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ABSTRACT 
 

Hall effects on the MHD Couette flow between two infinite 

horizontal parallel porous plates in a rotating system under the 

boundary layer approximations have been studied. One of the 

plate is held at rest and the other one moves with uniform 

velocity. An exact solution of governing equation has obtained 

in closed form. Asymptotic behavior of the solution has  

analyzed for large values of magnetic parameter, rotation 

parameter  and Reynolds number. It is observed that a thin 

boundary layer is formed near the stationary plate for large 

values of the rotation parameter, magnetic parameter  and 

Reynolds number. The thickness of these boundary layers 

increases with increase in Hall parameter. The heat transfer 

characteristic has also discussed on taking viscous and Joule 

dissipations into account. It is found that an increase in Hall 

parameter, the temperature in flow field increases.  

 

Keywords: Hall effects, MHD Couette, magnetic parameter, 

Hall parameter, rotation parameter,  Reynolds number, Joule 

dissipations,  heat transfer and boundary layer 

 

1. INTRODUCTION 
 

Magnetohydrodynamics is currently undergoing a period of 

great enlargement and differentiation of subject matter. The 

interest in these new problems generates from their importance 

in liquid metals, electrolytes and ionized gases. The mechanism 

of conduction in ionized gases in the presence of a strong 

magnetic field is different from that in a metallic substance. The 

electric current in ionized gases is generally carried by electrons 

which undergo successive collisions with other charged or 

neutral particles. In the ionized gases, the current is not 

proportional to the applied potential except when the electric 

field is very weak. However, in the presence of strong electric 

field, the electrical conductivity is affected by the magnetic 

field. Consequently, the conductivity parallel to the electric field 

is reduced. Hence, the current is reduced in the direction normal 

to both electric and magnetic fields. This phenomenon is known 

as the  Hall effect. Due to this Hall current the electrical 

conductivity of the fluid becomes anisotropic and this causes 

secondary flow in magnetohydrodynamic primary flows. Hall 

current is of great importance in many astrophysical problems, 

Hall accelerator and flight MHD as well as flows of plasma in a 

MHD power generator. The study of the interaction of the 

Coriolis force with the electromagnetic force is also important. 

In particular, rotating MHD flows with heat transfer is one of the 

important current topics because of its applications in 

thermofluid transport modeling in magnetic geosystems, 

meteorology, turbo machinery, solidification process in 

metallurgy and in some astrophysical problems. It is generally 

thought that the existence of the geomagnetic field is due to 

finite amplitude instability of the Earth's core. Since most 

cosmic bodies are rotators, the study of rotating electrically 

conducting fluid is essential in understanding better the 

magnetohydrodynamics of the interiors of the Earth and other 

planets. It has motivated a number of studies on hydromagnetic 

rotating systems which can provide explanations for the 

observed variations in the geomagnetic field. Hall effects on 

hydromagnetic Couette flow and heat transfer has been studied 

by Gupta [1]. MHD Couette flow and heat transfer in a rotating 

system have been studied by Jana et al. [2]. Soundalgekar et al. 

[3] have studied the Hall effects on generalized MHD Couette 

flow with heat transfer. Hall effects on MHD plasma Couette 

flow in a rotating environment have been studied by Ghosh et 

al.[4]. Ghosh [5] has studied the effects of Hall current on MHD 

Couette flow in a rotating system with arbitrary magnetic field. 

The unsteady Couette flow of an electrically conducting fluid 

between two parallel plates with Hall effects has been 

investigated by Jana and Datta [6]. Kanch and Jana [7] have 

studied Hall effect on unsteady Couette flow under boundary 

layer approximations. 

    In the present paper we have studied the effects of Hall 

current on the MHD Couette flow when one of the plate moving 

with uniform velocity and the other one held at rest under 

boundary layer approximations. Closed form solution has  

obtained for the velocity field. Asymptotic behavior has also  

studied for large values of rotation parameter, magnetic 

parameter and Reynolds number. It is found that for large 

magnetic parameter the thickness of the boundary layer near the 

plate 0   decreases with increase in Hall parameter m . On 

the other hand, for large rotation parameter as well as for large 

Reynolds number the boundary layer thicknesses increase with 

increase in Hall parameter. 

