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ABSTRACT 

In this paper analyzes how the Google web search engine 

implements the PageRank algorithm to define prominent status to 

web pages in a network. It describes the PageRank algorithm as a 

Markov process, web page as state of Markov chain, Link 

structure of web as Transitions probability matrix of Markov 

chains, the solution to an eigenvector equation and Vector 

iteration power method.  

It mainly focus on how to relate the eigenvalues and eigenvector 

of Google matrix to PageRank values to guarantee that there is a 

single stationary distribution vector to which the PageRank 

algorithm converges and efficiently compute the PageRank for 

large sets of web Pages. Finally, it will demonstrate example of 

the PageRank algorithm. 
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1. INTRODUCTION 
Paper begins with a review of the most basic PageRank model for 

determining the importance of a webpage. 

Paper provides comprehensive survey of all issues associated with 

PageRank, available and recommended solution methods, 

changing α value and convergence rate, storage issues and 

compares PageRank to an idealized random Web surfer and 

shows how to efficiently compute PageRank for large numbers of 

pages. 

2. PAGERANK 
A search query with Google‘s search engine usually returns a very 

large number of pages. E.g., a search on ‗University‘ returns 225 

million pages. Although the search returns several million pages, 

the most relevant pages are usually found within the top ten or 

twenty pages in the list of results. How does the search engine 

know which pages are the most important? 

Google assigns a number to each individual webpage based on the 

link structure of the web, expressing its importance. This number 

is known as the PageRank and is computed via the PageRank 

Algorithm. PageRank has applications in search, browsing, and 

traffic estimation. 

3. BASIC PAGERANK ALGORITHM 

MODEL 
An intuitive definition of PageRank algorithm shows how one 

might measure the importance of a web page on the Internet. 

A webpage U‘s PageRank is calculated base on how many other 

WebPages Backlink (inedges) into U. The PageRank of U is the 

sum of the PageRanks of each webpage Vi that backlinks to U 

divided by the number of WebPages to which Vi links [1]. This 

intuitive definition says that: if webpage U is linked to only by 

WebPages with low PageRanks, then U may not get more 

importance. Further, if U is linked to by a page Vj with a high 

PageRank, but Vj links to many other pages, U should not receive 

the full weight (benefits) of Vj‘s PageRank. 

For example, if a webpage has a link to the Facebook Home 

page, it may be just one link but it is a very important one. This 

page should be ranked higher than many pages with more links 

but from lower important pages. PageRank is an attempt to see 

how good an approximation to ―importance‖ can be obtained from 

the link structure. 

3.1 FORMAL DEFINITION 
Now that we have an idea of how PageRank works, we will 

formally define the algorithm. Drawing on [2], we define 

PageRank as follows: 

 Let U be a web page. 

 Let FU be the set of Forward links (outedges) from U. 

 Let BU be the set of Backlinks into U. 

 Let NU = |FU| be the number of forward links from U. 

 Let c be a normalization factor so that ―the total rank of 

all web pages is constant‖ [2]. 

     
          Back Links 

 

                                                                          Forward Links 

 

Fig 1: A Webpage’s Link Structure 
 

We begin by defining a simple ranking, R which is a slightly 

simplified version of PageRank: 

 
 

      R U = c  
R(V)

NV
VϵBU

                                            (1) 

 

Note that here c < 1 because there are number of pages with no 

forward links and their weight is lost from the system (see Section 

4.2). The equation is recursive but it may be computed by starting 

with any set of ranks and iterating the computation until it 

converges. Fig 2 demonstrates the propagation of rank from one 

pair of pages to another. 

 

 

 

Webpage U 
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Fig 2: Simplified PageRank Calculation 

 

There is a small problem with this simplified ranking algorithm. 

Consider two web pages that point to each other but to no other 

page. And suppose there is some web page which points to one of 

them. Then, during iteration, this loop will accumulate rank but 

never distribute any rank (since there are no outedges). The loop 

forms a sort of trap which is called a Rank Sink. 

 

 

 

 
Fig 3: Loop which acts as a Rank Sink 

 

To overcome this problem of rank sinks, we introduce a rank 

source: 

 Let E(U) be ―some vector over the Web pages that 

corresponds to a source of rank‖ [2]. 

