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ABSTRACT 
The effects of radiative heat transfer on the fully developed free 

convection flow of a viscous incompressible fluid-saturated 

porous medium between two vertical walls in the presence of a 

uniform gravitational field have been studied. An exact solution 

of the governing equations has been obtained. Radiation is found 

to have significant effects on the velocity field and temperature 

distribution. It is observed that the fluid velocity decreases with an 

increase in either radiation parameter or porosity parameter. It is 

also observed that the velocity at any point in the flow region 

increases with an increase in Grashof number. The effect of 

thermal radiation on temperature field is also analyzed. The fluid 

temperature increases with an increase in either radiation 

parameter or temperature parameter. 

Keywords: Free convection, radiation, Grashof number, porous 

media and heat transfer.  

 

1. INTRODUCTION 
The radiative effects have important applications in physics and 

engineering. The radiative heat transfer effects on different flows 

are very important in space technology and high temperature 

processes. Thermal radiation effects may play an important role in 

controlling heat transfer in industry where the quality of the final 

product depends on the heat controlling factors to some extent. 

High temperature plasmas, cooling of nuclear reactors, liquid 

metal fluids, power generation systems are some important 

applications of radiative heat transfer from a vertical wall to 

conductive gray fluids. Heat transfer phenomenon in porous 

media is of considerable interest due to its ever increasing 

industrial applications and important bearings on several 

technological processes. Processes involving heat and mass 

transfer in porous media are frequently encountered in the 

chemical industry, in reservoir engineering in connection with 

thermal recovery process etc.. A better understanding of 

convection through porous medium can benefit several areas like 

insulation design, grain storage, geothermal systems, heat 

exchangers, filtering devices, metal processing, catalytic reactors 

etc. In recent years, in high-temperature applications, a great deal 

of attention has been focused on the usage of porous media. 

Porous media have been utilized for enhancement of heat transfer 

in coolant passages and in thermal insulation systems. The subject 

of porous media and its applications have reviewed by Nield and 

Bejan(1971), Bejan(1994), Pop and Ingham(2001), 

Kaviany(1995), Ingham and Pop(2005), Vafai(2005), Ingham et 

al.(2004). Radiation heat transfer in porous media has been 

studied by many researchers. Thermal radiation effect on mixed 

convection from horizontal surfaces in saturated porous media has 

been investigated by Bakier and Gorla(1996). Raptis(1998) has 

studied the effect of radiation on free convection flow through a 

porous medium. The MHD unsteady free convection flow over an 

infinite vertical plate in the presence of radiation has been studied 

by Perdikis and Raptis(2006). Radiation effects on the free 

convection over a vertical flat plate embedded in porous medium 

with high porosity have been studied by Hossain and Pop(2001). 

Thermal dispersion-radiation effects on non-Darcy natural 

convection in a fluid saturated porous medium have been 

investigated by Mohammadein and El-Amin(2000). Raptis and 

Perdikis(2004) have studied the unsteady flow through a highly 

porous medium in the presence of radiation. Sharma et al.(2007) 

have investigated the radiation effect on temperature distribution 

in three-dimensional Couette flow suction and injection. 

Weidman and Medina(2008) have studied the convective flow 

between vertical walls embedded in porous medium. Effect of 

radiation on forced convective flow and heat transfer over a 

porous plate in a porous medium has been investigated by 

Mukhopadhyay and Layek(2009). 

The aim of the present paper is to study the effects of radiative 

heat transfer on the fully developed free convection flow of a 

viscous incompressible fluid-saturated porous medium between 

vertical walls in the presence of a uniform gravitational field. The 

governing equations are solved analytically. The effects of the 

permeability of the porous medium and the influence of radiation 

parameter on the velocity and temperature fields are investigated 

and analyzed with the help of their graphical representations. It is 

observed that the velocity field decreases with an increase in 

either radiation parameter Ra  or porosity parameter  . The 

temperature distribution decreases with an increase in either 

radiation parameter Ra  or temperature parameter Tr . It is found 

that the critical wall temperature  0 c
  at the wall  1/ 2    

decreases with an increase in either radiation parameter Ra  or 

porosity parameter  . 

