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ABSTRACT 

This paper presents a systematic neural network approach based 

on the concept for Learning from Examples for the prediction of 

aerodynamic characteristics from the Wind tunnel test data. 

Aerodynamic coefficients are modeled as functions of angle of 

attack, Normal force coefficient, Mach number, and Lift force 

Coefficients. The training data which is fed as the input to the 

neural network is derived from wind tunnel test measurements 

and numerical simulations. In this paper, a comparative study of 

the efficiency of neural network prediction based 

onLFE(Learning from Examples) for different architectures and 

training dataset sizes is presented.  The results of the prediction 

reflect the sensitivity of the architecture and training dataset 

size. For a training set of 136 data points and a training set with 

Mach number ranging from 0.6 to 3, the Generalized Regression 

Neural network(GRNN) constantly out-performed the Radial 

basis function neural network and Backpropagation network 

regression model in time effectiveness. The objective of this 

paper is to demonstrate that the neural network approach based 

on the concept of learning from examples is a fast and reliable 

way for predicting aerodynamic coefficients.  

General Terms 

Prediction of Aerodynamic Characteristics  

Keywords 

Wind tunnel test; Radial basis function neural network; Back     

propagation neural network; Mach number 

1. INTRODUCTION 
Aerodynamics is the study of different forces acting on an object 

and its resulting motion through the air. Aerodynamicists 

characterize flight speed in terms of Mach number and the 

aerodynamic characteristics depend on individual aircraft design 

variables. Wind tunnels play a major role in the design and 

development of space vehicles. It was in 1871, that the first 

working Wind tunnel was designed by Frank H. Wenham. A 

Wind tunnel test program was undertaken to define the stage 

separation aerodynamic environment. The Wind tunnel 

apparatus is for studying the interaction between a solid body 

and an air stream. A Wind tunnel simulates the conditions of an 

aircraft in flight by causing a high speed stream of air to flow 

past a model of the aircraft being tested. The model is mounted 

on wires so that lift and drag forces on it can be measured by 

measuring the tensions in the wire. In the Wind tunnel test the 

Mach number is an important factor.  The graph is plotted for 

angle of attack (alpha) versus coefficient of frictional drag 

coefficients (CDF) with the given Mach number as constant[1]. 

Nowadays the neural network approach to data analysis has 

received much attention. Neural networks have overcome the 

theoretical limitations of perceptrons and early linear networks 

by the introduction of “hidden layers'' to represent intermediate 

processing and to compute nonlinear recognition 

functions[2].They moreover learn quickly in discriminating 

amongst equivalent classes of patterns in a holistic 

manner,within an input domain. They are presented with 

training sets of representative instances of each class, correctly 

classified, and they learn to recognize and predict other new 

instances of these classes. Learning is the phenomenon of 

readjusting weights in a fixed-topology network via different 

learning algorithms.  

The neural network has been used quite successfully in various 

engineering and business applications such as analysis of 

appendicitis and cancer patient data[3], cancer image extraction 

and classification[4]; studies of soybean diseases[5]; and in 

pharmaceutical applications such as pharmaceutical production 

development[6], pharmacodynamic modeling[7], and 

pharmacological effects of drug concentrations[8]. 

This paper analyses the neural networks for graph prediction. 

Aoyoma et al.[9] presented an application of the neural network 

approach to estimating quantitative structure-activity 

relationships. The neural network model has always performed 

better than linear multiple regression analysis. Backpropagation 

networks (BPN) which are based on fully connected, layered, 

feedforward networks, in particular, have demonstrated the 

desirable properties of self-learning, noise-tolerance, and good 

predicting power. Bodor et al.[10] experimented with a 

Backpropagation network for solubility prediction. The research 

showed regression analysis technique to be inferior to the 

Backpropagation model in mean standard deviation for the 

training set. However, the neural network as well as the 

regression technique did not perform for an unknown set of 

organic compounds. 
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2. AERODYNAMICS 

2.1 Forces of Aeronautics 
There are four primary forces that act on an airplane in flight. 

They are Thrust, Weight, Drag and Lift as shown in Fig 1. 

