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ABSTRACT 
The good image quality and compression ratio of a Fractal 

image is degraded due to prolonging encoding time. This 

proposed paper presents a fast and efficient image coder used 

that Curvelet Transform to the image quality of the fractal 

compression. For achieving the fast fractal encoding using 

Partitioned Iterations Functions (PIFs) is applied to the coarse 

scale (low pass subband) of Curvelet transformed image and a 

modified set partitioning in hierarchical trees (SPIHT) coding, 

on the remaining part of coefficients. The image details and 

Curvelet progressive transmission characteristics are maintained 

and the common encoding fidelity problem in fractal-Curvelet 

hybrid coders is solved. In this proposed scheme encoding and 

decoding time reduction is about 90%. The simulations compare 

with the results to the SPIHT wavelet coding.   
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1. INTRODUCTION 
The main objective of image compression is reduction of image 

size for transmission or storage, while maintaining the quality in 

reconstruction image. Among all the technical aspects transform 

coding is the efficient at low bit rate.  

The image redundancies can be explored effectively by the way 

FIC on the basis of self affine transformations. In 1985 fractal 

image compression was introduced by Barnsley Demko [1] and 

Jacquin [2, 3] experimented successfully the scheme at 1992. 

Due to the exhaustive search strategy the encoding speed is very 

low is a commendable work. 

The image blocks constructed according to the variance and 

intensity by Fisher’s in 72 classes of image blocks is called 

fishers classification method [4, 5]. Since the search space is 

divided into 72 smaller classes and the encoding speed can be 

improved. The speedup ratio improved from 1.6 to 5 by Wang et 

al. [6], four types of range blocks were defined based on the 

edge property of the image. Truong et al [7] Discrete Cosine 

Transform (DCT) inner product based algorithm, which is 

reduced the calculation time so the speed is improved. Davis [8], 

[9], [10] has presented an approach of both fractal and wavelet 

image compression. 

Li and Kuo [11] use the fractal contractive mapping to predict 

interscales wavelet coefficients and then encode the prediction 

residue with a bit plane wavelet coder 

There is a SPIHT coding is applied due to the drawback of fine 

scale coefficients (high pass) has not enough information. The 

proposed SPIHT is enhancing the quality of image [12]. 

In this paper, we present a Fractal-Curvelet image coder that 

applies the speed of the Curvelet transform to the image quality 

of the fractal compression [13]. In some region of image 

traditional fractal encoder does not work, unable to achieve 

sufficient encoding time for the critical information in the low 

pass region of Curvelet coefficients. 

In the wavelet transform there is an inability to represent edge 

discontinuities along the curves. Due to the large or several 

coefficients are used to reconstruct edges properly along the 

curves. For this reason, it needs a transform to handle the two 

dimensional singularities along the sparsely curve. This is the 

reason behind the birth of Curvelet transform. Here the Curvlet 

basis elements have wavelet basis [14].The edge discontinuities 

and other singularities well than wavelet transform. 

In order to solve the problem of without losing the visual quality 

of the image with expensive fractal encoding time, this work 

involves as a hybrid coder. This paper present fast, and efficient 

image coder that applies the speed of the Curvelet transform to 

the image quality of the fractal compression. 

 The outline of rest of the paper is organized as follows. Section 

II discuss the theory of Curvelet Transform  section III discuss 

the SPIHT coding Section IV discuss the proposed  fractal 

image compression and section V discus the result analysis and 

comparisons with wavelet coder.  

2. CURVELET TRANSFORM 
One of the multiscale geometric transforms and a special 

member is Curvelet transform. It is a transform with multiscale 

pyramid with many directions at each length scale is called the 

decomposition of Curvelet transform. Curvelets will be superior 

over wavelets in following cases: 

1. This transform is optimally sparse representation of objects 

with edges 

2. This transform is optimal image reconstruction in severely ill-

posed problems 

3. This transform is optimal sparse representation of wave 

propagators. 

In this paper 3k level decomposition taken by the way of 

frequency wrapping Fast Discrete Curvelet Transform (FDCT) 

for the image to provides at different levels or scales for their 

respective coefficients. In specified decomposition level 

contains simple array of coefficients and this levels gives the 

information about wedges. After this only concentrate on 

significant information and removes the insignificant (high level 
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details) by the way of scale or level thresholding. The first and 

last level of thresholding levels of information not having in 

wedges. 