 

Then, the PageRank of page U is given by 

R′ U = c  
R′ V 

NV
VϵBU

+  c E U             (2)      

This is iterated until the values have converged sufficiently [3]. 
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Fig4: Simplified PageRank Calculation 
 

Notice that PageRank can be described using equation 2, the 

summation method is neither the most interesting nor the most 

illustrative of the algorithm‘s properties. So, it is preferred to 

rewrite the sum as Matrix Multiplication. 

4. RANDOM WEB SURFER MODEL 
PageRank also has a second definition based upon the model of a 

random web surfer navigating the Internet. In short, the model 

states that PageRank models the behavior of someone who ―keeps 

clicking on successive links at random‖. However, occasionally 

the surfer ―gets bored and jumps to a random page chosen based 

on the distribution in E.‖ [2]. so, surfer will not continue in the 

loop forever. 

Consider the illustration in Fig 5 of a simple Link Structure of 

web pages; we can represent this structure using an N × N 

adjacency matrix A, where Aij = 1 if there is a link (Edge) from 

webpage (Vertex) i to webpage j, and 0 otherwise [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: A Simple Link Structure 

 

Thus, the 6×6 adjacency matrix for the link structure in Fig 5 is 

 

A =

 

 
 
 
 

  0 1 0 0 1 0  

  0 0 1 1 0 0  

  0 0 0 1 1 1  

  1 0 0 0 0 0  

  1 0 0 0 0 0  

  0 0 0 0 0 0   

 
 
 
 

 

 

Notice that the diagonal entries are all zero. We assume that links 

from a page to itself are ignored when constructing an adjacency 

matrix. 

To illustrate the PageRank algorithm based on second definition, 

the following variables are defined: 

 Let N be the total number of web pages in the web. 

 Let πT  be the 1×N PageRank row vector (Stationary 

vector). 

 Let H the N × N row-normalized adjacency matrix. 

(Transition Probability Matrix) 
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Then we can describe the PageRank vector at the kth iteration as 

π(k)T =  π(k−1)T  H                              (3) 

So that successive iterations π(k)T  converge to the PageRank 

vector πT  [3]. 

4.1 ROW-NORMALITY 
Let to build a Transition Probabilities matrix, 

 

 Hi =
Ai

 Aik
N
k=1

                                         (4) 

 

So, that each row 𝐴i of A is divided by its row sum. Apply 

equation 4 on Adjacency matrix A. so we have, sparse matrix  

 

H =

 

 
 
 
 

  0 1/2 0 0 1/2 0

  0 0 1/2 1/2 0 0

  0 0 0 1/3 1/3 1/3

  1 0 0 0 0 0

  1 0 0 0 0 0

  0 0 0 0 0 0  

 
 
 
 

 

 

Matrix H whose element Hij is the probability of moving from 

state i (page i) to state j (page j) in one time step (In Fig 5, assume 

that, starting from any webpage, it is Half the probability to arrive 

from page A to page B in one time step). 

4.2 DANGLING LINKS 
One issue with this model is dangling links. Dangling links are 

simply links that point to any page with no outgoing links (In   

Fig 5, Link to Webpage F) and Pages with no outlinks are called 

dangling nodes (Webpage F). They affect the model because it is 

not clear where their weight should be distributed. A page of data, 

a page with a postscript graph, a page with jpeg pictures, a pdf 

document, a page that has been fetched by a crawler but not yet 

explored - these are all examples of possible dangling nodes. In 

fact, for some subsets of the web, dangling nodes make up 80% of 

the collection‘s pages [5]. 

4.3 STOCHASTICITY 
Using the matrix H is insufficient for the PageRank algorithm, 

however, because the iteration using H alone might not converge 

properly — ―it may be dependent on the startingvector‖[3]. Here 

matrix H is not yet stochastic [3]. A matrix is stochastic when it 

is a ―matrix of transition probabilities for a Markov chain,‖ [A 

Markov chain is ―collection of random variables‖ whose future 

values are independent of their past values [6].] with the property 

that ―all elements are non-negative and all its row sums are unity‖ 

(one) [7]. Thus, to ensure that H is stochastic, we must ensure that 

every row sums to one. But here, the sum of the last row of matrix 

H is Zero because of Dangling Node (see Section 4.2). 