 

Figure 1. Aerodynamic Forces 

Weight is the force that measures the effects of gravity.  Force 

generated for takeoff must be stronger than the weight force. 

This force is called lift. Thrust propels an object in a particular 

direction. Drag is the force that resists any object trying to move 

through a fluid.  

A method of computational simulation of the aerodynamic- or 

hydrodynamic-flow performance features of objects involves the 

use of neural-network mathematical models implemented in 

computer hardware. The method can be applied in conjunction 

with wind-tunnel, water-tunnel, or water-trough testing of scale 

models of such diverse objects as aircraft or parts of aircraft, 

sails, fins, turbine blades, and boat hulls. In the case of an 

aircraft, for example, a neural network can be trained from (1) 

test input signals (e.g., positions of control surfaces; angle of 

attack; angles of roll, pitch, and yaw; power settings; and 

airspeed) and (2) test output signals (e.g., lift, drag, pitching 

moment, and/or other performance features). In general, the 

relationships between the input and output variables are 

nonlinear. The present method harnesses the ability of neural 

networks to learn nonlinear relationships between input and 

output variables.  

The coefficients present in the graphs of aerodynamics for Wind 

tunnel test are Missile Identification Number, Mach number, 

Dynamic Pressure, Alpha, Control Deflection, Normal Force 

Coefficient, Side Force Coefficient, Lift Force Coefficient, 

Frictional Drag Coefficient (CDF), Pitching Moment, Yawing 

Moment Coefficient, Rolling Moment Coefficient, Base 

Pressure Coefficient, and Base Drag Coefficient. 

The predicted aerodynamic characteristics are: 

i. Alpha vs. Frictional Drag Coefficient (CDF) 

ii. Alpha vs. Pitching Moment Coefficient 

iii. Normal Force Coefficient vs. CDF 

iv. Normal Force Coefficient vs. Pitching Moment 

Coefficient 

v. Alpha vs. Lift Force 

vi. Normal Force Coefficient vs.  Lift Force Coefficient 

vii. Alpha vs. Normal Force Coefficient 

A chamber through which air is forced at controlled velocities in 

order to study the effects of aerodynamic flow around airfoils, 

scale models, or other objects is called a Wind tunnel. Wind 

tunnels can be divided by several characteristics. Besides the 

classical types, Eiffel- and Göttinger wind tunnels, several 

special tunnels, e.g. tailspin and shoot tunnels, exist. Further 

classification is the type of measuring section, such as the form 

of the cross section and whether it has an open or closed test 

section. The Wind tunnel has a Settling Chamber, Contraction 

Cone, Test Section, Diffuser and Drive Section.                

The purpose of the settling chamber is to straighten the airflow. 

The contraction cone takes a large volume of low velocity air 

and reduces it to a small volume of high velocity air without 

creating turbulence. The test section is where the test article and 

sensors are placed. The main forces to be measured in the test 

section are Lift and drag. The diffuser slows the speed of airflow 

in the Wind tunnel. The drive section provides the force that 

causes the air to move through the Wind tunnel. 

To study pressure, velocity distributions around bodies, the 

Wind tunnel can be made use of to make modification to the 

body to obtain the aerodynamic forces experienced by body. 

Aircraft, spacecraft, rockets, cars, trucks and buildings can be 

tested in Wind tunnels. 

3. NEURAL NETWORKS 
Characterization of aerodynamic coefficients of an air vehicle 

has generally been based on wind tunnel tests of scaled models. 

But this data in its novel form is generally unsuitable in piloted 

situations since there is no consistency between the data 

obtained in case of different scale models of the different wind 

tunnels. Conventionally, fitting of a polynomial function for 

each aerodynamic coefficient is what was performed. The 

reason being,iteliminated the scatter from the measurements due 

to the smooth function[11]. 

Fitting  this  smooth  function  provided  smooth derivatives of  

the data which are  crucial  in performing  stability analyses.   In 

addition,some means of reconciling dissimilar sets of raw data is 

needed since measurements of the same coefficient from two 

dissimilar wind tunnels are usually taken at disparate values of 

angle of attack and lift force coefficient. 

