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ABSTRACT 

The smart antenna systems combine antenna arrays with digital 

signal processing (DSP) algorithms. In a smart antenna system a 

specialized signal processor computes the direction of arrival 

(DOA) of a user and also adds the strength of the signals from 

each antenna element together to form a beam towards the 

direction as computed by DOA. If additional users join in the 

system, the adaptive antenna processor can tune out unwanted 

interferers by placing nulls towards the signals not of interest, 

and concentrate on the desired user by the main beam toward the 

signal of interest. Smart antenna systems integrate with radio 

intelligence with antenna array technology to increase the 

channel capacity, coverage range and improve link quality. In 

adaptive array smart antenna, to locate the desired signal, 

various DOA estimation algorithms are used. This paper 

investigates the effect of mutual coupling on the Multiple Signal 

Classification (MUSIC) algorithm for DOA estimation and 

compares its performance with Bartlett algorithm. The half 

wavelength dipole antenna elements are used in the linear array 

antenna to carry out a performance study of the MUSIC and 

Bartlett algorithms by investigating the effect of the mutual 

coupling between the array elements. However simulation 

results in this paper show that MUSIC algorithm is highly 

accurate and stable and provides high angular resolution 

compared to Bartlett and hence applying the MUSIC algorithm 

is preferred in mobile communication to estimate the DOA of 

the arriving signals.   
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1. INTRODUCTION 
One of the most promising techniques for enhancing the 

communication systems performance and improving the link 

quality for transmission and reception is the adaptive array smart 

antenna. The smart antenna technology is based on antenna 

arrays where the radiation pattern is controlled by adjusting the 

weight (amplitude and relative phase) on the different elements 

via DSP. If several transmitters are operating simultaneously, 

each source creates many multipath components at the receiver 

and hence the received array must be able to estimate the angles 

of arrival in order to determine which emitters are presented and 

what are their angular locations [1]. This information in turn can 

be used by the smart antenna to eliminate or combine signals for 

greater fidelity or suppress interferers to improve the capacity 

and mitigate the fading of cellular mobile communication. In 

general, the smart antenna systems estimate the DOA of all 

users and their multipath components and form a main beam 

toward desired user and reject the interferer users. The various 

known DOA estimation algorithms are Bartlett, Capon, Min-

norm, MUSIC and ESPRIT [2-3]. Most of the DOA estimation 

algorithms are applied in the antenna array assumed to be 

isotropic point sources which are impractical. The MUSIC 

algorithm is a high resolution and an accurate method which is 

widely used in the design of smart antennas and hence, in this 

paper, its performance is evaluated in the absence and presence 

of mutual coupling. The effect of mutual coupling between real 

antenna array elements, [4], is studied on the MUSIC algorithm 

and comparison between its performance and Bartlett algorithm 

performance, [5-6], is investigated to see if these algorithms can 

be applied in actual antenna array elements or not. The finite 

size antenna elements in the array are considered. Here, the 

antenna elements receive the incident fields resulting in mutual 

coupling between the antenna elements. Parallel thin wire dipole 

antennas are considered, for example, to account for mutual 

coupling among the antenna elements [5]. A computer 

simulation tool using “MCAD” or MATLAB Codes are 

developed to calculate the voltages induced at the antenna 

elements, and utilizing these measured voltages to the two 

algorithms to estimate the direction of the signals and to carry 

out a performance study of the two algorithms. Also additive 

white Gaussian noise is considered in the simulation results.  

 

2. DOA ESTIMATION USING BARTLETT 

AND MUSIC ALGORITHMS 
The purpose of DOA estimation is to use the data received by 

the antenna array to estimate the direction of arrival of the 

signals. The results of DOA estimation are then used to design 

the adaptive beamformer in such way as to maximize the power 

radiated towards the desired user and to suppress the 

interferences. These are accomplished by placing beam maxima 

and beam minima, ideally nulls, towards desired and interfering 

signals, respectively. In short the successful design of adaptive 

array smart antenna depends highly on the performance of DOA 

estimation algorithm. Number of DOA estimation algorithms 

have been developed and categorized into two methods, 

conventional and subspace [7]. Conventional methods also 

called classical methods which first compute a spatial spectrum 

and then estimate DOAs by local maxima of the spectrum (such 

as Bartlett). But MUSIC algorithm is one of the subspace 

methods. 
 