 For simplifying the work of thersholding and quantization steps 

at these levels. These procedural steps as follows 

 Subband Decomposition: IT divide image Im into several 

resolution layers and each layer contains details oIm diImferent 

frequencies 

 𝐼𝑚 → (𝑃0 𝐼𝑚 ,∆1 𝐼𝑚 ,∆2 𝐼𝑚 , . . . ) 

 (1) 

from the above equation (1) ∆s and  𝑃0 (where s  0) are 

high pass and low  pass filters respectively and the wavelet base 

is smooth and efficiently represented as P0 Im is the smooth 

low-pass layer. The high pass layer discontinuity represented by 

∆s 𝐼𝑚. Finally, ∆s 𝐼𝑚 layer having high frequency with fine 

details 

Square(or)  Smooth Partitioning: It represent ∆s 𝐼𝑚 

high-pass layers, split the layers into small partitions by defining 

by the dyadic square like smooth windows WsQ(x1, x2) 

localized.  

This will gives nonnegative smooth function and creates ridges 

of width = 2-2s and length =2-s. Multiplication of ∆s 𝐼𝑚 with 

WsQ  produces a smooth dissection into squares (hQ). The 

mathematical  equation (2) form is as follows: 

hQ= WsQ . ∆s 𝐼𝑚S     (2) 

 

 

 

 

 

 

 

 

Squares Renormalization:  All the squares renormalized 

from the previous squares. 

Square Ridgelet Analysis: The curvelet transform coefficient 

can be finding from the   normalized square analyse by the way 

of Ridgelet Transform  

2.1 SPIHT (Set Partitioning in Hierarchical   

        Trees) 
A modified version of traditional embedded zerotree wavelet 

(EZW) coder was presented by Said and Pearlman [15],. SPIHT 

as probably used curvelet-based algorithm for image 

compression, providing a standard of comparison algorithms 

because of SPIHT and wavlet based compression already used 

well in image processing. 

In this tree partitioning that maintains the insignificant wavelet 

coefficientsof four larger subsets grouped as (lists to be 

processed) list of insignificant pixels(LIP), list of insignificant 

sets (LIS), and list of significant pixels (LSP). 

The SPIHT algorithm sends the binary representation of the 

integer value of Curvelet coefficients (bit-plane coder) . Rao and 

Yip [16] also present simulations that show the superiority of 

SPIHT coding over the traditional JPEG 

During step of initialization, initial value for threshold is 

determined and initializes with a set containing all the 

coefficients in lowest subband (LIP). Moreover, initially empty 

list set in LSP and LIS contains the coordinates of roots of all 

trees that are of ¾ of lowest subband. In this paper SPIHT is 

modified with LIP initialization to be inserted in the hybrid 

coder. The LSP and LIS lists have not been modified, LSP is 

originally empty due to the approximation subband and 

offspring of LIS.  

The approximation subband coefficients values have been not 

included in order to achieve a better detail subband encoding. 

 

 

 

 

 

 

 

 

 

 

 
Fig 1:  (a). Fractal-curvelet encoder         

 (b) Fractal-curvelet decoder 
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3. PROPOPSED FRACTAL IMAGE  

     CODER 
In the proposed hybrid coder, fast fractal encoding (QPIFS) 

using Fisher’s accelerator is applied in the approximation 

subband, and the detail subbands using modified SPIHT coding 

is applied to curvelet transformed image. 

In this proposed method of block diagram represents the fractal 

curvelet encoder and decoder is in fig 1. In this Fig 1(a) and Fig 

1(b) are represented as Frcatal-Curvelet encoder and decoder 

respectively   Finaly, The coding is used as a compression 

scheme at various bit rate by the application of SPIHT using and 

it exploits multiresoultion-scaling of curvelet transform as with 

wavelet transform.it uses maximum bit to be assigned for low-

level detail and vice versa, to get high PSNR. 

 

 

 

4.  EXPERIMENTAL RESULTS 
The grayscale standard test images (i.e. Boat, CT-MONO2-8-

abdoman, Barbara, Hill and Peppers) of size 512 x 512 have 

been taken from World Wide Web for experiments. Here the 

MATLAB 7.0 has been used for the implementation of proposed 

approach and resultshave been conductedon Pentium-IV, 3.20 

GHz processor with a memory of 512 MB.  