 

2. MATHEMATICAL FORMULATION 

AND ITS SOLUTION 
 

Consider the viscous incompressible electrically conducting 

fluid bounded by two infinite horizontal parallel porous plates 

separated by a distance d . Choose a cartesian co-ordinate 

system with x -axis along the lower stationary plate in the 

direction of the flow, the y -axis is normal to the plates and the 

z -axis perpendicular to x y -plane. The upper plate moves with 

a uniform velocity U  in the x -direction. The plates and the 

fluid are in a state of rigid body rotation with uniform angular 

velocity   about the y -axis. A uniform magnetic field 0B  is 

applied perpendicular to the plates. The velocity components are 

( , , )u v w  relative to a frame of reference rotating with the fluid. 

Since the plates are infinitely long, all physical variables, except 

pressure, depend on y  only. The equation of continuity then 
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gives 0v v   everywhere in the fluid where 0v  is the suction 

velocity at the plates. 

   

  
 

Figure 1. Geometry of the problem  
 

Neglecting ion-slip and thermoelectric effects, the generalized 

Ohm's law for partially ionized gas is [see Cowling[8]]  

  
0

( ) ( ),e ej j B E q B
B

 
    

    
                           (1) 

 where B


, E


, q


, j


,  , e  and e  are respectively, the 

magnetic field vector, the electric field vector, the fluid velocity 

vector, the current density vector, the conductivity of the fluid, 

the cyclotron frequency and the electron collision time. 

 

We shall assume that the magnetic Reynolds number for the 

flow is small so that the induced magnetic field can be 

neglected. This assumption is justified since the magnetic 

Reynolds number is generally very small for partially ionized 

gases. The solenoidal relation = 0B


 for the magnetic field 

gives 0zB B   constant everywhere in the fluid where 

( , , )x y zB B B B


. The equation of the conservation of the charge 

= 0j


 gives =zj constant. This constant is zero since 

= 0zj  at each plates which is electrically non-conducting.  

Thus = 0zj  everywhere in the flow.  Since the induced 

magnetic field is neglected, the Maxwell's equation 

B
E

t


  






 becomes 0E 


 which gives 0xE

z





 and 

0
yE

z





. This implies that xE   constant and yE   constant 

everywhere in the flow. 

       In view of the above assumption and on taking 

0x yE E  , equation(1) gives  

0 ,x zj m j B w                                                    (2) 

0 ,z xj m j B u                                                     (3) 

 where e em    is the Hall parameter. 

     Solving for xj  and zj , we get  

0
2

( ),
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B
j mu w

m


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
                                              (4) 

0
2

= ( ).
1

z

B
j u mw

m





                                               (5) 

     On the use of equations (4) and (5), the equations of motion 

along x -and y -directions are  

     
2

0
0 2 2

1
2 ( ),

(1 )

Bdu p d u
w v u mw

dy x dz m




 
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1
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1

0 ,
p

y


 


                                                      (8) 

where  ,   and p  are respectively the fluid density, the 

kinematic coefficient of viscosity and the modified fluid 

pressure including centrifugal force. 

   The boundary conditions are  

 0 at 0,u w z    

 , 0 at .u U w z d                              (9) 

    Under the usual boundary layer approximations, equations (6) 

and (7) become  

          
2

0 2

1
2

du p d u
w v

dy x dz

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                               
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    Introduce the non-dimensional variables  

1 1, , ,
z u w

u w
d U U

                                          (12) 

 equations (10) and (11) become  

       
2 2

2 1 1
1 1 12 2

2 Re ( 1) ,
1

du d u M
K w u mw

d d m 
    


          (13) 

       
2 2

2 1 1
1 1 12 2

2 ( 1) Re ( 1) ,
1

dw d u M
K u m u w

d d m 
      


(14) 

 where 
2 2

2 0B d
M




  is the Hartmann number, 

2
2 d

K



  the 

rotation parameter and 0v U
Re


  the Reynolds number. 

