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ABSTRACT 

In this paper, we compared and analyzed some newly diagonal 

variants of Newton methods for solving large -scale systems of 

nonlinear equations. Due to the fact that, the diagonal updating 

scheme is computationally less expensive than classical Newton 

methods and some of its variants. The two diagonal updating were 

introduced by Waziri et.al. [6] and Waziriet. al.[7] respectively . 

Reasonable analysis into the efficiency and stability of the two 

diagonal updating scheme are given by numerical evaluation of 

some benchmark nonlinear systems with Newton method and some 

of its variants.. 
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1. INTRODUCTION 
Consider the system of nonlinear equations 

0,=)(xF  (1.1) 

where 
nn

n RRfffF :),...,,(= 21  is continuously 

differentiable in a open neighborhood E  of a solution Ex *
 of 

the system (1.1). Assume that, there exists a solution 
x  where 

0=)( xF  and 0)( xF '
. 

The renowned method for solving (1.1), is Newton method. 

Furthermore, this method generates a sequence of points }{ kx  

from any specified initial guess 0x  in the neighborhood of the 

solution, via the following form: 

Algorithm  CN 

Given an initial guess 0x  , and for 0,1,2=k , 

Solve for ks  

)(=)( kkk

' xFsxF   (1.2) 

 Set  

kkk sxx  =1  (1.3) 

 where )( k

' xF  is the nonsingular Jacobian matrix of F , ks  is a 

Newton step and (1.9) is Newton system. The most attractive part of 

this iterative method is the convergence rate, the method has 

quadratic rate of convergence provided the Jacobian is not singular 

at a solution 
*x  [5].  

,
2

1



  xxxx kk   (1.4) 

where 0,1,2=k  for some  . 

Despite its good convergence rate and simplicity to implement, 

Newton method requires computation and storage of the Jacobian 

matrix as well as solving n  linear equations in each iteration, that is 

why an iteration of algorithm CN turns to be expensive, [5]. This is 

more visible when handling large-scale systems of nonlinear 

equations or systems in which their derivatives are quite costly. 

These critical weaknesses have attracted the interest of some 

number of scholars. Revised Newton-type and Newton-like methods 

where introduced, which incudes fixed Newton, quasi-Newton, 

inexact Newton, Newton-Krylov e.t.c. with the anticipation of 

diminishing the well known weakness of Newton method. 

Nevertheless the principal complexity of such methods is the 

Jacobian matrix storage prerequisite especially when solving large-

scale systems. Fixed Newton has been the simplest and easiest 

variant of classical Newton method, the method avoids computation 

and storing the Jacobian matrix in each iterations(only at 0=k ) 

nevertheless solves systems of n  linear equations. The method is 

an iterative procedure that yields a sequence of points }{ kx  from 

an initial point 0x  in the neighborhood of 
*x , using the following: 

Algorithm FN (Fixed Newton method)  

Given an initial guess 0x  , and for 0,1,2=k , 

Solve for ks  

)(=)( 0 kk

' xFsxF   (1.5) 

 Set  

kkk sxx  =1  (1.6) 

The method is cheaper than Newton method but it converges very 

slow, due to less information of the Jacobian in each iteration. 

Inexact Newton method is another variant of Newton method, this 

method determines the approximate Newton step kx  by some 

iterations [see,[8] for details], via the following: 

Algorithm INM(Inexact Newton )  

Find some ks  which satisfies  

kkkk

' rxFsxF  )(=)(  (1.7) 

 where 
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.)( kkk xFr   

set 

kkk sxx  =1  (1.8) 

 where k  is a sequence of forcing terms for 10  k . 

The famous variant of Newton method that replaces Jacobian or its 

inverse with an approximation which can be updated at each 

iteration is quasi Newton method [4]. The method generates 

sequence of points }{ kx  according to following stages: 

Algorithm QN (Quasi-Newton method) 

Given an initial guess 0x  and for 0,1,2=k , 

Solve for ks  

)(= kkk xFsB   (1.9) 

 Update  

,=1 kkk sxx   (1.10) 

 where kB  is an approximation to the Jacobian. Various Jacobian 

approximation matrices such as the Broyden’s method [1] are 

proposed:  

,
)(

=1

k

T

k

T

kkkk
kk

ss

ssBy
BB


  (1.11) 

 where kB  is an Jacobian approximation, 

)()(= 1 kkk xFxFy   and kkk xxs 1= . 

Still algorithm QN requires to form and store a full-matrix 

approximation to the Jacobian in every iteration. The method that do 

not need to compute neither to store the Jacobian matrix is diagonal 

variant of Newton method. Diagonal Jacobian update was proposed 

by [6] and diagonal Jacobian inverse updating formula presented by 

[7]. 

In this paper, we compared the numerical performance of the above 

schemes for solving large scale systems of nonlinear equations. Our 

foremost concern here, is on matrix storage requirement and 

execution time(CPU) in seconds for the two newly diagonal variants 

of Newton methods for solving large-scale systems of nonlinear 

equations, in other to draw conclusion among the two newly 

methods. 

