
International Journal of Computer Applications (0975 – 8887)

Volume 35– No.3, December 2011

18

On Performance Analysis of Diagonal Variants of
Newton’s Method for Large -Scale Systems of

Nonlinear Equations

M.Y. Waziri
Department of Mathematical
science, Bayero University

Kano, Nigeria

H. Aisha

Department of Mathematical
science, Bayero University

Kano, Nigeria

A.I. Gambo
Central Bank of Nigria, Abuja,

Nigeria

ABSTRACT

In this paper, we compared and analyzed some newly diagonal

variants of Newton methods for solving large -scale systems of

nonlinear equations. Due to the fact that, the diagonal updating

scheme is computationally less expensive than classical Newton

methods and some of its variants. The two diagonal updating were

introduced by Waziri et.al. [6] and Waziriet. al.[7] respectively .

Reasonable analysis into the efficiency and stability of the two

diagonal updating scheme are given by numerical evaluation of

some benchmark nonlinear systems with Newton method and some

of its variants..

Keywords

Numerical Method, solution, Newton’s method.

1. INTRODUCTION
Consider the system of nonlinear equations

0,=)(xF (1.1)

where
nn

n RRfffF :),...,,(= 21 is continuously

differentiable in a open neighborhood E of a solution Ex *
 of

the system (1.1). Assume that, there exists a solution
x where

0=)(xF and 0)(xF '
.

The renowned method for solving (1.1), is Newton method.

Furthermore, this method generates a sequence of points }{ kx

from any specified initial guess 0x in the neighborhood of the

solution, via the following form:

Algorithm CN

Given an initial guess 0x , and for 0,1,2=k ,

Solve for ks

)(=)(kkk

' xFsxF  (1.2)

 Set

kkk sxx  =1 (1.3)

 where)(k

' xF is the nonsingular Jacobian matrix of F , ks is a

Newton step and (1.9) is Newton system. The most attractive part of

this iterative method is the convergence rate, the method has

quadratic rate of convergence provided the Jacobian is not singular

at a solution
*x [5].

,
2

1



  xxxx kk  (1.4)

where 0,1,2=k for some  .

Despite its good convergence rate and simplicity to implement,

Newton method requires computation and storage of the Jacobian

matrix as well as solving n linear equations in each iteration, that is

why an iteration of algorithm CN turns to be expensive, [5]. This is

more visible when handling large-scale systems of nonlinear

equations or systems in which their derivatives are quite costly.

These critical weaknesses have attracted the interest of some

number of scholars. Revised Newton-type and Newton-like methods

where introduced, which incudes fixed Newton, quasi-Newton,

inexact Newton, Newton-Krylov e.t.c. with the anticipation of

diminishing the well known weakness of Newton method.

Nevertheless the principal complexity of such methods is the

Jacobian matrix storage prerequisite especially when solving large-

scale systems. Fixed Newton has been the simplest and easiest

variant of classical Newton method, the method avoids computation

and storing the Jacobian matrix in each iterations(only at 0=k)

nevertheless solves systems of n linear equations. The method is

an iterative procedure that yields a sequence of points }{ kx from

an initial point 0x in the neighborhood of
*x , using the following:

Algorithm FN (Fixed Newton method)

Given an initial guess 0x , and for 0,1,2=k ,

Solve for ks

)(=)(0 kk

' xFsxF  (1.5)

 Set

kkk sxx  =1 (1.6)

The method is cheaper than Newton method but it converges very

slow, due to less information of the Jacobian in each iteration.

Inexact Newton method is another variant of Newton method, this

method determines the approximate Newton step kx by some

iterations [see,[8] for details], via the following:

Algorithm INM(Inexact Newton)

Find some ks which satisfies

kkkk

' rxFsxF )(=)((1.7)

 where

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.3, December 2011

19

.)(kkk xFr 

set

kkk sxx  =1 (1.8)

 where k is a sequence of forcing terms for 10  k .