      Equations (13) and (14) can be combined into the following 

equation  

                  
2 2

2

2 2

(1 )
2 0,

1

d F dF M im
Re iK F

dd m

 
    

  

       (15) 

 where  

                  1 1= 1, = 1F u i w i                                        (16) 

    The boundary conditions for ( )F   are  

  1 at 0 and 0 at 1.F F                 (17) 

    The solution of the equation (15) subject to the boundary 

conditions (17) is  

    

Re

2cosh( )
( ) sinh( ) cosh( ) .

sinh( )

i
F i i e

i

 
      

 

 
    

 
    (18) 

      On the use of equation (16) and separating into real and 

imaginary parts, we get  

       
2

1

2
1
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Re

e
u


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

 


 

           [sinh (1 )cos (1 )sinh cos         
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           cosh (1 )sin (1 )cosh sin ],                          (19) 

      
2

1
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

 
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         cosh (1 )sin (1 )sinh cos ],                           (20) 

where  
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      The solution given by equations (19) and (20) exists for both 

< 0Re  (corresponding to 0 < 0v  for the blowing at the plates) 

and > 0Re  (corresponding to 0 > 0v  for the suction at the 

plates). If 0Re   and 2 = 0M , then the above equations (19) 

and (20) are identical with equations (8) and (9) of Jana and 

Datta[10]. 

 

3.  RESULTS AND DISCUSSION 
 

To study the effects of rotation, suction/blowing and Hall 

parameter on the velocity distributions we have presented the 

non-dimensional velocity components 1u  and 1w  against   in 

Figures.2-5 for various values of Hall parameter m , magnetic 

parameter 2M , the rotation parameter 2K  and Reynolds 

number Re . It is seen from Figure.2 that the primary velocity 

1u  increases with increase in magnetic parameter 2M  whereas 

the magnitude of the secondary velocity 1w  decreases with 

increase in magnetic parameter 2M . The retardation in the 

secondary velocity field due to the increase in the magnetic 

parameter is noticed form this figure. This observation can be 

explained by the following fact. As the magnetic parameter 2M  

increases, the Lorentz force which opposes the flow, also 

increases and leads to the enhanced deceleration of the flow. 

Figure.3 shows that the primary velocity 1u  decreases whereas 

the magnitude of the secondary velocity 1w  increases with 

increase in Hall parameter m . Hall parameter accelerates the 

secondary velocity field. Figure.4 reveals that the primary 

velocity 1u  increases with increase in 2K . On the other hand, 

the magnitude of the secondary velocity 1w  increases near the 

stationary plate while it decreases near the moving plate with 

increase in rotation parameter 2K . The rotation parameter 2K  

defines the relative magnitude of the Coriolis force and the 

viscous force in the regime, therefore it is clear that high 

magnitude Coriolis forces are counter-productive for the 

primary flow. It is observed from Figure.5 that the primary 

velocity 1u  increases while the magnitude of the secondary 

velocity 1w  decreases with increase in Reynolds number Re . 

 

Figure 2. Velocity profiles for 2
M  with 2

= 3K , = 2m  and 

= 2Re . 

 

Figure 3. Velocity profiles for m  with 2
= 10M , = 2m  and 

= 2Re . 

 

Figure 4. Velocity profiles for 
2

K  with 
2

= 10M , = 2m   

and = 2Re . 
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Figure 5. Velocity profiles for Re  with 2
= 10M , 2

= 3K  

and = 2m . 
 

    The resultants of the non-dimensional shear stresses due to 

the primary and secondary velocities at the plates 0   and 

1   are respectively given by  

          

1
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1
2 2 2 2 2

4
( )( ) ,sinh sin

cosh 2 cos2

Ree
   

 



   
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 where   and   are given by (21). 
      

