
International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

36

Random Web Surfer PageRank Algorithm

Navadiya Hareshkumar, Dr. Deepak Garg
Computer Science and Engineering Department

Thapar University, Punjab

ABSTRACT

In this paper analyzes how the Google web search engine

implements the PageRank algorithm to define prominent status to

web pages in a network. It describes the PageRank algorithm as a

Markov process, web page as state of Markov chain, Link

structure of web as Transitions probability matrix of Markov

chains, the solution to an eigenvector equation and Vector

iteration power method.

It mainly focus on how to relate the eigenvalues and eigenvector

of Google matrix to PageRank values to guarantee that there is a

single stationary distribution vector to which the PageRank

algorithm converges and efficiently compute the PageRank for

large sets of web Pages. Finally, it will demonstrate example of

the PageRank algorithm.

Keywords

PageRank, Markov chains, Power method, Google matrix,

stationary distribution vector, Eigen Vector and Values

1. INTRODUCTION
Paper begins with a review of the most basic PageRank model for

determining the importance of a webpage.

Paper provides comprehensive survey of all issues associated with

PageRank, available and recommended solution methods,

changing α value and convergence rate, storage issues and

compares PageRank to an idealized random Web surfer and

shows how to efficiently compute PageRank for large numbers of

pages.

2. PAGERANK
A search query with Google‘s search engine usually returns a very

large number of pages. E.g., a search on ‗University‘ returns 225

million pages. Although the search returns several million pages,

the most relevant pages are usually found within the top ten or

twenty pages in the list of results. How does the search engine

know which pages are the most important?

Google assigns a number to each individual webpage based on the

link structure of the web, expressing its importance. This number

is known as the PageRank and is computed via the PageRank

Algorithm. PageRank has applications in search, browsing, and

traffic estimation.

3. BASIC PAGERANK ALGORITHM

MODEL
An intuitive definition of PageRank algorithm shows how one

might measure the importance of a web page on the Internet.

A webpage U‘s PageRank is calculated base on how many other

WebPages Backlink (inedges) into U. The PageRank of U is the

sum of the PageRanks of each webpage Vi that backlinks to U

divided by the number of WebPages to which Vi links [1]. This

intuitive definition says that: if webpage U is linked to only by

WebPages with low PageRanks, then U may not get more

importance. Further, if U is linked to by a page Vj with a high

PageRank, but Vj links to many other pages, U should not receive

the full weight (benefits) of Vj‘s PageRank.

For example, if a webpage has a link to the Facebook Home

page, it may be just one link but it is a very important one. This

page should be ranked higher than many pages with more links

but from lower important pages. PageRank is an attempt to see

how good an approximation to ―importance‖ can be obtained from

the link structure.

3.1 FORMAL DEFINITION
Now that we have an idea of how PageRank works, we will

formally define the algorithm. Drawing on [2], we define

PageRank as follows:

 Let U be a web page.

 Let FU be the set of Forward links (outedges) from U.

 Let BU be the set of Backlinks into U.

 Let NU = |FU| be the number of forward links from U.

 Let c be a normalization factor so that ―the total rank of

all web pages is constant‖ [2].

 Back Links

 Forward Links

Fig 1: A Webpage’s Link Structure

We begin by defining a simple ranking, R which is a slightly

simplified version of PageRank:

 R U = c
R(V)

NV
VϵBU

 (1)

Note that here c < 1 because there are number of pages with no

forward links and their weight is lost from the system (see Section

4.2). The equation is recursive but it may be computed by starting

with any set of ranks and iterating the computation until it

converges. Fig 2 demonstrates the propagation of rank from one

pair of pages to another.

Webpage U

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

37

 50

 3

 50

 3

 3

Fig 2: Simplified PageRank Calculation

There is a small problem with this simplified ranking algorithm.

Consider two web pages that point to each other but to no other

page. And suppose there is some web page which points to one of

them. Then, during iteration, this loop will accumulate rank but

never distribute any rank (since there are no outedges). The loop

forms a sort of trap which is called a Rank Sink.