The famous variant of Newton method that replaces Jacobian or its

inverse with an approximation which can be updated at each

iteration is quasi Newton method [4]. The method generates

sequence of points }{ kx according to following stages:

Algorithm QN (Quasi-Newton method)

Given an initial guess 0x and for 0,1,2=k ,

Solve for ks

)(= kkk xFsB  (1.9)

 Update

,=1 kkk sxx  (1.10)

 where kB is an approximation to the Jacobian. Various Jacobian

approximation matrices such as the Broyden’s method [1] are

proposed:

,
)(

=1

k

T

k

T

kkkk
kk

ss

ssBy
BB


 (1.11)

 where kB is an Jacobian approximation,

)()(= 1 kkk xFxFy  and kkk xxs 1= .

Still algorithm QN requires to form and store a full-matrix

approximation to the Jacobian in every iteration. The method that do

not need to compute neither to store the Jacobian matrix is diagonal

variant of Newton method. Diagonal Jacobian update was proposed

by [6] and diagonal Jacobian inverse updating formula presented by

[7].

In this paper, we compared the numerical performance of the above

schemes for solving large scale systems of nonlinear equations. Our

foremost concern here, is on matrix storage requirement and

execution time(CPU) in seconds for the two newly diagonal variants

of Newton methods for solving large-scale systems of nonlinear

equations, in other to draw conclusion among the two newly

methods.

We organized the rest of this work as follows: the Jacobian inverse

approximation is presented in section 2, Jacobian diagonal updating

scheme in section 3. Numerical experiments are given in section 4,

and finally Discussion and Conclusion are reported in Section 5.

2. DIAGONAL JACOBIAN UPDATING

SCHEME
Here we shall consider an approximation of the Jacobian into

diagonal matrix which proposed by [6]. They presented the

approximation using Taylor series expansion of)(xF i.e

).())(()(=)(kkkk xxOxxxFxFxF  (2.1)

 By imposing a well known conditions on the incomplete Taylor

series expansion of)(xF [6] proposed an approximation to

Jacobian as

DxF k )((2.2)

 where),,,(= 21 nddddiagD  and

)()(

1

)()(

1)(

1

)()(
=

i

k

i

k

i

k

i

ki

k
xx

xFxF
d








 (2.3)

hence

)(=)(

1

i

kk ddiagD  (2.4)

provided 0)()(

1 

i

k

i

k xx (See [6] for details). The updating

scheme and the algorithms for approximate Jacobian matrix into

diagonal matrix, is given as [6]:

)(= 1

1 kkkk xFDxx 

  (2.5)

Algorithm DJUS [6]

Consider
nnxF :)(with the same property as (1.1)

Step1 : Given 0x and nID =0 , set 0=k

Step 2 : Compute)(kxF

Step 3 : Compute)(= 1

1 kkkk xFDxx 

  where kD defined

by (3.4), provided
4)()(

1 10|>| 

  i

k

i

k xx else set
)(

1

)(= i

k

i

k dd  for 1,2,=k

Step 4 : If
4

1 10)(

  kkk xFxx stop else set

1= kk and go to step 2 .

3. DIAGONAL JACOBIAN INVERSE

UPDATING SCHEME
We consider Jacobian inverse updating scheme into diagonal matrix

proposed by [7]. The improvement of this approach over Jacobian

updating approach is that, it do not require storage or computation

of the true Jacobian matrix in every iteration. Moreover this

guaranteed a possible reduction in execution time (CPU time) and

matrix storage requirement. By using Taylor series expansion of

)(xF i.e

)())(()(=)(kkkk xxOxxxFxFxF  (3.1)

 and applying the well known conditions on the incomplete Taylor

series expansion of)(xF [7] presented the inverse Jacobian

scheme as

DxF k  1)((3.2)

 where),,,(= 21 nddddiagD  and

)()(

1

)()(

1)(

1
)()(

=
i

k

i

k

i

k

i

ki

k
xFxF

xx
d








 (3.3)

 hence

)(=)(

1

i

kk ddiagD  (3.4)

provided 0)()()()(

1 

i

k

i

k xFxF (See [7] for details). [7]

presented the updating scheme and the algorithms as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.3, December 2011

20

)(=1 kkkk xFDxx  (3.5)

Algorithm DJIUS [7]

Consider
nnxF :)(with the same property as (1.1)

Step1 : Given 0x and nID =0 , set 0=k

Step 2 : Compute)(kxF

Step 3 : Compute)(=1 kkkk xFDxx  where kD defined by

(3.4), provided
4)()(

1 10|>)()(| 

  i

k

i

k xFxF else set
)(

1

)(= i

k

i

k dd  for

1,2,=k

Step 4 : If
4

1 10)(

  kkk xFxx stop else set

1= kk and go to step 2 .