     Numerical results of the resultant non-dimensional shear 

stresses 0  and 1  due to the primary and secondary flows at 

the plates 0   and 1   are shown graphically in Figures. 6-

8 against 2M  for different values of m , 2K  and Re . Figure.6 

shows that the resultant shear stress 0  due to the primary flow 

at the stationary plate 0   decreases with increase in Hall 

parameter m  for fixed value of 2M  while it increases with 

increase in magnetic parameter 2M . Further, it is seen that the 

resultant shear stress 1  due to the secondary flow at the moving 

plate 1  , decreases with increase in either m  or 2M . Since 

the primary velocity increases with an increase in 2M , the 

shear stess 0  also increases with 2M , because the friction 

increases with the fluid velocity. Similarly, the secondary 

velocity decreases as 2M  increases. Therefore, the shear stess 

0  also exhibits a similar behaviour as 2M  increases. It is 

observed from Figure.7 that the shear stess 0  increases with 

increase in either rotation parameter 2K  or magnetic parameter 
2M  or Reynolds number Re . Figure.8 reveals that the shear 

stess 1  decreases with increase in either rotation parameter 2K  

or Reynolds number Re . Due to the increase in parameter 2K  

or Re , the secondary velocity decreases. It is also seen that for 

2 4K   or 5Re  , 1  first decreases, reaches a minimum and 

then it increases in magnetic parameter 2M  while it decreases 

with increase in 2M  for 2 > 4K  or > 5Re . 

 

 

Figure 6.  Shear stresses for  m  with 2
= 3K  and = 2Re  

 

 

Figure 7.  Shear stress due to primary flow for both 2
K  and 

Re  with = 0.5m  



International Journal of Computer Applications (0975 – 8887) 

Volume 35– No.13, December 2011 

26 

 

Figure 8. Shear stress due to secondary flow for both 2
K  

and Re  with = 2m  

 

      Asymptotic behavior of the solutions (19) and (20) are 

analyzed for large values of 2M , 2K  and Re . 

 

Case (i) : When 12 K , 12 M  and 1Re . 
 

     In this case, equations (19) and (20) yield  

        
2

1 2

1 1
( ) (1 ) (1 )(2 ),

2 6 1

M
u Re

m
            


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2
1 2
( ) 2 (1 )(2 ).
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w K

m
   

 
     

  

                     (25) 

     It is seen from equations (24) and (25) that for small values 

of 2K ,  2M   and  Re , the primary velocity is independent of 

the rotation parameter 2K . On the other hand, the secondary 

velocity depends on the rotation parameter as well as magnetic 

and Hall parameters while it is independent of the Reynolds 

number. Further, if 2 20K M Re   , then equations (25) and 

(25) reduced to 1( )u    and 1( ) 0w    which represent the 

velocity components in the plane Couette flow. 

  

    Case (ii):  When 12K , 12 M  and 1Re . 

In this case, equations (19) and (20) become  

2
1 1 cos ,
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u e
 
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 
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where  
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     It is seen from equations (26) and (27) that there exists a 

single-deck boundary layer of thickness of the order 

1

O
2

Re



 

 
 

 where   is given by (28). It is seen that the 

thickness of this boundary layer increases with increase in Hall 

parameter m  but it decreases with increase in either Hartmann 

number M  or Re  or 2K . 

 

Case (iii) : When 12M , 12 K  and 1Re . 
 

       In this case, the velocity distributions are obtained from 

equations (19) and  (20) as  

2
1 1 cos ,

Re

u e
 



 
  
                                         (29) 

2
1 sin ,
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w e
 



 
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                                             (30) 

where  
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2 2 22 2
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1 1
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21 1

M mM m
K

m m M
 

    
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Equations (29) and (30) show the existence of single-decker 

boundary layer of thickness of the order 

1

O
2

Re



 

 
 

. This 

thickness of the layer increases with increase in Hall parameter 

m  while it decreases with increase in either Re  or 2M . It is 

interesting to note that for large values of 2M , the boundary 

layer thickness is independent of rotation parameter. 

 

Case (iv) : When 1Re , 12 M  and 12 K . 

      In this case, the velocity distributions given by (19) and (20) 

become  

1 1 cos ,Reu e                                                (32) 

1 sin ,Rew e                                                     (33) 

 where  

      
2

2

2

1
, 2 .