Fig 3: Loop which acts as a Rank Sink

To overcome this problem of rank sinks, we introduce a rank

source:

 Let E(U) be ―some vector over the Web pages that

corresponds to a source of rank‖ [2].

Then, the PageRank of page U is given by

R′ U = c
R′ V

NV
VϵBU

+ c E U (2)

This is iterated until the values have converged sufficiently [3].

0.2

 0.2 0.2

 0.4

Fig4: Simplified PageRank Calculation

Notice that PageRank can be described using equation 2, the

summation method is neither the most interesting nor the most

illustrative of the algorithm‘s properties. So, it is preferred to

rewrite the sum as Matrix Multiplication.

4. RANDOM WEB SURFER MODEL
PageRank also has a second definition based upon the model of a

random web surfer navigating the Internet. In short, the model

states that PageRank models the behavior of someone who ―keeps

clicking on successive links at random‖. However, occasionally

the surfer ―gets bored and jumps to a random page chosen based

on the distribution in E.‖ [2]. so, surfer will not continue in the

loop forever.

Consider the illustration in Fig 5 of a simple Link Structure of

web pages; we can represent this structure using an N × N

adjacency matrix A, where Aij = 1 if there is a link (Edge) from

webpage (Vertex) i to webpage j, and 0 otherwise [4].

Fig 5: A Simple Link Structure

Thus, the 6×6 adjacency matrix for the link structure in Fig 5 is

A =

 0 1 0 0 1 0

 0 0 1 1 0 0

 0 0 0 1 1 1

 1 0 0 0 0 0

 1 0 0 0 0 0

 0 0 0 0 0 0

Notice that the diagonal entries are all zero. We assume that links

from a page to itself are ignored when constructing an adjacency

matrix.

To illustrate the PageRank algorithm based on second definition,

the following variables are defined:

 Let N be the total number of web pages in the web.

 Let πT be the 1×N PageRank row vector (Stationary

vector).

 Let H the N × N row-normalized adjacency matrix.

(Transition Probability Matrix)

100

53

9

50

∞

∞

∞

A
0.4

B
0.2

C
0.4

Webpage A

Webpage E Webpage F

Webpage D

Webpage B

Webpage C

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

38

Then we can describe the PageRank vector at the kth iteration as

π(k)T = π(k−1)T H (3)

So that successive iterations π(k)T converge to the PageRank

vector πT [3].

4.1 ROW-NORMALITY
Let to build a Transition Probabilities matrix,

 Hi =
Ai

 Aik
N
k=1

 (4)

So, that each row 𝐴i of A is divided by its row sum. Apply

equation 4 on Adjacency matrix A. so we have, sparse matrix

H =

 0 1/2 0 0 1/2 0

 0 0 1/2 1/2 0 0

 0 0 0 1/3 1/3 1/3

 1 0 0 0 0 0

 1 0 0 0 0 0

 0 0 0 0 0 0

Matrix H whose element Hij is the probability of moving from

state i (page i) to state j (page j) in one time step (In Fig 5, assume

that, starting from any webpage, it is Half the probability to arrive

from page A to page B in one time step).

4.2 DANGLING LINKS
One issue with this model is dangling links. Dangling links are

simply links that point to any page with no outgoing links (In

Fig 5, Link to Webpage F) and Pages with no outlinks are called

dangling nodes (Webpage F). They affect the model because it is

not clear where their weight should be distributed. A page of data,

a page with a postscript graph, a page with jpeg pictures, a pdf

document, a page that has been fetched by a crawler but not yet

explored - these are all examples of possible dangling nodes. In

fact, for some subsets of the web, dangling nodes make up 80% of

the collection‘s pages [5].

4.3 STOCHASTICITY
Using the matrix H is insufficient for the PageRank algorithm,

however, because the iteration using H alone might not converge

properly — ―it may be dependent on the startingvector‖[3]. Here

matrix H is not yet stochastic [3]. A matrix is stochastic when it

is a ―matrix of transition probabilities for a Markov chain,‖ [A

Markov chain is ―collection of random variables‖ whose future

values are independent of their past values [6].] with the property

that ―all elements are non-negative and all its row sums are unity‖

(one) [7]. Thus, to ensure that H is stochastic, we must ensure that

every row sums to one. But here, the sum of the last row of matrix

H is Zero because of Dangling Node (see Section 4.2).