Now to collect such amounts of data from numerical simulations 

or wind tunnel tests is quite expensive; mainly due to the 

complex model fabrication, intensive power utilization and the 

high personnel overload. Both steady and unsteady data are 

required fornumerical simulation of complex vehicles. With 

simple Euler codes steady aerodynamic data can be obtained at 

low Mach numbers and angles of attack. In case of a vehicle 

separation of flow zones Navier-Stokes simulations are required 

which are costly due to the large processing time required for 

convergence. Similarly in case of unsteady data, dynamic 

coefficients can be precisely predicted by using numerical 

simulations. Yet the advantage of the neural network lies in its 

ability to combine data from both numerical and experimental 

simulation to create an efficient archive database. Overall the 
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neural network performs very well in a classification and 

prediction arena within the data range being utilized during the 

training phase.  The input data for training the neural network 

can come from either Navier-Stokes simulations or wind tunnel 

test measurements, or a combination of both. 

This research shows the prospective for use of neural networks 

as a useful analytical technique for graph prediction. The 

intention behind using neural networks in graph prediction is to 

have the neural system learn to model a relationship that is 

represented explicitly in a set of historic data. Thus the objective 

is to predict a new aerodynamic characteristics graph by 

performing both interpolation and extrapolation. Several factors 

influence the performance of such decision support systems. 

Simply put different sets of training data produce models 

withvery different generalization accuracies.                                                                                       

The performance of feed-forward neural network trained with 

the Backpropagation algorithm and Radial basis function neural 

network for graph prediction on a wind tunnel test data is 

analyzed. The neural network techniques is applied for 

predicting a graph with a new Mach number purely from 

observing the raw input graph data with a variety of Mach 

numbers. A new model is thus developed for predicting graphs 

in Wind tunnel test data. The neural networks used for analysis 

include Radial basis function (RBF) neural networks and Back 

propagation neural networks.  

The structure of an ANN is basically a topology consists of three 

layers: input, hidden, and the output layer. The input layer is for 

extracting knowledge from the environment. The output layer is 

for the communication with the environment. The hidden layers 

are responsible for the execution between these two layers. 

Neurons are connected with unidirectional paths they 

communicatewith each other in the same layer or in different 

layers. 

4. GRAPH PREDICTION USING LFE 
The objective here is to predict the aerodynamic characteristics 

by using the concept of Learning from examples(LFE). The first 

step in building a neural network application to predict the 

aerodynamic characteristics was to develop a test data set for the 

neural network to use in training itself. 

4.1 Defining Inputs and Outputs 
This section discusses about the input and output variables. The 

learning from examples concept (Appendix A) is used for 

predicting the aerodynamic characteristics. The input variables 

used are the graphs of Angle of Attack vs. CDF for specific 

Mach number. Output variables are the predicted characteristic 

graphs for new Mach number. The samples are provided in 

sequence as explained in the Fig diagram for the effective 

implementation of Learning from Examples. The first training 

pattern consists of all the alpha values and the corresponding 

Mach number. The one complete presentation of all the training 

patterns is called one epoch. The Mach number and all the 

corresponding alpha values are given as input to the neural 

network. After sufficient presentation of input patterns the 

network predicts the complete characteristics graph for any 

Mach number.   

Tt]Coefficien Drag l[FrictionaTt]Coefficien eNormalForcpha,Number][Al[Mach 

Number)Mach  f(alpha,(CDF)t Coefficien Drag Frictional  , &

Number)Mach  t,Coefficien Force f(Normalt(CDF)Coefficien Drag l[Frictiona   

In the neural network design the inputs are alpha, Normal Force 

Coefficient, Normal Force Coefficient, Mach number and the 

output is Frictional Drag Coefficient (CDF), Pitching Moment 

Coefficient and Lift Force. 

4.2 Architecture Selection 
A variety of neural network architectures are available to 

process the data from the input data set files. A multi-

layerBackpropagation architecture, Radial basis function and 

Generalized Regression neural network are used for training 

because of their ability to generalize well when applied to a 

wide variety of applications and also due to their better 

regression. 