2 1

Re mM
K

Re m
 

 
   

  

                   (34) 

       Equations (32) and (33) show the existence of single-deck 

boundary layer of thickness of this boundary layer the order 

 1O Re . The thickness of the layer decreases with increase in 

Reynolds number Re . It is noticed that for large values of the 

Reynolds number Re , the boundary layer thickness is 

independent of Hall parameter, magnetic parameter as well as 

rotation parameter. 

 

4.  HEAT TRANSFER 
 

The energy equation for the fully developed flow including 

viscous and Joule dissipation is  

            

2 22

0 2p

dT d T du dw
C v k

dy dy dydy
 

    
       
     

 

  2 21
,x yj j


                                         (35) 

 where pC  is the specific heat at constant pressure and k  is the 

thermal conductivity. 

      The temperature boundary conditions are  

0 1at 0, at ,T T y T T y d                           (36) 

 where 0T  and 1 1 0( > )T T T  denote the uniform temperature of 

the plates at 0y   and y d , respectively. 

      Introducing  
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 0

1 0

= ,
T T

T T





                                           (37) 

and on the use of (12) and (16), the energy equation (37) can be 

written in a dimensionless form as  

             
2 2

2 2
,

1

d d dF dF M
Pr Ec Pr Ec F F

d d dd m

 

  

 
   

  

     (38) 

where 
pC

Pr
k


  is the Prandtl number and 

2

1 0( )p

U
Ec

C T T



 

the Eckert number. 

       The corresponding temperature boundary conditions for 

( )   become  

(0) 0 and (1) 1.                                              (39) 

      Using equations (19) and (20), the solution of equation (38) 

subject to the boundary conditions (39) is  
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   (40) 

where  
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c c
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 
 

 
 

                 
2 2

2 2
1 12
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Re M
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      


 

                 2 2 2
2 24 , 2 (2 )A Re Re Pr B Re Pr      .    (41) 

      

    The constant 1d  and 2d  in the equations (40) are obtained on 

using the conditions (39). The effect of the Hall parameter m , 

rotation parameter 2K  and Reynolds number Re  on the 

temperature distribution has been shown in Figures.9-11. It is 

seen from Figure.9 that the temperature increases near the 

stationary plate 0   and closeness near the moving plate 

1   with increase in the Hall parameter m . Thus, the Hall 

parameter m  accelerates the channel temperature. It is observed 

from Figure.10 that the temperature decreases with increase in 

the rotation parameter 2K . The effect of the rotation parameter 
2K  is to decrease the temperature in the channel. Because of 

rotation, it is seen that the rate of heat transfer at the upper plate 

decreases. Increasing rotation therefore opposes the conduction 

of heat from the upper plate of the channel into the fluid, 

causing a decrease in fluid temperature in the channel. Figure.11 

shows that with increase in the Reynolds number the 

temperature of fluid increases. 

 

Figure 9. Temperature profiles for  m  with 2
= 10M , 

2
= 3K  and = 2Re  

 

Figure 10. Temperature profiles for 2
K  with 

2
= 10M , 

= 2m  and = 2Re . 
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Figure 11. Temperature profiles for Re  with 2
= 10M , 

2
= 3K  and = 2m . 

 

      The rate of heat transfer at the plates 0   and 1   can 

be obtained from (40) as  
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Table 1. Rate of heat transfer at the plates  0   and 1    with 2Re   and 2
5K  . 

  

  (0)  (1)  

2\m M  5 10 15 20 5 10 15 20 

0.0 

0.5 

1.0 

1.5 

1.04694 

1.03751 

1.08313 

1.12624 

0.82908 

0.83453 

0.92293 

1.00211 

0.62614 

0.65270 

0.77919 

0.88940 

0.44045 

0.48785 

0.64811 

0.78568 

0.51481 

0.51530 

0.51500 

0.51467 

0.51723 

0.51740 

0.51660 

0.51584 

0.51919 

0.51906 

0.51799 

0.51695 

0.52062 

0.52033 

0.51913 

0.51793 

  

  Table 2 . Rate of heat transfer at the plates  0   and 1    with 2
= 5M  and 2

5K  . 