To overcome this problem, pages with no Forward links

(Webpage F) are assigned artificial links or ―teleporters‖ to all

other pages.

 Artificial Links

Fig 6: A StochasticLink Structure

Therefore, we define the stochastic S as,

 S = H +
a ∗ eT

N
 (5)

Where,

a = N×1 Column Vector such that

ai = 1 if Hik = 0N
k=1 (i.e. Page i is Dangling Page)

 = 0 otherwise

e = N×1 Column Vector of one‘s [3].

Apply equation 5 on matrix H. so we have stochastic matrix S as,

S =

 0 1/2 0 0 1/2 0

 0 0 1/2 1/2 0 0

 0 0 0 1/3 1/3 1/3

 1 0 0 0 0 0

 1 0 0 0 0 0

 1/6 1/6 1/6 1/6 1/6 1/6

It makes sure that surfer‘s random walk process does not get stuck

and the web pages are the states of the Markov chain.

4.4 THE GOOGLE MATRIX
There is no guarantee that S has a unique stationary distribution

vector (i.e., there might not be a single ―correct‖ PageRank

vector) [3]. For us to guarantee that there is a single stationary

distribution vector πT to which we can converge, we must ensure

that S is irreducible as well as stochastic [3]. A matrix is

irreducible if and only if its graph is strongly connected [8].

Webpage A

Webpage E Webpage F

Webpage D

Webpage B

Webpage C

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

39

So we define the irreducible row-stochastic matrix G as

 G = αS + 1 − α E ; 0 ≤ α ≤ 1 6

E =
e ∗ eT

N

G is the Google matrix, and we can use it to define

π(k)T = π(k−1)T G (7)

as the new iterative method for PageRank to replace equation 3.

Google uses the value of 0.85 for α [3] (see Section 6), and we

will use this same value. Thus, apply equation6 on matrix S, our

G is, G =

1/40 9/20 1/40 1/40 9/20 1/40

1/40 1/40 9/20 9/20 1/40 1/40

1/40 1/40 1/40 77/250 77/250 77/250

7/8 1/40 1/40 1/40 1/40 1/40

7/8 1/40 1/40 1/40 1/40 1/40

 83/500 83/500 83/500 83/500 83/500 83/500

Since the matrix G is completely dense, and the graph of G now

strongly connected and G is irreducible.

5. THE POWER METHOD
The Google matrix G is currently of size more than eight billion

web pages [9] and therefore the Eigen value computation is not

trivial. To find an approximation of the principal Eigenvector the

Power Methodis used.

We iterate using the Google matrix G by writing equation 7. Let

us take 1×N initial row vectorπ(0)T =
eT

N
 Based on it result found

is, 𝛑(𝟏𝟗)𝐓 =

 0.320 0.170 0.107 0.137 0.200 0.064

The PageRank of page i is given by the ith element of πT .

Table 1.PageRank of Tiny 6 web pages Link Structure

Starting anywhere within Fig 5 and randomly surfing the web

pages in given network, the likelihood of ending up at any of the

Pages are, respectively, about 32%, 17%, 11%, 14%, 20 % and

6%.

5.1 IMPROVEMENT OF POWER

METHOD
When dealing with large data sets, it is difficult to form a matrix

G and find its dominant eigenvector. It is more efficient to

compute the PageRank vector using the power method, where we

iterate using the sparse matrix H by rewriting equation 7.

π k T = π k−1 T G

 = π k−1 T αS + 1 − α E

 = π k−1 T αS + 1 − α
e ∗ eT

N

=απ k−1 T S + 1 − α π k−1 T e∗eT

N

=απ k−1 T S + 1 − α
eT

N

=απ k−1 T (H +
a∗eT

N
) + 1 − α

eT

N

=απ k−1 T H + απ k−1 T a + 1 − α
eT

N
 (8)

Since π(k−1)T is a probability vector, and thus, π(k−1)T e = 1

Fortunately, since H is sparse, each vector-matrix multiplication

required by the power method can be computed in nnz(H) flops,

where nnz(H) is the number of nonzeros in H and since the

average number of nonzeros per row in H is 3-10, O(nnz(H)) ≈

O(n) [5]. Furthermore, at each iterationthe power method only

requires the storage of one vector, the current iterate. The

founders of Google, Lawrence Page and Sergey Brin, use α = 0.85

and report success using only 50 to 100 power iterations [2].