 

2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTIONS 

We consider a fully developed flow of a viscus incompressible 

fluid-saturated porous medium between vertical walls in the 

presence of a uniform gravitational field. The distance between 

the channel walls is d . Employ a Cartesian coordinates system 

with x - axis vertically upwards along the direction of flow and 
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y -axis perpendicular to it. The origin of the axes is such that the 

channel walls are at positions / 2y d   and / 2y d  (see Figure 

1). The velocity components are ( , )u v  relative to the Cartesian 

frame of reference. We do not model the pressure drop across the 

end caps and only consider the fully-developed flow far from the 

end caps. 

   

            
            Figure 1: Geometry of the problem 

 

The Boussinesq approximation is assumed to hold and for the 

evaluation of the gravitational body force, the density is assumed 

to be dependent on the temperature according to the equation of 

state  

 0 0= [1 ( )],T T                                   (1) 

where 0, , ,T T   and 0  are respectively, the fluid temperature, 

the fluid density, thermal expansion coefficient, the reference 

temperature and the density in the reference state. 

Flow away from the top and bottom ends of the cavity is 

rectilinear so that ( ), 0u u y v  . In this case the equation of 

continuity is satisfied identically. On using Boussinesq 

approximation (1), the momentum and energy equations are 

simplified to the following form  

 
2

0 02
( ) = 0,

d u
u g T T

dy k


  


               (2) 

 
2

2
0 ,rd T q

k
ydy


 


                                       (3) 

where   is the fluid viscosity,   the effective viscosity of the 

fluid-saturated porous medium, g  the acceleration due to gravity, 

k  permeability of the porous medium and k  the thermal 

conductivity. 

The equation of conservation of radiative heat transfer 

per unit volume for all wave length is  

0
. = ( )(4 ( ) ) ,r hq K T e T G d   



                            (4) 

 where he  is the Plank's function and the incident radiation G  

is defined as  

=4

1
= ( ) ,G e d 

 
                                              (5) 

. rq  is the radiative flux divergence and   is the solid angle. 

Now, for an optically thin fluid exchanging radiation with an 

isothermal flat walls at temperature 0T  and according to the 

above definition for the radiative flux divergence and Kirchhoffs 

law, the incident radiation is given by 0= 4 ( )hG e T   then,  

0
0

. = 4 ( )( ( ) ( )) ,r h hq K T e T e T d   


                      (6) 

 

Expanding ( )K T  and 0( )he T  in a Taylor series around 0T , for 

small 0( )T T , we can rewrite the radiative flux divergence as  

0
00 0

. = 4( ) ,h
r

e
q T T K d

T


 

  
   

                           (7) 

 where ( )
0 0

= TK K  . 

Hence an optically thin limit for a non-gray gas near equilibrium, 

the following relation holds  

 0. = 4( ) ,rq T T I                                      (8) 

 and hence  

 0= 4( ) ,rq
T T I

y





                                      (9) 

 where  

 
00 0

= .he
I K d

T


 

  
 
                            ( 10) 

 

The velocity and temperature boundary conditions are  

0 at ,
2

d
u y    

1 2at and at .
2 2

d d
T T y T T y                 (11) 

 

Introducing the non-dimensional variables  

0
1

2 1

, , ,
T Ty ud

u
d T T

 



  


                                 (12) 

and on using (9) and (12), equations (2) and (3) become  

2
21

12
= ,

d u
u Gr

d
 


                                                 (13) 

2

2
= 0,

d
Ra

d





                                                         (14) 

 where 2 1

M Da
  , M




  is viscosity ratio, 

2
=

k
Da

d



 the 

Darcy number, 
3

2 1
2

( )
=

g T T d
Gr






 the Grashof number and 

24
=

I d
Ra

k
 the radiation parameter. It may be noted that the 

limit 0   gives a clear fluid and the limit    gives 

unmitigated Darcy flow. 

 

On the use of (12), the velocity and the temperature boundary 

conditions (11) become  

             1

1
0 at ,

2
u     

             0 0

1 1
at and 1 at ,

2 2
                     (15) 

where the parameter 0  measures the continuous cross-channel 
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variation of the reference temperature 0T . 

 

The solutions of (13) and (14) subject to the boundary conditions 

(15) are  

0

1 cosh 1 sinh
( ) = ,

2 2
cosh sinh

2 2

Ra Ra
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                     (16) 
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(17)       

 

    It is observed from the equations (16) and (17) that the velocity 

field depends on the Grashof number Gr  as well as porosity 

parameter   while the temperature distribution does not depend 

on the Grashof number Gr  and porosity parameter  . 

