Fig. 5(a) shows the schedule obtained from HEFT that produces

the schedule with makespan as 83 without considering the

addition of resource r4 at later time.

For AHEFT and MAHEFT, the initial schedule made at time

point 0 is identical as the one by HEFT. When resource r4 is

added, the only task that is completed is n1 and the task n3 is

scheduled on resource r2. AHEFT considers rescheduling for

only the non started tasks while, MAHEFT considers task n3

also. HEFT produces schedule with makespan equal to 78 as

shown in Fig. 5(b). The EFT of task n3 on the new resource r4 is

calculated according to Equation 3.7, it is 25 which is less than

the initial EFT equal to 36. So, task n3 will be resumed on

resource r4 and the other tasks are then rescheduled as before in

HEFT. The other non-started tasks are then ranked as illustrated

before and they are allocated to the resources that have

minimum EFT. The MAHEFT will reduce the schedule to 75 as

shown in Fig. 5(c).

Fig 5: Schedule of the DAG in Fig. 4 using HEFT, AHEFT,

and MAHEFT algorithms: (a) HEFT schedule

(makespan=83), (b) AHEFT schedule with resource adding

at time 13 (makespan=78), (c) MAHEFT schedule with

resource adding at time 13 (makespan=75)

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.7, December 2011

28

5. EXPERIMENT RESULTS
To evaluate the performance of the proposed MAHEFT

scheduling algorithm we needed repeated cases of workflows

and resource pools. A simulation of the framework will be

introduced, in this section, to evaluate the proposed scheduling

algorithm. The first subsection describes the metrics used for

performance evaluation. The second subsection describes

randomly generated DAGs and the parameters used to generate

them.

5.1 Comparison Metrics
The comparison of the algorithms is based on the following two

metrics:

Makespan. The main performance measure of a scheduling

algorithm on a graph is the total execution time (makespan) of

its output schedule.

Speedup. The speedup value for a given graph is computed by

dividing the sequential execution time (i.e., cumulative

computation costs of the tasks in the graph) by the parallel

execution time (i.e., the makespan of the output schedule). The

sequential execution time is computed by assigning all tasks to a

single processor that minimizes the cumulative of the

computation costs. The speedup is defined by Equation (10)

 
makespan

w
Speedup

jiVinRjr  


,

min
 (10)

5.2 Randomized Generated DAGs
The Standard Task Graph Set (STG) [19] is a kind of benchmark

for evaluation of multiprocessor scheduling algorithms. STG is

used to evaluate the algorithms under the same conditions

covering various DAGs generation methods including DAGs

generated from actual application programs. The STG consists

of two sets of DAGs, the first set contains DAGs generated from

actual application programs while, the second set contains 900

randomly generated DAGs in which DAG size varies between

50 and 2700 tasks. DAG shapes (precedence constraints) are

determined based on four different methods [20-22].

A random DAG generator was implemented to generate

different DAGs with various characteristics based on some input

parameters. For fair comparison with the static HEFT and the

adaptive AHEFT algorithms, the generator uses the same values

of the input parameters used in the approach utilized in [11] to

determine the DAG shape. These input parameters are also

suggested in the workflow test bench work [23]. The generator

follows the fourth method of "layrpred" but, using different

number of layers and the number of tasks in each layer. The

generator will use the following set of parameters:

 The number of tasks in the graph (υ).

 Shape parameter of the DAG, (). The height of the DAG

(no. of layers) is calculated according to Equation (11).

Number of layers =



 (11)

 Out degree of a node, (out_degree). The width of each layer

(number of tasks) is generated randomly such that it cannot

exceed the number of tasks in the previous level multiplied

by the out degree of a single node. A dense DAG i.e., a

shorter DAG with high degree of parallelism can be

generated by choosing 1 because the number of layers

is inversely proportional to . While, a longer DAG with

high number of layers can be generated if .1

 Communication to computation ratio (CCR). It is the ratio of

the average communication cost to the average computation

cost. A data-intensive application has a higher CCR, while a

computing-intensive one has a lower value of CCR.

 The resource heterogeneous factor, β. A higher value of β

suggests the bigger difference of resource capability. The

resources are homogeneous when β is 0. The average

computation cost of all tasks in a DAG is
DAG

 , then the

average of each task ni in the graph, represented as
i

 , is

selected randomly from a uniform distribution with range [0,

2 ×
DAG

]. Then, the computation cost of each task ni on each

resource rj in the system, i.e.,
ji ,

 , is randomly selected

from the following range:)
2

1()
2

1(
,





 

ijii
.

The set of values for each of the previously stated parameters is

given in Table 3. These combinations results in 1875 different

DAGs.