5. IMPLEMENTATION ISSUES 
A test data set containing 136 data points for Mach numbers 

3.5,3, 2.5,1 and 0.6 was randomly extracted by the neural 

network to compute average training error used to determine 

when to stop training. A training set containing all the Mach 

numbers data was used for network learning.  

The test data set is extracted from the ORACLE Database. But 

to train and test the different graphs with the Mach numbers 

given above with Artificial Neural Network the data is 

converted into sample inputs as  (*.dat) file format. A simple 

Backpropagation network of two input nodes (for the graph 

parameters), three hidden layers (18, 28, 10 neurons) and one 

output node, a RBN neural network and GRNN was developed.     

Inputs for the project are the learning set of data obtained from 

the flight manual. The following decisions regarding the neural 

network were also required as inputs: 

i. The number of inputs. 

ii. The value for the learning coefficient. 

iii. The number of processing elements in the hidden and 

output layers. 

Figure 2. Architecture for graph prediction 
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iv. The number of cycles for each run. 

MATLAB was used as the modeling language to implement the 

neural network. In this MATLAB functions in the neural net 

toolbox will be employed. For example, initff initializes a feed-

forward model; trainlm trains a network using Levenberg-

Marquardt Algorithm. Other transfer functions will be employed 

in this section as well. 

Radial basis function networks (RBF) is a type of artificial 

network for applications to problems of supervised learning e.g. 

regression, classification and time series prediction.  Radial 

basis function networks are non-parametric models. By non-

parametric models, it means that there is a priori knowledge 

about the function that is to be used to fit the training set. An 

example of a parametric model would be fitting a straight line to 

a set of points. The form of the function a straight line is known 

and it is just a matter of best fitting the line to the training set. 

RBF networks can be used to solve regression problems.  

 This project effectively connects the Java front end 

design, Oracle database and MATLAB. The following steps 

were performed to connect Java with Oracle: 

i. Importing Packages 

ii. Registering the JDBC Drivers 

iii. Opening a Connection to a Database 

iv. Creating a Statement Object 

v. Executing a Query and Returning a Result Set Object 

vi. Processing the Result Set 

vii. Closing the Result Set and Statement Objects 

viii. Closing the Connection 

In this project we use MATLAB for Neural network and to plot 

graphs. Matlab is a software package for high performance 

numerical computation and visualization. It provides easy 

extensibility with its own high level programming language.  

Steps to connect Java with MATLAB 

i. Importing Packages 

ii. Registering the Matlab Engine 

iii. Opening a Connection to a MATLAB 

iv. Executing Result Set 

In this project the GUI design has the Model, X-axis, Y-axis, 

Attributes, Value, &these values are retrieved from the database. 

The training module can be selected from the GUI. After 

retrieving the data from the Database, the data are stored in the 

files and are trained with suitable decision module. The plot to 

show the graphs predicted for Mach number 0.6, 1 and 2.5 by 

RBF neural network together with statistics is shown in Fig. 11. 

A practical problem that occurred during training is that in the 

BPN Neural Network small changes in the training data set may 

produce very different models and consequently different 

performance on unseen data. In this paper we show that this 

instability means that estimations of the generalization 

performance of an ANN for a particular task may vary 

considerably depending on the training data used.  

 

Figure 3. Plot to show the comparison between graph 

predicted by neural network and graph drawn from 

database 
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Figure 4. Alpha vs. Lift Force Coefficients 

It can be seen that as the training of the network proceeds the 

error on the training data continues to drop but after 200 epochs 

(200 presentations of all the training data) the error on unseen 

test data starts to rise. After this point the network is overfitting 

to peculiarities in the training data and is losing generalization 

accuracy.  

Up to a certain point additional training data will produce 

appreciable increases in accuracy. However, beyond the knee 

point in the graph additional data produces little increase in 

accuracy. At the knee point the learning system has seen a useful 

cross section of data samples that represent a good coverage of 

the problem domain.  

 

Figure 5. Alpha vs. CDF 

Figure 6. Normal Force Coefficient vs. Lift Force 

The solution to this problem is to hold out some of the available 

data from training and stop training when error on this validation 

set starts to rise. In situations where an abundance of training 

data is available, all the details of the problem will be well 

represented in the training data and overfitting is unlikely to be 

observed.  