 

3.  RESULTS AND DISCUSSION 
To study the effects of radiation, buoyancy force, porosity of the 

medium and temperature parameter on the velocity field 1u  and 

temperature distribution  , we have presented the non-

dimensional velocity 1u  and the temperature   against   for 

various values of radiation parameter Ra , Grashof number Gr , 

porosity parameter   and the temperature parameter 0  in 

Figures 2-7. It is observed from Figure 2, that the velocity 1u  

decreases with an increase in radiation parameter Ra . It is 

observed from Figure 3, that the velocity 1u  decreases with an 

increase in porosity parameter  . It is seen from Figure 4 that the 

velocity decreases with an increase in 0 . This implies that the 

radiation, porosity of the medium and wall temperature have a 

retarding influence on the free convection flow. Figure 5 shows 

that the velocity at any point in the flow region increases with an 

increase in Grashof number Gr . This means that buoyancy force 

accelerating the velocity field. Figures 6 and 7 reveal that the 

temperature   decreases with an increase in either radiation 

parameter Ra  or temperature parameter 0 . The effect of 

radiation parameter Ra  is to reduce the temperature significantly 

in the flow region. The increase in radiation parameter means the 

release of heat energy from the flow region and so the fluid 

temperature decreases. The incipient flow reversal will occur only 

for those values of 0  which are greater than the critical values of 

0  at the cold wall.  

 
Figure 2: Variations of velocity 1u  for 0 = 0.2 , = 0.5  and 

= 10Gr  

 

 
Figure 3: Variations of velocity 1u  for = 5Ra , 0 = 0.2  and 

= 10Gr . 

 

 
Figure 4: Variations of velocity 1u  for 0 = 0.2 , = 5Ra  and 

= 10Gr . 
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Figure 5: Variations of velocity 1u  for = 4Ra , 0 = 0.2  and 

= 0.5 . 

 

 
Figure 6: Variations of temperature   for 0 = 0.2 . 

 
Figure 7: Variations of temperature   for = 5Ra . 

 

    The non-dimensional shear stresses at the cold wall  = 1/ 2   

and hot wall  =1/ 2  are given by 1

1 1

2

=x

du

d







 
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 and 

1

2 1

2

x

du
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


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

 
  
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, where  

                                                                    (18) 
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                                                                                                   (18)    
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                                                                                                   (19) 

 

     Numerical values of shear stresses at the cold wall  = 1/ 2   

and hot wall  =1/ 2  are shown graphically against Ra  for 

different values of   in Figure 8. It is observed from Figure 8 

that for fixed values of Ra  and Gr  both the magnitude of the 

shear stress 
1

x  at the cold wall and the shear stress 
2

x  at the 

hot wall decrease with an increase in porosity parameter  . On 

the other hand, it is seen that for fixed values of   and Gr , the 

magnitude of 
1

x  and 
2

x  decrease with an increase in radiation 

parameter Ra . 

 
Figure 8: Variation of shear stresses 

1
x  and 

2
x  for 

0 = 0.2  and = 10Gr  
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     The rate of heat transfer at the cold wall  = 1/ 2   and hot 

wall  =1/ 2  are respectively given by  

     0
1

=
2

1 1
= coth tanh ,

2 2 2 2

d Ra Ra
Ra

d

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


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     (20) 

       0
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=
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1 1
= coth tanh .
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     The values of 
1

2

d

d





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 
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 

 and 
1

2

d

d







 
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 

 against Ra  are 

plotted in Figure 9 for different values of 0 . It is seen from 

Figure 9 that for fixed value of Ra , the rate of heat transfer at the 

cold wall  = 1/ 2   decreases while the rate of heat transfer at 

the hot wall  =1/ 2  increases with an increase in 0 . On the 

other hand, the rate of heat transfer at the cold wall  = 1/ 2   

increases and that at the hot wall  =1/ 2  decreases with an 

increase in radiation parameter Ra  for fixed value of 0 . 

 

 
Figure 9: Variation of rate of heat transfer ( 1/2)   and 

(1/2) . 

 

     As 0  decreases from the maximum value 0

1

2
  , we arrive 

to the value  0 0 c
   for which there is an incipient flow 

reversal near the cold wall. The condition for incipient flow 

reversal can be obtained by letting 1

1

2

0
du

d





 
 

 
 which in term 

gives the critical value of 0  as  
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    The values of  0 c
  are entered in the Table 1 for different 

values of Ra  and  . It is observed that the critical  0 c
  

decreases with increase in either Ra  or  . 