4. NUMERICAL RESULTS
 In order to compare the performance of the two diagonal variants of

Newton method for solving large scale systems of nonlinear

equations which we denote by DJUS and DJIUS. We apply the two

algorithms to four benchmark problems and compare their

numerical performance with the Newton's method (CN) and fixed

Newton method(FN) respectively. The comparison is based on CPU

time in seconds and matrix storage requirement. The computations

experiments are done in MATLAB 7.0 using double precision

computer. We used the following stopping criterion
4

1 10)(

  kkk xFxx (4.1)

 We introduced the symbol "" to indicate a failure.

In the following we describe the test problems as

Problem1 System of n nonlinear equations :

2)(1exp
2

9
)(9ln

2

1
32)(1sin=)(321

2

1=



 

nii

nnni

n

iii

xxx

xxxxxxf

Txni (3,3,..,3)=,,1,2,= 0

Problem 2 Trigonometric System of Byeong [9] :

1)(cos=)(ii xxf

,...,0.87)(0.87,0.87=,,1,2,= 0xandni 

Problem 3 System of n nonlinear equations :

))))((1((1exp

))))((1((1cos)(ln=)(

12

12









xx

xxxxf

T

T

ii

.,2.5)(2.5,2.5,.=,,1,2,= 0xandni  .

Problem 4 Trigonometric system :

,exp839cos=)(2111 xxxxf 

1exp839cos=)( iiii xxxxf

1cos=)(in xxf

,5).(5,5,1,2,=  andni 

Problem 5 System of n nonlinear equations :

2)(1)(1=)(12

2   nnniiii xxxxxxxf

)(2,2,...,2=,1,2,= 0xandni  .

Problem6 Spares System of Byeong [9] :

1=)(1 iii xxxf

1=)(1 xxxf nn

.,.5)(0.5,0.5,.=1,1,2,= 0xandni 
.

Problem 7 System of n nonlinear equations :

1)(log3)(exp

2

2

3)(cos
3)(=)(

2

2









ii

ii
ii

xx

xx
xnxf

. 3),3,3,3,(=,1,2,= 0   xandni

Problem 8 Generalized Trigonometric function of Spedicator [10]

  ,sin)cos(1cos=)(
1= iij

n

ji xxixnxf  

)
1

,...
1

,
1

(=200=,1,...,= 0
nnn

xandni 

Problem9 System of n nonlinear equations :

   2)(sin2)cos(3=)(  ii

n

ii

n

ii xxnxf

(0,0,...0)=,,1,2,= 0xandni  .

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.3, December 2011

21

Table 1, Results of Problem 1-9 (CPU Time in Seconds)