The tabulation to show the efficiency of neural networks in 

predicting the performance characteristics of aerodynamic 

database in case of GRNN, BPN and Radial basis function is 

shown in Tables 1,2& 3. The tabulation calculates the Deviation 

between the values from the Wind tunnel test database and the 

values predicted from the Neural network.  

 

Figure 7. Alpha vs. Normal Force Coefficients 
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Figure 8. Alpha vs. CDF trained for Mach 1 & 1.5 and 

predicted for 2 

 

Figure 9.Alpha vs. CDF trained for Mach 1 & 1.5 and 

predicted for 3 

 

 

 

 

 

 

Figure 10. Plot to show time for Convergence 
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Figure 12. Plot to show the sample graph drawn during the learning trial of BPN neural network (with 

rectification) 

Figure 9. Alpha vs. CDF trained for Mach 1 & 1.5 and predicted for 3 
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Table 1. Tabulation showing the deviation between the values predicted by BPN neural network and drawn from database 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sl. 

No. 
PredicitonCharacteristics BPN 

  

WTT 

Max 
Deviation 

ANN 

Max 
Deviation 

Difference in 

Max 
Deviation 

Cumulative 
Difference in 

Max 

Deviation 

AverageDifference % Deviation 

X Y X Y X Y X Y X Y X Y 

1 Alpha vs Normal Force 24.01 7.92 25.12 29.147 0.4 0.71 0.39 0.33 0.001 0.025 0.1728 0.1785 

2 
Alpha vs Pitching Moment 

Coefficient 
10.6 20.58 10.32 28.76 0.22 8.87 0.47 7.895 0.1373 2.7110 0.0017 0.5816 

3 
Normal Force Coefficient 

vs CDF 
6.763 2.93 7.001 2.902 0.278 0.018 0.199 0.018 0.2541 0.1708 0.0399 0.019 

4 

Normal Force Coefficient 

vs Pitching Moment 

Coefficient 

2.312 21.36 2.256 24.36 0.004 5.12 0.011 9.589 0.362 2.9653 0.0368 0.0352 

5 Alpha vs Lift Force 8.3 2.1 9.65 2.123 0.01 0.372 0.32 1.653 0.1758 0.3045 0.0019 0.0254 

6 
Normal Force Coefficient 

vs  Lift Force Coefficient 
6.73 6.14 6.80 6.24 0.044 0.09 0.048 0.10 0.275 0.2045 0.040 0.399 

7 Alpha Vs CDF 10.6 0.724 10.58 0.899 0.02 0.19 0.017 0.14 0.1356 0.174 0.00141 0.0115 

Sl. 

No. 
PredictionCharacteristics RBF 

  

WTT 

Max 
Deviation 

ANN 

Max 
Deviation 

DIFF in Max 

Deviation 

Cumulative Diff 

in Max 
Deviation 

AvgDiff % Deviation 

X Y X Y X Y X Y X Y X Y 

1 Alpha vs Normal Force 21.42 6.49 20.92 7.089 0.5 0.59 0.5 0.59 0.0020 0.0378 0.1947 0.2146 

2 
Alpha vs Pitching Moment 

Coefficient 
10.6 20.23 10.48 27.95 0.12 7.72 0.12 7.72 0.1947 2.2388 0.0020 0.0475 

3 
Normal Force Coefficient vs 

CDF 

 

6.763 

 

2.831 

 

6.998 

 

2.809 

 

0.2350 

 

0.022 

 

0.235 

 

0.022 

 

0.2166 

 

0.1501 

 

0.0414 

 

0.0384 

4 
Normal Force Coefficient vs 

Pitching Moment Coefficient 
2.531 22.41 2.526 25.49 0.005 3.08 0.013 8.328 0.2166 2.2685 0.0414 0.0499 

5 Alpha vs Lift Force 10.6 2.25 10.58 2.714 0.02 0.464 0.0404 1.218 0.1947 0.2004 0.0020 0.0391 

6 
Normal Force Coefficient vs  

Lift Force Coefficient 
6.76 6.15 6.81 6.26 0.05 0.11 0.05 0.11 0.2166 0.2022 0.0414 0.0414 