                                      

 

Table 1 : Critical value 0( )c  of  0  at the cold wall  = 1/ 2   

  

\Ra   0.1 0.5 3 5 10 

2 

4 

6 

8 

10 

0.31248 

0.29436 

0.25630 

0.26431 

0.25173 

0.30962 

0.29133 

0.27526 

0.26105 

0.24841 

0.23262 

0.21134 

0.19331 

0.17789 

0.16459 

0.16293 

0.14196 

0.12488 

0.11079 

0.09904 

0.07988 

0.06495 

0.05356 

0.04470 

0.03768 
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The rate of volume flux is given by 
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

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(23) 

     It is interesting to note that the volume flux comes only from 

the symmetric portion of the velocity field. The numerical values 

of the rate of flow Q  are entered in the Table 2 for different 

values of the radiation parameter Ra , the Grashof number Gr  

and the temperature parameter 0 . Table 2 shows that the 

magnitude of the rate of flow decreases with increase in either 

Ra  or 0 . On the other hand, the rate of flow increases with an 

increase in Grashof number Gr  as expected since the velocity 

increases with increase in Gr . 

 

                        Table 2:  The rate of volume flux 10 Q   for = 0.5   

  

 Gr  and 0 = 0.2  0  and 10Gr   

Ra  2 6 10 0 0.2 0.4 

2 

4 

6 

8 

0.20334 

0.17446 

0.15285 

0.13606 

0.61003 

0.52339 

0.45855 

0.40818 

1.01672 

0.87232 

0.76425 

0.68031 

1.69454 

1.45387 

1.27375 

1.13384 

1.01672 

0.87232 

0.76425 

0.68031 

0.33891 

0.29077 

0.25475 

0.22677 

  

 

 

     Equation (23) shows that if 0

1
=

2
  then the rate of flow 

= 0Q , which means that the cavity is closed. On the other hand, 

the maximum rate of flow occurs at 0 = 0  and is given by  

         

2

2

22
2

tanh tanh
2 2 for

=

2
tanh 1 for =tanh

2 24

Ra
Gr

Ra
RaRa

Q

Gr
Ra






 




  
  
   
  

 
 





    
  




 (24)      

 

      We shall now discuss the case when 1  and 1Ra . In 

this case the velocity field, temperature distribution, the flow rate 

and  0 c
  become  

       2
0 0

1 1 1 1
( ) 3

2 6 4 2
Ra      

      
            

      
      (25) 
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1 1
( ) 16 24 5

384 2

1
48 40 7 for ,
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   



     
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  
     

 

   2for = ,Ra 




















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Taking the limit 0Ra  , the equations (25) - (28) become  

        0

1
( ) = ,

2
   

 
  
 

                                                         (29) 

        1 02

1 cosh 1 sinh
( ) 1 ,

2 2
cosh sinh

2 2

Gr
u
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  

 

  
   

       
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   
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        02

2tanh
1 21 ,
2

Gr
Q






 
  

    
   

 

                                       (31) 

         0

2 coth
1 2

2
2 tanh

2

c











  .                                                 (32) 

 

Equations (29) - (32) are identical with the equations (11) - (13) 

and  (15)  of  Weidman [17]. 

 

In the limit 0   corresponding to clear fluid and 0Ra  , the 

equations (22) - (25) become  

0

1
( ) = ,

2
   

 
  
 

                                                 (33) 

2
1 0

1 1 1
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6 4 2
u Gr   

     
       

     
               (34) 

0

1
= ,

12 2

Gr
Q 

 
 

 
                                                      (35) 

 0

1
= .

3c
                                                                  (36) 

Equations (33) - (36) are the conduction regime solutions as 

reported by B u hler [3]. 

 

4. CONCLUSION 
The effects of radiative heat transfer on the fully developed free 

convection flow of a viscous incompressible fluid-saturated 

porous medium between vertical channel have been analyzed in 

the presence of a uniform gravitational field. Radiation is found to 

have significant effects on the velocity field and temperature 

distribution. It is found that the velocity decreases with an 

increase in porosity of the medium. It is found that the critical 

wall temperature  0 c
  at the cold wall decreases with increase in 

either radiation parameter Ra  or porosity parameter  . 
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