2.1 Bartlett Algorithm 
The first attempt to automatically localize signal sources using 

antenna arrays was through beamforming techniques. The idea 

is to "steer" the array in one direction at a time and measure the 

output power. The steering locations which result in maximum 

power yield the DOA estimates. The array (composed of N 
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elements) response is steered by forming a linear combination of 

the sensor noiseless outputs 
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where * denote the conjugate, H denotes the conjugate transpose, 

W is the weighting vector, )(tX  is the received signal vector, 

)(ts  is the base band time varying signal and a(θ) is, the 

steering vector at the DOA θ. Given samples y(1), y(2),…, y(M), 

where M is the number of samples, the output power is 

measured by 
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where Rxx is the array correlation matrix and is given by 
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The conventional (or Bartlett) beamformer is a natural extension 

of classical Fourier-based spectral analysis to sensor array data. 

For an array of arbitrary geometry, this algorithm maximizes the 

power of the beamforming output for a given input signal. 

Suppose we wish to maximize the output power from a certain 

direction θ. Given a signal emanating from direction θ, a 

measurement of the array output, )(tX , is corrupted by additive 

noise, )(tV , and written as 

)()()()( tVtsatX           (4) 

The problem of maximizing the output power is then formulated 

as, 
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where .E  denotes statistical expectation, 2  is the noise 

covariance matrix and the assumption of spatially white noise is 

used. To obtain a non-trivial solution, the norm of W is 

constrained to 1W  when carrying out the above 

maximization. The resulting solution is then  
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The above weight vector can be interpreted as a spatial filter, 

which has been matched to the impinging signal. Intuitively, the 

array weighting equalizes the delays (and possibly attenuations) 

experienced by the signal on various sensors to maximally 

combine their respective contributions. 

Inserting the weighting vector of (6) into (2), the classical spatial 

spectrum is obtained as 
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For a uniform linear array (ULA) of isotropic sensors, the 

steering vector a(θ) takes the form 
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where T denotes the transpose and 
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is termed the electrical angle and d denotes the inter-element 

distance. 
 

2.2 MUSIC Algorithm 
MUSIC is an acronym which stands for Multiple Signal 

Classification. This approach is a popular high resolution 

eigenstructure method. MUSIC promises to provide unbiased 

estimates of the number of signals, the angles of arrival, and the 

strengths of the waveforms. MUSIC makes the assumption that 

the noise in each channel is uncorrelated making the noise 

correlation matrix diagonal. The incident signals may be 

somewhat correlated creating a non-diagonal signal correlation 

matrix. However, under high signal correlation the traditional 

MUSIC algorithm breaks down and other methods must be 

implemented to correct this weakness. One must know in 

advance the number of incoming signals or one must search the 

eigenvalues to determine the number of incoming signals. 
If the number of signals is N, the number of signal eigenvalues 

and eigenvectors is D, and the number of noise eigenvalues and 

eigenvectors is N−D. Because MUSIC exploits the noise 

eigenvector subspace, it is sometimes referred to as a subspace 

method. 

As before the array correlation matrix is calculated assuming 

uncorrelated noise with equal variances. Next find the 

eigenvalues and eigenvectors for xxR . Will be found produce D 

eigenvectors associated with the signals and N−D eigenvectors 

associated with the noise. Will be chosen the eigenvectors 

associated with the smallest eigenvalues. For uncorrelated 

signals, the smallest eigenvalues are equal to the variance of the 

noise. Then it can construct the N× (N− D) dimensional 

subspace spanned by the noise eigenvectors such that 

 DNn eeeE  21     (10) 

The noise subspace eigenvectors are orthogonal to the array 

steering vectors at the angles of arrival N , , , 21  . Because 

of this orthogonality condition, one can show that the Euclidean 

distance 0)()(2   aEEad H
nn

H  for each and every arrival 

angle N , , , 21  . Placing this distance expression in the 

denominator creates sharp peaks at the angles of arrival. The 

MUSIC pseudospectrum is now given as 
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3. ACOUNTING FOR MUTUAL 

COUPLING AMONG AN ARRAY OF 

DIPOLES 
Parallel thin wire dipole antennas are considered, for example, 

to account for mutual coupling among the antenna elements. The 

dipoles are assumed to be z-directed of length l and radius a and 

are placed along the x-axis, separated by a distance xd . The 

port of each antenna element is located at the centre and is 

loaded with an impedance of LZ  ohms as shown in Figure 1, 

[3]. 

If an incoming electric field is linearly polarized, the z-

component of the field is formulated as 

rkj
z eEE  0      (12) 

where  

]cosˆsinsinˆcossinˆ[  zyxkk    (13)  

is the wave vector associated with the direction of arrival of the 

incident field ),(  . Here   is the elevation angle defined from 

the z-axis and   is the azimuth angle defined in the x-y plane 

with the starting angle from the x-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Model of the receiving antenna as linear array. 