prom n
CN FN DJUS DJIUS

1 25 - - 0.031 0.030

2 25 0.062 0.047 0.001 0.001

3 25 0.062 - 0.015 0.012

4 25 - - 0.031 0.016

5 25 0.031 0.031 0.004 0.002

6 25 0.015 - 0.001 0.001

7 25 0.190 - 0.014 0.014

8 25 0.062 - 0.014 0.009

9 25 0.062 - 0.001 0.001

1 50 - - 0.031 0.030

2 50 0.094 0.140 0.004 0.004

3 50 0.109 - 0.016 0.015

4 50 - - 0.034 0.031

5 50 0.156 0.062 0.006 0.004

6 50 - - 0.015 0.015

7 50 0.328 - 0.030 0.030

8 50 0.156 - 0.016 0.012

9 50 0.125 - 0.005 0.004

1 500 - - 0.062 0.047

2 500 16.988 - 0.024 0.022

3 500 16.1305 - 0.032 0.031

4 500 - - 0.064 0.039

5 500 15.257 - 0.040 0.031

6 500 - - 0.023 0.019

7 500 39.578 - 0.078 0.069

8 500 8.097 - 0.033 0.030

9 500 13.104 - 0.033 0.030

1 1000 - - 0.090 0.064

2 1000 101.471 - 0.040 0.028

3 1000 107.8747 - 0.032 0.031

4 1000 - - 0.094 0.062

5 1000 108.340 - 0.052 0.038

6 1000 - - 0.028 0.021

7 1000 280.830 - 0.140 0.094

 8 1000 90.309 - 0.038 0.039

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.3, December 2011

22

9 1000 114.567 - 0.036 0.034

1 10000 - - 0.374 0.343

2 10000 - - 0.207 0.141

3 10000 - - 0.203 0.125

4 10000 - - 0.562 0.437

5 10000 - - 0.281 0.250

6 10000 - - 0.109 0.098

7 10000 - - 1.1078 1.061

8 10000 - - 0.516 0.344

9 10000 - - 0.321 0.289

An inspection of Tables 1, one would observe that DJIUS

method outperforms CN, FN and DJUS methods in terms of

CPU time consumptions, computational complexities and

floating points operations. This is due to low computational cost

associated with the building the approximation of the Jacobian

inverse into nonsingular diagonal matrix. In addition, we

observe that DJUS and DJIUS methods are the best with 100%

of successes when compared with CN method having 63.9% and

FN method with 44.54 % respectively. It is worth mentioning

that the DJIUS has total eliminates the need of Jacobian matrix

storage, whereby DJUS method has reduces to vector storage,

respectively. The numerical comparison further reveals that the

DJUS and DJIUS methods CPU time increases on

 5. CONCLUSION
In this paper a comparative analysis of two diagonal methods are

presented. The results shows DJIUS method is superior than

CN, FN and DJUS methods. The fact that the DJIUS method

solves the problems without the cost of computing and storing

the Jacobian makes it clear the advantage over CN, FN and

DJUS methods. It is also worth mentioning that the method is

capable of significantly reducing the execution time (CPU

time), as compared to CN, FN and DJUS methods. Another fact

that makes the DJIUS and DJUS methods more appealing is that

throughout the numerical experiments they never fail to

converge. Hence we can claim that diagonal updating scheme is

a good alternative to Newton-type methods for solving large-

scale systems of nonlinear equations.

6. REFERENCES
 [1] C.G. Broyden A class of methods for solving nonlinear

simultaneous equations, Math. Comput., 19 (1965), 577-

593.

[2] C.G. Broyden Quasi-Newton methods and their applications

to function minimization, Math. Comput., 21 (1967), 368-

381.

[3] C.T. Kelley Iterative Methods for Linear and Nonlinear

Equations”, SIAM, Philadelphia, PA, 1995.

[4] C. T. Kelly and J. I. Northrup A point wise quasi-Newton

method for integral equations, SIAM J. Numer. Anal., 25

(1988), 1138-1155.

[5] J. E. Dennis and R.B. Schnabel Numerical methods for

unconstrained optimization and nonlin- ear equations”,

Prince-Hall, Inc., Englewood Cliffs, New Jersey (1983).

[6] Waziri, M.Y., Leong, W.J., Hassan,M.A., Monsi, M., 2010

A New Newton method with diagonal Jacobian

approximation for systems of Non-Linear equations.

Journal of Mathematics and Statistics Science Publication.

6 :(3)9

[7] M.Y.Waziri, Leong, W.J., Hassan,M.A., Monsi, M., 2010

Jacobian computation-free Newton method for systems of

Non-Linear equations. Journal of numerical Mathematics

and stochastic.2 :1 : 54-63.

[8] Luksan M., Eisenstat S.C and Steihaug T. 1982, Inexact trust

region method for large sparse systems of nonlinear

equations, JOTA. 81 ,569-590.

[9] Byeong, C. S. Darvishi, M. T. and Chang, H. K. 2010. A

comparison of the Newton-Krylov method with high order

Newton-like methods to solve nonlinear systems . Appl.

Math. Comput. 217: 3190-3198.

[10] Spedicato, E. 1975. Computational experience with quasi-

Newton algorithms for minimization problems of

moderately large size. Rep. CISE-N-175 3: 10-41.