Table 3. Value set of random generated DAGs parameters

Parameter Value

 20, 40, 60, 80,100

 0.5, 1.0, 2.0

out_degree 1, 2, 3, 4, 5

CCR
0.1, 0.5, 1.0, 5.0,

10.0

β
0.1, 0.25, 0.5, 0.75,

1.0

To model the dynamic change of resources, we introduce three

additional parameters as follows: (1) Initial resource pool size,

R; (2) Interval of resource change, ω. The higher value of ω

indicates the lower frequency of resource change; and (3)

Percentage of resource change, Δ, to measure the resource

change percentage each time compared with the initial resource

pool. The value set for each of these parameters is listed in

Table 4.

Table 4. Value set of additional parameters

Parameter Value

R 10, 20, 30, 40, 50

Δ 0.1, 0.15, 0.2, 0.25

Ω 50, 100, 200, 400

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.7, December 2011

29

To study the effect of the previously stated parameters on the

makespan and speedup, seven experiments are used each with

50 random DAGs generated using the implemented randomized

DAG generator.

Fig. 6 presents the results of HEFT, AHEFT and MAHEFT for

randomized generated DAGs. In Fig. 6(a), the makespan

increases with total number of tasks because more tasks means

more computation and communication cost needed. In Fig. 6(e),

the makespan of the three algorithms tends to be the same with

larger values of resource change interval because the higher the

resource change interval the more static become the Grid

environment and this leads to no change in it.

a) Makespan at different number of tasks.

b) Makespan at different Initial Resource pool.

c) Makespan at different heterogeneity factor (β).

d) Makespan at different Communication-to-Computation

Ratio (CCR).

e) Makespan at different Resource change interval.

f) Makespan at different Resource change percentage.

Fig 6: Average makespan at different parameters values

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.7, December 2011

30

Fig. 6(f) shows the effectiveness of our algorithm more clear

when the resource change percentage increases because if the

new added resources were better than those in the initial pool

there will be more benefit of using them.

To indicate how the adaptive algorithms AHEFT and MAHEFT

perform better than the HEFT static algorithm, the improvement

rate in makespan is used here. Fig. 7 shows the relationship of

the improvement rate in makespan of both algorithms with the

resource change interval. It worth noting that with increasing the

resource change interval the improvement rate of the two

adaptive algorithms decreases because the environment is more

static and the changes are slower.

Fig 7: Improvement rate at different Resource change

interval.

Fig. 8 shows that the improvement rate in makespan increases

with higher values of Δ as when better resources join the

resource pool they can be used to execute DAG tasks.

Fig 8: Improvement rate at different Resource change

percentage.

The speedup of a workflow scheduling algorithm is another

performance metric to be considered. This experiment indicates

the speedup at different total number of tasks in the DAG. Table

5 lists the speedup values of the three algorithms with varying

the number of tasks. It is observed that with the increase in the

total number of tasks, the speedup jumps initially and becomes

stable later.

Table 5. Speedup at various total number of tasks.

Number of tasks 20 40 60 80 100

HEFT Speedup 1.97 2.8 3.27 3.67 3.75

AHEFT Speedup 2.07 2.86 3.49 3.93 4.02

MAHEFT

Speedup
2.08 2.96 3.51 3.93 4.16

6. SUMMARY AND FUTURE WORK
This paper analyzes issues of static scheduling strategy for grid

workflow applications, and proposes an adaptive scheduling

strategy. The new approach exploits its inherent benefits.

MAHEFT is developed and tested for its stability and

effectiveness with various DAGs, and the results are promising.

The analysis of the experiments shows that the MAHEFT

outperforms both the static HEFT and the adaptive AHEFT

algorithms. The improvement rate in makespan of the MAHEFT

algorithm ranges between 2% to 21% according to the DAG

type and the Grid environment parameters. It also shows that

MAHEFT prefers computation-intensive applications. With

respect to the Speedup, the MAHEFT is faster than both HEFT

and AHEFT algorithms with speedup values between 2.08 and

4.16. It worth noting that, our MAHEFT algorithm performs

better than the other two algorithms. The improvement rate may

vary according to the DAG type generated.

7. REFERENCES
[1] I. Taylor, E. Deelman, D. Gannon, and M. Shields.

Workflows for e-Science: Scientific Workflows for Grids.

Springer, 2006.

[2] I. Foster and C. Kesselman. Computational Grids in The

Grid: Blueprint for a New Computing Infrastructure.

Springer, ch. 2, 1999.

[3] J. Yu and R. Buyya. A Taxonomy of Workflow

Management Systems for Grid Computing. Journal of Grid

Computing, Springer, Sept. 2005.