To overcome this problem, pages with no Forward links 

(Webpage F) are assigned artificial links or ―teleporters‖ to all 

other pages. 

 

 

 

 

 

 

 

 

 

 

 

      Artificial Links 

 

 

Fig 6: A StochasticLink Structure 

 

Therefore, we define the stochastic S as, 

 

                         S = H +
a ∗ eT

N
                                         (5) 

 

Where, 

a = N×1 Column Vector such that  

ai = 1   if   Hik = 0N
k=1   (i.e. Page i is Dangling Page) 

   = 0   otherwise   

e = N×1 Column Vector of one‘s [3]. 

 

Apply equation 5 on matrix H. so we have stochastic matrix S as,  

 

S =

 

 
 
 
 

  0 1/2 0 0 1/2 0

  0 0 1/2 1/2 0 0

  0 0 0 1/3 1/3 1/3

  1 0 0 0 0 0

  1 0 0 0 0 0

  1/6 1/6 1/6 1/6 1/6 1/6  

 
 
 
 

 

 

It makes sure that surfer‘s random walk process does not get stuck 

and the web pages are the states of the Markov chain. 

4.4 THE GOOGLE MATRIX 
There is no guarantee that S has a unique stationary distribution 

vector (i.e., there might not be a single ―correct‖ PageRank 

vector) [3]. For us to guarantee that there is a single stationary 

distribution vector πT  to which we can converge, we must ensure 

that S is irreducible as well as stochastic [3]. A matrix is 

irreducible if and only if its graph is strongly connected [8]. 
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So we define the irreducible row-stochastic matrix G as 
 

    G = αS +  1 − α E  ;   0 ≤ α ≤ 1                         6  

E =
e ∗ eT

N
 

 

G is the Google matrix, and we can use it to define 

 

π(k)T =  π(k−1)T  G                            (7) 
 

as the new iterative method for PageRank to replace equation 3. 

Google uses the value of 0.85 for α [3] (see Section 6), and we 

will use this same value. Thus, apply equation6 on matrix S, our 

G is, G = 
 

 

 
 
 
 
 

1/40 9/20 1/40 1/40 9/20 1/40 

1/40 1/40 9/20 9/20 1/40 1/40

1/40 1/40 1/40 77/250 77/250 77/250

7/8 1/40 1/40 1/40 1/40 1/40

7/8 1/40 1/40 1/40 1/40 1/40

 83/500 83/500 83/500 83/500 83/500 83/500 

 
 
 
 
 

 

 
Since the matrix G is completely dense, and the graph of G now 

strongly connected and G is irreducible. 

5. THE POWER METHOD 
The Google matrix G is currently of size more than eight billion 

web pages [9] and therefore the Eigen value computation is not 

trivial. To find an approximation of the principal Eigenvector the 

Power Methodis used. 

We iterate using the Google matrix G by writing equation 7. Let 

us take 1×N initial row vectorπ(0)T =
eT

N
  Based on it result found 

is, 𝛑(𝟏𝟗)𝐓 = 

 

 0.320 0.170 0.107 0.137 0.200 0.064  
 
 

The PageRank of page i is given by the ith element of πT . 

 

Table 1.PageRank of Tiny 6 web pages Link Structure 

 

Starting anywhere within Fig 5 and randomly surfing the web 

pages in given network, the likelihood of ending up at any of the 

Pages are, respectively, about 32%, 17%, 11%, 14%, 20 % and 

6%. 

 

5.1 IMPROVEMENT OF POWER 

METHOD 
When dealing with large data sets, it is difficult to form a matrix 

G and find its dominant eigenvector. It is more efficient to 

compute the PageRank vector using the power method, where we 

iterate using the sparse matrix H by rewriting equation 7. 