  

  (0)  (1)  

\m Re  2 4 6 8 2 4 6 8 

0.0 

0.5 

1.0 

1.5 

1.04694 

1.03751 

1.08313 

1.12624 

2.17003 

2.16970 

2.21705 

2.25921 

3.40052 

3.41174 

3.46126 

3.50182 

4.65976 

4.67711 

4.72416 

4.76017 

0.51481 

0.51530 

0.51500 

0.51467 

0.19506 

0.19514 

0.19506 

0.19474 

0.06688 

0.06684 

0.06670 

0.06657 

0.02118 

0.02117 

0.02113 

0.02110 

 

The numerical values of the rate of heat transfers (0)  and 

(1)  are entered in the Tables 1 and 2 for different values of 

2M , Re  and m  with 2 5K  . It is seen from the Table 1 that 

for 2 > 5M , the rate of heat transfer (0)  at the stationary 

plate 0   increases with increase in Hall parameter m  while 

for 2 5M  , the rate of heat transfer decreases and reaches a 

minimum and then increases with increase in m . On the other 

hand, for fixed value of m , the rate of heat transfer at the plate 

0   decreases with increase in 2M . It is observed from Table 

2 that the rate of heat transfer (0)  increases with increase in 

Reynolds number Re . Tables 1 and 2 show that with increase in 

m  the rate of heat transfer (1)  at the plate 1  , decreases 

either for 2 10M   or 4Re   while it first decreases and 

reaches a minimum and then increases either for 2 >10M  or 

> 4Re  with increase in m . 
 

5. SINGLE OSCILLATING PLATE 
 

In the limit d  , when the moving plate is at an infinite 

distance, the solution (18) becomes, on using (16)  

2
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u e
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2
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w e
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                                            (45) 
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2 2

2 20 0
2 2

, , .ev H
S M K

U U U

   




    

       Equations (44) and (45) are the velocity components due to 

free stream in the presence of a uniform transverse magnetic 

field and Hall currents when both the plate and the fluid rotate in 

unison with constant angular velocity   about an axis normal 

to the plate. The above expressions (44) and (45) show the 

existence of single-decker boundary layer of thicknesses of the 

order 

1

O
2

S



 

 
 

. The thickness of the layer increases with 

increase in Hall parameter m  while it decreases with increase in 

either 2K  or 2M . In the absence of the rotation, equations (44) 

and (45) identical with the equations (8) and (9) of Pop and 

Soundalgekar [11] and the equations (37) and (38) of Gupta 

[12]. Further, if 0M   and 0m  , then the equations (44) and 

(45) are identical with the results obtained by Gupta [13]. 
 

      As d  , the temperature distribution given by (40) 

becomes  
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  (47) 

 

Equation (47) is identical with the equations (31) and (34) of 

Mazumder et al. [14] when Joule dissipation is neglected. It is 

seen from the above equations that the thermal boundary layer 
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has a double-deck structure of thicknesses of the order 

O(1/ )SPr  and  1O ( 2 )S    when 2SPr   while for 

2SPr   it reduces to single-deck structure of layer of order 

O(1/ )SPr . It is evident from the expression of   given by (46) 

that the thickness of thermal boundary layer increases with 

increase in Hall parameter m  while it decreases with increase in 

either 2K  or 2M  or Re . This is due to the fact that   

decreases with increase in Hall parameter m  and it increases 

with increase in either 2K  or  2M  or Re . 
 

6. CONCLUSION 
 

Hall effect on MHD Couette flow between infinite horizontal 

parallel plates in a rotating system under boundary layer 

approximation has been studied. For large values of rotation 

parameter 2K , magnetic parameter 2M  and Reynolds number 

Re , there exists a single-deck boundary layer near the plate 

0  . Further, when the moving plate is placed at infinity 

( d  ) then we arrive at the problem of the conducting fluid 

past on infinite porous flat plate with free-stream velocity U . 

The thickness of the boundary layer increases with increases in 

Hall parameter either for large values of rotation or magnetic 

parameter while for large values of Reynolds number it is 

independent of Hall parameter. 
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