We organized the rest of this work as follows: the Jacobian inverse 

approximation is presented in section 2, Jacobian diagonal updating 

scheme in section 3. Numerical experiments are given in section 4, 

and finally Discussion and Conclusion are reported in Section 5. 

 

2. DIAGONAL JACOBIAN UPDATING 

SCHEME 
Here we shall consider an approximation of the Jacobian into 

diagonal matrix which proposed by [6]. They presented the 

approximation using Taylor series expansion of )(xF  i.e  
 

).())(()(=)( kkkk xxOxxxFxFxF   (2.1) 

 By imposing a well known conditions on the incomplete Taylor 

series expansion of )(xF  [6] proposed an approximation to 

Jacobian as  

DxF k  )(  (2.2) 

 where ),,,(= 21 nddddiagD   and  

)()(

1

)()(

1)(

1

)()(
=

i

k

i

k

i

k

i

ki

k
xx

xFxF
d








  (2.3) 

 

 

hence  

)(= )(

1

i

kk ddiagD   (2.4) 

provided 0)()(

1 

i

k

i

k xx  (See [6] for details). The updating 

scheme and the algorithms for approximate Jacobian matrix into 

diagonal matrix, is given as [6]: 

)(= 1

1 kkkk xFDxx 

   (2.5) 

Algorithm DJUS [6] 

Consider 
nnxF :)(  with the same property as (1.1)  

Step1  : Given 0x  and nID =0 , set 0=k  

Step 2  : Compute )( kxF  

Step 3  : Compute )(= 1

1 kkkk xFDxx 

   where kD  defined 

by (3.4), provided 
4)()(

1 10|>| 

  i

k

i

k xx  else set 
)(

1

)( = i

k

i

k dd   for 1,2,=k  

Step 4  : If 
4

1 10)( 

  kkk xFxx  stop else set 

1= kk  and go to step 2 .  

 

3. DIAGONAL JACOBIAN INVERSE 

UPDATING SCHEME  
We consider Jacobian inverse updating scheme into diagonal matrix 

proposed by [7]. The improvement of this approach over Jacobian 

updating approach is that, it do not require storage or computation 

of the true Jacobian matrix in every iteration. Moreover this 

guaranteed a possible reduction in execution time (CPU time) and 

matrix storage requirement. By using Taylor series expansion of 

)(xF  i.e  

 

)())(()(=)( kkkk xxOxxxFxFxF   (3.1) 

 and applying the well known conditions on the incomplete Taylor 

series expansion of )(xF  [7] presented the inverse Jacobian 

scheme as  

DxF k  1)(  (3.2) 

 where ),,,(= 21 nddddiagD   and  

)()(

1

)()(

1)(

1
)()(

=
i

k

i

k

i

k

i

ki

k
xFxF

xx
d








  (3.3) 

 hence  

 

)(= )(

1

i

kk ddiagD   (3.4) 

provided 0)()( )()(

1 

i

k

i

k xFxF  (See [7] for details). [7] 

presented the updating scheme and the algorithms as follows: 
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)(=1 kkkk xFDxx   (3.5) 

Algorithm DJIUS [7] 

Consider 
nnxF :)(  with the same property as (1.1)  

Step1  : Given 0x  and nID =0 , set 0=k  

Step 2  : Compute )( kxF  

Step 3  : Compute )(=1 kkkk xFDxx   where kD  defined by 

(3.4), provided 
4)()(

1 10|>)()(| 

  i

k

i

k xFxF  else set 
)(

1

)( = i

k

i

k dd   for 

1,2,=k  

Step 4  : If 
4

1 10)( 

  kkk xFxx  stop else set 

1= kk  and go to step 2 .  

 

4. NUMERICAL RESULTS  
 In order to compare the performance of the two diagonal variants of 

Newton method for solving large scale systems of nonlinear 

equations which we denote by DJUS and DJIUS. We apply the two 

algorithms to four benchmark problems and compare their 

numerical performance with the Newton's method (CN) and fixed 

Newton method(FN) respectively. The comparison is based on CPU 

time in seconds and matrix storage requirement. The computations 

experiments are done in MATLAB 7.0 using double precision 

computer. We used the following stopping criterion  
4

1 10)( 

  kkk xFxx  (4.1) 

 We introduced the symbol ""  to indicate a failure. 

In the following we describe the test problems as 

Problem1  System of n  nonlinear equations : 

2)(1exp
2

9
)(9ln

2

1
32)(1sin=)( 321

2

1=



 

nii

nnni

n

iii

xxx

xxxxxxf

Txni (3,3,..,3)=,,1,2,= 0  

Problem 2  Trigonometric System of Byeong [9] : 

1)(cos=)( ii xxf  

,...,0.87)(0.87,0.87=,,1,2,= 0xandni 
 

Problem 3  System of n  nonlinear equations : 

))))((1((1exp

))))((1((1cos)(ln=)(

12

12









xx

xxxxf

T

T

ii

           

        
.,2.5)(2.5,2.5,.=,,1,2,= 0xandni  . 