 
π k T =  π k−1 T  G                              

                =  π k−1 T αS +  1 − α E  

                              =  π k−1 T  αS +  1 − α 
e ∗ eT

N
  

=απ k−1 T  S +   1 − α π k−1 T e∗eT

N
 

=απ k−1 T  S +   1 − α 
eT

N
 

=απ k−1 T  ( H +
a∗eT

N
 ) +   1 − α 

eT

N
 

=απ k−1 T  H +  απ k−1 T  a +  1 − α  
eT

N
              (8)  

 
Since π(k−1)T  is a probability vector, and thus, π(k−1)T  e = 1 

Fortunately, since H is sparse, each vector-matrix multiplication 

required by the power method can be computed in nnz(H) flops, 

where nnz(H) is the number of nonzeros in H and since the 

average number of nonzeros per row in H is 3-10, O(nnz(H)) ≈ 

O(n) [5]. Furthermore, at each iterationthe power method only 

requires the storage of one vector, the current iterate. The 

founders of Google, Lawrence Page and Sergey Brin, use α = 0.85 

and report success using only 50 to 100 power iterations [2]. 

6. CHANGING 𝛂 VALUE 

ANDCONVERGENCE RATE 
One of the most obvious places to begin fiddling with the basic 

PageRank model is α. Brin and Page, have reported using α = 

0.85. One wonders why this choice for α? Might a different 

choice produce a very different ranking of retrieved WebPages? 

As mentioned in sections The Google Matrix and The Power 

Method, there are good reasons for using α = 0.85, one being the 

speedy convergence of the power method. With this value for α, 

rough estimate of the number of iterations needed to converge to a 

tolerance level τ (measured by the residual,π(k)T − π
(k−1)T

) is 

log10τ / log10α. For τ = 10-6 and α = 0.85, one can expect roughly   

-6 / log100.85 ≈ 85 iterations until convergence to the PageRank 

vector. For τ = 10-8, about 114 iterations and for τ = 10-10, about 

142 iterations. Brin and Page report success using only 50 to 100 

power iterations, implying that τ could range from 10-3 to 10-7. 

Obviously, this choice of α brings faster convergence than higher 

values of α. 

Compare with α = 0.99, whereby roughly 1833 iterations are 

required to achieve a residual less than 10-8. When working with a 

sparse 8 billion by 8 billion matrix, each iteration counts; over a 

few hundred power iterations is more than Google is willing to 

compute. However, in addition to the computational reasons for 

choosing α = 0.85, this choice for α also carries some intuitive 

weight: α = 0.85 implies that roughly 5/6 of the time a Web surfer 

randomly clicks on hyperlinks (i.e., following the structure of the 

Web, as captured by the 𝛂𝐒  part of the equation 6), while 1/6 of 

the time this Web surfer will go to the URL line and type the 

address of a new page to ―Artificial Link‖ to (as captured by the 

Web Page PageRank Relative importance 

A 0.320 1 

B 0.170 3 

C 0.107 5 

D 0.137 4 

E 0.200 2 

F 0.064 6 

 Total = 1  
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 𝟏 − 𝛂 𝐄  part of the equation 6). Perhaps this was the original 

motivation behind Brin and Page‘s choice of α = 0.85; it produces 

an accurate model for Web surfing behavior. Whereas α = 0.99, 

not only slows convergence of the power method, but also places 

much greater emphasis on the link structure of the Web and much 

less on the teleportation tendencies of surfers. The PageRank 

vector derived from α = 0.99 can be vastly different from that 

obtained using α = 0.85. Perhaps it gives a ―truer‖ PageRanking. 

An Experiment with various α‘s show significant variation in 

rankings produced by different values of α[10]. 

7. ALTERNATIVE OF POWER METHOD 
The iterative aggregation/disaggregation (IAD) method:  is an 

improvement of the PageRank algorithm used bythe search engine 

Google to compute stationary probabilities of very large Markov 

chains. 

It is shown that the power method applied to the Google matrix 

always converges, and that the convergence rate of theIAD 

method is at least as good as that of the power method. 

Furthermore, by exploiting the hyperlink structure of the web it 

can be shown that the convergence rate of the IAD method 

applied to the Google matrix can be made strictly faster than that 

of the power method [11]. 

The adaptive randomized method: for finding 

eigenvectorcorresponding to Eigen Value 1 for stochastic matrices 

hasbeen proposed. The upper bound of its rate of convergenceis of 

non-asymptotic type and has the explicit factor. Moreover, the 

bound is valid for the whole class of stochastic matrices and does 

not depend on propertiesof the individual matrix. The method can 

be applied for PageRank computation with small parameter α. 