[4] M. Wieczorek, R. Prodan, A. Hoheisel, M. Wieczorek ,

R. Prodan, and A. Hoheisel. Taxonomies of the Multi-

criteria Grid Workflow Scheduling Problem. Grid

Middleware and Services Book. p 237-264. Springer US,

2008.

[5] J. Cao, S. Jarvis, S. Saini, and G. Nudd. GridFlow:

Workflow Management for Grid Computing. In 3rd

International Symposium on Cluster Computing and the

Grid (CCGrid), Tokyo, Japan, IEEE Computer Society

Press, Los Alamitos, May 12-15, 2003.

[6] I. Brandic, S. Pllana, and S. Benkner. Amadeus: A Holistic

Service-oriented Environment for Grid Workflows.

International Workshop on Workflow Systems in Grid

Environments (WSGE06). China, October 2006.

[7] J. Frey and et al., Condor-g: A computation management

agent for multi-institutional grids. Cluster Computing

Journal, 237–246, July 2002.

http://www.springerlink.com/content/k55700/?p=3c4f7e45dbbf42bcbc0c0726e1648a6d&pi=0
http://www.springerlink.com/content/k55700/?p=3c4f7e45dbbf42bcbc0c0726e1648a6d&pi=0
http://www.springerlink.com/content/k55700/?p=3c4f7e45dbbf42bcbc0c0726e1648a6d&pi=0

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.7, December 2011

31

[8] T. Oinn and et al., Taverna: A tool for the composition and

enactment of bioinformatics workflows. Bioinfomatics,

3045–3054, 2004.

[9] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C.

Kesselman, et al. Pegasus: a Framework for Mapping

Complex Scientific Workflows onto Distributed Systems.

Scientific Programming Journal, Nov. 2005.

[10] Z. Yu and W. Shi. An Adaptive Rescheduling Strategy for

Grid Workflow Applications. In Proceedings of the 21st

IPDPS, 2007.

[11] H. Topcuouglu, S. Hariri, and M.-Y. Wu. Performance

effective and low-complexity task scheduling for

heterogeneous computing. IEEE Transactions on Parallel

and Distribution Systems, 260–274, 2002.

[12] J. D. Ullman, NP-complete Scheduling Problems, Journal

of Computer and System Sciences, 384-393, 1975.

[13] M. Maheswaran, S. Ali, H. Siegel, D. Hensgen, and R.

Freund. Dynamic Matching and Scheduling of a Class of

Independent Tasks onto Heterogeneous Computng

Systems. In 8th Heterogeneous Computing Workshop

(HCW’99), Apr. 1999.

[14] Iverson, M., F. Ozguner and G. Follen. Parallelizing

existing applications in a distributed heterogeneous

environments. Proc. Heterogeneous Computing Workshop,

93-100, 1995.

[15] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman.

Workflow Management in GriPhyN. Grid Resource

Management, State of the Art and Future Trends, 99–116,

2004.

[16] R. Sakellariou and H. Zhao. A low-cost rescheduling policy

for efficient mapping of workflows on grid systems.

Scientific Programming, 253–262, 2004.

[17] K. Lee, N. W. Paton, R. Sakellariou, A. Fernandes. Utility

Driven Adaptive Workflow Execution. In the Proceedings

of the 2009 9th IEEE/ACM International Symposium on

Cluster Computing and the Grid, 220-227, 2009.

[18] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal

and K. Kennedy. Task Scheduling Strategies for

Workflow-based Applications in Grids. IEEE International

Symposium on Cluster Computing and Grid (CCGrid),

2005.

[19] STG, http://www.kasahara.elec.waseda.ac.jp/schedule/

index.html, visited June 2011.

[20] V. Almeida, I. Vasconcelos, J. Árabe and D. A. Menascé,

"Using Random Task Graphs to Investigate the Potential

Benefits of Heterogeneity in Parallel Systems," Proc.

Supercomputing '92, pp. 683-691, 1992.

[21] T. Yang and A. Gerasoulis, "DSC : Scheduling Parallel

Tasks on an Unbounded Number of Processors," IEEE

Trans. Parallel and Distributed Systems, Vol.5, No.9, pp.

951-967, 1994.

[22] T. Adam, K. Chandy and J. Dickson, "A Comparison of

List Schedules for Parallel Processing

Systems", Communications of the ACM, Vol.17, No.12,

pp. 685-690, 1974.

[23] U. H¨onig and W. Schiffmann. A comprehensive test bench

for the evaluation of scheduling heuristics. In roc. of PDCS

2004.