7 Alpha Vs CDF 10.6 0.724 10.58 0.894 0.02 0.17 0.02 0.17 0.1947 0.1468 0.0020 0.0122 

Table 2. Tabulation showing the deviation between the values predicted by RBF neural network and drawn from database 
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6. Appendix A 
Proof : Learning From Examples 

Any set of k functions of n variables specified by m examples 

can be computed by a neural network with ±1 weights having 

)+k)/ ) = o(m*(n*(n,m,
kf

size  , and 

))((mn)/) = o(*(n,m,
kf

depth  lglg , 

Sl. 

No. 
PredictionCharacteristics GRNN 

  

WTT 
Max 

Deviation 

ANN 
Max 

Deviation 

Difference in 

Max Deviation 

Cumulative 
Difference in 

Max Deviation 

AverageDifference % Deviation 

X Y X Y X Y X Y X Y X Y 

1 Alpha vs Normal Force 9.11 2.06 8.51 2.307 0.6 0.247 1.41 3.13 0.383 0.043 0.3719 0.3536 

2 
Alpha vs Pitching Moment 

Coefficient 
10.6 20.22 10.58 25.78 0.02 5.56 0.040 4.25 0.383 0.710 0.3719 0.3616 

3 
Normal Force Coefficient vs 

CDF 
6.763 2.83 6.881 2.792 0.118 0.038 0.99 0.038 0.041 0.108 0.3499 0.1919 

4 
Normal Force Coefficient vs 

Pitching Moment 

Coefficient 

6.763 60.6 6.934 61.9 0.171 1.3 0.170 1.3 0.044 0.710 0.3499 0.3552 

5 Alpha vs Lift Force 21.42 5.91 21.36 6.546 0.06 0.63 0.06 0.63 0.383 0.041 0.3719 0.3591 

6 
Normal Force Coefficient vs  

Lift Force Coefficient 
6.763 6.154 6.812 6.3 0.049 0.146 0.049 0.146 0.044 0.042 0.3499 0.3552 

7 Alpha Vs CDF 10.6 0.724 10.58 0.882 0.02 0.15 0.040 0.563 0.383 0.109 0.3719 0.1895 

Table 3. Tabulation showing the deviation between the values predicted by GRNN neural network and drawn from database 

Figure 13. Architecture for learning from examples 
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and occupying an area of: 

k))) = o(m(n+*(n,m,
kf

A   

for all values of the fan-in(∆) in the range 2to n. 

The construction is: 

M TGs of n variables in the first layer (atmost); as 

they are MAJORITY gates of n inputs (AND- equivalent gates),  

and 

            K  TGs of m/2 variables in the second layer which are 

MAJORITY gates of m/2 inputs (OR- equivalent gates) 

We can compute: 

))((mn)/]=O(m/[]n/)=[*(n,m,
kf

depth  lglglglglglg  

(n+k))]=O(m/-/]+k[m--/)=m[n-*(n,m,
kf

size  1111  

and occupying: 

)]=O(m(n+k)-/ [m-]+ k-/ [n-)=m*(n,m,
kf

A 1111   

7. CONCLUSION 
This research paper showed the applicability of the neural 

network approach to graph prediction in the Wind tunnel test 

using the angle of attack and coefficient of frictional drag 

coefficients. The back propagation network performed similar 

tothe Radial basis function neural network but the time factor 

involved with the Backpropagation network is high. The back 

propagation neural network topology of 18,28,10,1 and 

systematically selected network parameters (learning rate of 

0.35, no momentum factor, and about 150 epochs), performed 

equally better with the radial basis function neural network in 

both recall and generalization.  The Generalized regression 

neural network provides optimal solution with quicker learning 

duration. This paper presents a complete neural network 

development process of training, recall, and generalization for 

an interesting Wind tunnel test application. The research 

provides fruitful results to make neural network computing more 

suitable to draw new graphs in Wind tunnel tests with any Mach 

number. 
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