Problem 4  Trigonometric system : 

,exp839cos=)( 2111 xxxxf   

1exp839cos=)(  iiii xxxxf  

1cos=)( in xxf  

,5).(5,5,1,2,=  andni   

Problem 5  System of n  nonlinear equations : 

2)(1)(1=)( 12

2   nnniiii xxxxxxxf  

)(2,2,...,2=,1,2,= 0xandni  . 

Problem6 Spares System of Byeong [9] : 

1=)( 1 iii xxxf  

1=)( 1 xxxf nn  

.,.5)(0.5,0.5,.=1,1,2,= 0xandni 
. 

Problem   7  System of n  nonlinear equations : 

1)(log3)(exp

2

2

3)(cos
3)(=)(

2

2









ii

ii
ii

xx

xx
xnxf

. 3),3,3,3,(=,1,2,= 0   xandni  

Problem 8 Generalized Trigonometric function of Spedicator [10] 

  ,sin)cos(1cos=)(
1= iij

n

ji xxixnxf  

)
1

,...
1

,
1

(=200=,1,...,= 0
nnn

xandni 

Problem9  System of n  nonlinear equations : 

   2)(sin2)cos(3=)(   ii

n

ii

n

ii xxnxf

(0,0,...0)=,,1,2,= 0xandni  . 
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Table 1, Results of Problem 1-9 (CPU Time in Seconds)   

 

prom n  
CN FN DJUS DJIUS 

1 25 - - 0.031 0.030 

2 25 0.062 0.047 0.001 0.001 

3 25 0.062 - 0.015 0.012 

4 25 - - 0.031 0.016 

5 25 0.031 0.031 0.004 0.002 

6 25 0.015 - 0.001 0.001 

7 25 0.190 - 0.014 0.014 

8 25 0.062 - 0.014 0.009 

9 25 0.062 - 0.001 0.001 

1 50 - - 0.031 0.030 

2 50 0.094 0.140 0.004 0.004 

3 50 0.109 - 0.016 0.015 

4 50 - - 0.034 0.031 

5 50 0.156 0.062 0.006 0.004 

6 50 - - 0.015 0.015 

7 50 0.328 - 0.030 0.030 

8 50 0.156 - 0.016 0.012 

9 50 0.125 - 0.005 0.004 

1 500 - - 0.062 0.047 

2 500 16.988 - 0.024 0.022 

3 500 16.1305 - 0.032 0.031 

4 500 - - 0.064 0.039 

5 500 15.257 - 0.040 0.031 

6 500 - - 0.023 0.019 

7 500 39.578 - 0.078 0.069 

8 500 8.097 - 0.033 0.030 

9 500 13.104 - 0.033 0.030 

1 1000 - - 0.090 0.064 

2 1000 101.471 - 0.040 0.028 

3 1000 107.8747 - 0.032 0.031 

4 1000 - - 0.094 0.062 

5 1000 108.340 - 0.052 0.038 

6 1000 - - 0.028 0.021 

7 1000 280.830 - 0.140 0.094 

        8 1000 90.309 - 0.038 0.039 
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9 1000 114.567 - 0.036 0.034 

1 10000 - - 0.374 0.343 

2 10000 - - 0.207 0.141 

3 10000 - - 0.203 0.125 

4 10000 - - 0.562 0.437 

5 10000 - - 0.281 0.250 

6 10000 - - 0.109 0.098 

7 10000 - - 1.1078 1.061 

8 10000 - - 0.516 0.344 

9 10000 - - 0.321 0.289 

 

An inspection of Tables 1, one would observe that DJIUS 

method outperforms CN, FN and DJUS methods in terms of 

CPU time consumptions, computational complexities and 

floating points operations. This is due to low computational cost 

associated with the building the approximation of the Jacobian 

inverse into nonsingular diagonal matrix. In addition, we 

observe that DJUS and DJIUS methods are the best with 100% 

of successes when compared with CN method having 63.9% and 

FN method with 44.54 % respectively. It is worth mentioning 

that the DJIUS has total eliminates the need of Jacobian matrix 

storage, whereby DJUS method has reduces to vector storage, 

respectively. The numerical comparison further reveals that the 

DJUS and DJIUS methods CPU time increases on  

 5.  CONCLUSION 
In this paper a comparative analysis of two diagonal methods are 

presented. The results shows DJIUS method is superior than 

CN, FN and DJUS methods. The fact that the DJIUS method 

solves the problems without the cost of computing and storing 

the Jacobian makes it clear the advantage over CN, FN and 

DJUS methods. It is also worth mentioning that the method is 

capable of significantly reducing the execution time ( CPU 

time), as compared to CN, FN and DJUS methods. Another fact 

that makes the DJIUS and DJUS methods more appealing is that 

throughout the numerical experiments they never fail to 

converge. Hence we can claim that diagonal updating scheme is 

a good alternative to Newton-type methods for solving large-

scale systems of nonlinear equations. 
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