Further workon acceleration of the method is possible [12]. 

DYNA-RANK: focuses upon efficiently calculating and updating 

Google‘s PageRank vector using ―peer to peer‖ system. The 

changes inthe web structure will be handled incrementally 

amongstthe peers. DYNA-RANK produces the relative PageRank 

oneach peer. DYNA-RANK is proven to take less computation 

time and less number of iterations compared to centralized 

approach [13]. 

8. STORAGE ISSUES OF GOOGLE 

MATRIX 
The size of the Markov matrix makes storage issues nontrivial. 

For subsets of the web, the transition probability matrix H may or 

may not fit in main memory. When a large matrix exceeds a 

machine‘s memory, researchers usually try one of two things: 

 

1. Compress the data needed so that the compressed 

representation fits in main memory and then creatively 

implement a modified version of PageRank on this 

compressed representation. 

 

2. Keep the data in its uncompressed form and develop 

I/O-efficient implementations of the computations that 

must take place on the large, uncompressed data. 

 

For modern web structure for which the transition probability 

matrix H can be stored in main memory, compression of the data 

is not essential. 

Rather than storing the full matrix or a compressed version of the 

matrix, Web-sized implementations of the PageRank model store 

the H or A matrix in an adjacency list of the columns of the 

matrix [14]. In order to compute the PageRank vector, the 

PageRank power method requires vector-matrix multiplications of 

𝛑 𝐤−𝟏 𝐓 𝐇  at each iteration k. Therefore, quick access to the 

columns of the matrix H (or A) is essential to algorithm speed. 

Column i contains the inlink (Backlink) information for page i, 

which, for the PageRank system of ranking WebPages, is more 

important than outlink (Forwardlink) information contained in the 

rows of H or A. For the tiny 6-node web from Fig 5, an 

adjacency list representation of the columns of matrix A is: 

 

Table 2.Adjacency list of matrix A 

 

Cleve Moler gives one possible implementation of the power 

method applied to an adjacency list, along with sample Matlab 

code [15]. When the adjacency list does not fit in main memory 

[14], suggest methods for compressing the data. Reference [16] 

take the other approach and suggest I/O-efficient implementations 

of PageRank. Since the PageRank vector itself is large and 

completely dense, containing over 8 billion pages, and must be 

consulted in order to process each user query, Reference [16] has 

also suggested a technique to compress the PageRank vector. This 

encoding of the PageRank vector hopes to keep the ranking 

information cached in main memory, thus speeding query 

processing. 

9. CONCLUSION 
In this paper, we have taken on the audacious task of condensing 

every page on the World Wide Web into a single number, its 

PageRank. PageRank is a global ranking of all web pages, 

regardless of their content, based solely on their location in the 

Web's link structure. Using PageRank, we are able to order search 

results so that more important and central WebPages are given 

preference.  

The intuition behind Page Rank is that it uses information which 

is external to the Web pages themselves – their backlinks, which 

provide a kind of peer review. Furthermore, backlinks from 

―important‖ pages are more significant than backlinks from 

average pages. This is encompassed in the recursive definition of 

PageRank (equation 2). 

In the proposed algorithm a value of α is usedthat play a very 

important role on the analysis of thealgorithm. After the analysis 

it is concluded that α must not be selected closer to zero. At α = 1, 

the system enters into the ideal state and theranking provided is 

insignificant. As per evaluation α must be selected greater than or 

equals to 0.5. However, if we consider convergence speed as only 

factor toevaluate the performance than the best factor α will be 

.85. The proposed algorithm is query independent algorithmand 

does not consider query during ranking.As the Web continues its 

amazing growth, the need for smarter storage schemes and 

evenfaster numerical methods will become more evident. Both are 

exciting areas for computer scientists and numerical analysts 

interested in information retrieval. 

Web Page BackLink From 

A D, E 

B A 

C B 

D B, C 

E A, C 
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As future work, it is desirable to conduct more experiments using 

larger and various kinds of datasets in order to further validate our 

conclusions in this paper. 
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