Different quality metrics i.e. Compression Ratio (CR), bitrates 

and Peak Signal to Noise Ratio (PSNR) are evaluated to compile 

compression results. For example purpose in this paper Boat and 

CT-MONO2-8-abdoman image had produce 

The fractal-curvelet coder results have been compared to fractal 

wavelet coder  traditional techniques mentioned in the previous 

sections. The first one, the pure full search fractal coding used 

PIFs, the second one, the pure SPIHT with curvelet coding, will 

be referred as “SPIHT”. 

 

 

 

 

Image 
Transform   

Method 

Bit 

rate 
Compression Ratio 

Time (s) 
PSNR(db) 

Encoding Decoding 

CT-MONO2-

8-abdo 

 

Wavelet 
0.25 

35.01 9.966671 5.211113 21.72 

Curvelet 29.80 7.627111 9.133342 28.25 

Wavelet 
0.50 

15. 31 24.99916 13.12351 31.43 

Curvelet 13.85 19.06665 21.55521 32.58 

Wavelet 
0.80 

11. 31 44.99916 26.94432 34.43 

Curvelet 10.85 36.22344 40.99453 36.23 

Boat 

Wavelet 
0.25 

35.01 10.34452 7.443435 27.69 

Curvelet 29.80 8.003342 9.999931 30.12 

Wavelet 
0.50 

15. 31 24.88536 17.45376 31.45 

Curvelet 13.85 19.42325 23.29845 36.00 

Wavelet 
0.80 

11. 31 44.79814 27.17284 36.45 

Curvelet 10.85 34.56211 37.77823 41.54 

Lena 

Wavelet 
0.25 

35.01 9.334421 6.543335 30.51 

Curvelet 29.80 7.073352 8.989898 32.45 

Wavelet 
0.50 

15. 31 23.83533 16.46366 36.76 

Curvelet 13.85 18.42885 22.22825 39.66 

Wavelet 
0.80 

11. 31 43.39313 26.67686 41.45 

Curvelet 10.85 33.36313 36.67626 45.76 

Table 1 . Comparision for wavelet anc curvelet encoding and decoing time with the PSNR of CT-MONO-8-abdomen, 

boat and Lena images 
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This section presents the comparisons between these methods in 

terms of coding time, subjective quality, PSNR, and bitrate for 

Boat as Fig 2, CT-MONO2-8-abdoman as Fig 3 image and Lena 

as Fig 5. 

The SPIHT simulations were performed on a 3 K level 

decomposition using the wrapping FDCT. For FIC the scaling 

(p) and offset (q) parameters are quantized at 5 and 7 bits 

respectively and so on.  

Fig. 2, Fig 3 and Fig 5 shows the original Boat, CT-MONO2-8-

abdoman and Lena images  are 512 x 512 at 8 bpp, with the 

decoded Boat, Lena  and  CT-MONO2-8-abdoman image for 

full search FIC, SPIHT  are applied at 0.25,0.5 and 0.80 bit 

rates.  

The proposed Fractal-Curvelet coder exhibits in Table I shows 

the comparisons of above methods using the parameters 

encoding time and PSNR at different compression ratios are 

shown. The graphical representation of Fractal-Curvelet with  

Fractal–Wavelet  is shown in fig 4 and shows the Fractal-

Curvelet is better than fractal wavelet at lower bitrates  
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Fig 4: Comparision of wavelet and proposed algorithms 
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Reconstructed image with 

curvelet 

PSNR for bit rate 0.80 

is = 32.58 

Fig 3:  Fractal -Wavelet & Fractal -Curvelet Transfomed  

CT-MONO2-8-abdoman image for various bit rate 
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5. CONCLUSION 
In case of Fractal-Wavelet the most significant subband is 

retained, but its performance is poor and has annoying blocking 

artifacts when the numbers of retained coefficients is low. This 

shows that the Curvelet Transforms is more suitable for the 

image data to represent the singularities over geometric 

structures in the image, than the Wavelet counterpart. 

From the comparision result the better performance for PSNR is 

obtained from the Fractal-Curvelet coder as compared with the 

Fractal –Wavelet coder. It is about 10% to 20% improvement in 

PSNR had arrived from the above algorithm. 

This can again further improved with other compression coding 

techniques. 
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