Then the computed induced voltages are given by 
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where mx  is the x-coordinate of the axis of the mth antenna, 

])1[( qPmi   and P is the number of segments. The term iV  

tends to zero as   tends to the end fire case, which corresponds 

to 0  and   . The entries of the impedance matrix ][Z  

are given by 
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and ])1[( pPnt  . If nm  , the term )( nm xx   is set equal 

to the radius a. The method of moment (MOM) admittance 

matrix is the inverse of the impedance matrix. To take the load 

impedance into account, the load impedance is added to the 

entries of the diagonal elements of ][Z  that correspond to the 

port of excitation. Define a new impedance matrix ][Z  such that 

LZtiZtiZ  ),(),(    if i  corresponds to a port   (19) 

),(),( tiZtiZ               otherwise   (20) 

The coefficients of the MOM current expansion for the loaded 

antennas are given by  

]][[][ VSI           (21) 

where 1][][  ZS  is the new admittance matrix of size 

NPNP . Due to the choice of an odd number of basis 

functions, only a single basis function is nonzero at the port. The 

measured voltages at the ports are therefore given by 

]][[]][][[]][[][ VCVSZIZV portLportLmeas    (22) 

where 

NNLLLL ZZZdiagZ  ][][         (23) 

is the diagonal load matrix, ][ portI is the vector of currents at 

the N ports, and ][ portS  is the NPN   rectangular matrix 

corresponding to the wN  row of ][S  that corresponds to the 

wN  port. 

The NPN   matrix ]][[][ portL SZC   has dimensionless 

entries. 

4. SIMULATION RESULTS 
In this section we present the simulation results to demonstrate 

the effect of mutual coupling between the array elements on the 

accuracy of the MUSIC algorithm, which is also compared to 

Bartlett algorithm. A linear array of 12N  parallel thin wire 

dipole antennas are considered as actual antenna elements 

instead of the isotropic point sources. The inter-element 

spacing is 2/d . Each element of the array is divided into 7 

segments and identically loaded by 50  at the centre. The 

dipoles are z-directed of length 2/l  and radius 200/a . 
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This linear array is used to estimate two uncorrelated signals 

(K = 2) arrived at angles 60o and 120o, based on a batch of 

10M  noisy data samples. Assume additive white Gaussian 

noise zero mean with SNR=10 dB.  

Figure 2 and 3 illustrate the performance of the MUSIC and 

Bartlett algorithms, respectively, in the absence and presence 

of mutual coupling. It can be noted from the two Figures that 

there is a difference in the normalized pseudospectrum 

between the two cases for both algorithms. The two signal 

directions can be resolved by applying any algorithm of the 

two algorithms but the noise floor is increased due to the 

effect of mutual coupling between real antenna elements 

which degrades the performance significantly. Also, as been 

expected, the peak 3-dB beamwidth of MUSIC algorithm 

(about two degrees) for mutual coupling case is less than 

Bartlett algorithm (about ten degrees), so, the resolution of 

the MUSIC algorithm is better than the Bartlett algorithm. 
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Fig. 2: Effect of the mutual coupling between the antenna 

elements on the MUSIC Pseudospectrum. 
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Fig. 3: Effect of the mutual coupling between the antenna 

elements on the Bartlett Pseudospectrum. 

To enhance the performance of the MUSIC algorithm it must 

increase the number of the data samples (snapshots) and this 

is not satisfied on the Bartlett algorithm and this is illustrated 

in Figures 4 and 5. Here we increase the number of snapshots 

to 100M  with SNR =10 dB. 
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Fig. 4: Effect of the number of snapshots on MUSIC 

Pseudospectrum. 
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Fig. 5: Effect of the number of snapshots on MUSIC 

Pseudospectrum. 

5. CONCLUSION 
In adaptive array smart antenna, to locate the desired signal, 

various DOA estimation algorithms are used. Most of the DOA 

estimation algorithms are applied in the antenna array assumed 

to be isotropic point sources which are impractical. The 

simulation results illustrate that the MUSIC and Bartlett 

algorithms for DOA estimation can be applied on real 

(dipoles) array elements. Many numerical examples were 

introduced to measure the performance of the both algorithms 

and their ability to resolve incoming signals accurately and 

efficiently. The performance of the MUSIC algorithm depends 

on the number of the data snapshots. The MUSIC algorithm has 

highly accurate and stable and provides high angular resolution. 
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