6. CHANGING 𝛂 VALUE

ANDCONVERGENCE RATE
One of the most obvious places to begin fiddling with the basic

PageRank model is α. Brin and Page, have reported using α =

0.85. One wonders why this choice for α? Might a different

choice produce a very different ranking of retrieved WebPages?

As mentioned in sections The Google Matrix and The Power

Method, there are good reasons for using α = 0.85, one being the

speedy convergence of the power method. With this value for α,

rough estimate of the number of iterations needed to converge to a

tolerance level τ (measured by the residual,π(k)T − π
(k−1)T

) is

log10τ / log10α. For τ = 10-6 and α = 0.85, one can expect roughly

-6 / log100.85 ≈ 85 iterations until convergence to the PageRank

vector. For τ = 10-8, about 114 iterations and for τ = 10-10, about

142 iterations. Brin and Page report success using only 50 to 100

power iterations, implying that τ could range from 10-3 to 10-7.

Obviously, this choice of α brings faster convergence than higher

values of α.

Compare with α = 0.99, whereby roughly 1833 iterations are

required to achieve a residual less than 10-8. When working with a

sparse 8 billion by 8 billion matrix, each iteration counts; over a

few hundred power iterations is more than Google is willing to

compute. However, in addition to the computational reasons for

choosing α = 0.85, this choice for α also carries some intuitive

weight: α = 0.85 implies that roughly 5/6 of the time a Web surfer

randomly clicks on hyperlinks (i.e., following the structure of the

Web, as captured by the 𝛂𝐒 part of the equation 6), while 1/6 of

the time this Web surfer will go to the URL line and type the

address of a new page to ―Artificial Link‖ to (as captured by the

Web Page PageRank Relative importance

A 0.320 1

B 0.170 3

C 0.107 5

D 0.137 4

E 0.200 2

F 0.064 6

 Total = 1

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

40

 𝟏 − 𝛂 𝐄 part of the equation 6). Perhaps this was the original

motivation behind Brin and Page‘s choice of α = 0.85; it produces

an accurate model for Web surfing behavior. Whereas α = 0.99,

not only slows convergence of the power method, but also places

much greater emphasis on the link structure of the Web and much

less on the teleportation tendencies of surfers. The PageRank

vector derived from α = 0.99 can be vastly different from that

obtained using α = 0.85. Perhaps it gives a ―truer‖ PageRanking.

An Experiment with various α‘s show significant variation in

rankings produced by different values of α[10].

7. ALTERNATIVE OF POWER METHOD
The iterative aggregation/disaggregation (IAD) method: is an

improvement of the PageRank algorithm used bythe search engine

Google to compute stationary probabilities of very large Markov

chains.

It is shown that the power method applied to the Google matrix

always converges, and that the convergence rate of theIAD

method is at least as good as that of the power method.

Furthermore, by exploiting the hyperlink structure of the web it

can be shown that the convergence rate of the IAD method

applied to the Google matrix can be made strictly faster than that

of the power method [11].

The adaptive randomized method: for finding

eigenvectorcorresponding to Eigen Value 1 for stochastic matrices

hasbeen proposed. The upper bound of its rate of convergenceis of

non-asymptotic type and has the explicit factor. Moreover, the

bound is valid for the whole class of stochastic matrices and does

not depend on propertiesof the individual matrix. The method can

be applied for PageRank computation with small parameter α.

Further workon acceleration of the method is possible [12].

DYNA-RANK: focuses upon efficiently calculating and updating

Google‘s PageRank vector using ―peer to peer‖ system. The

changes inthe web structure will be handled incrementally

amongstthe peers. DYNA-RANK produces the relative PageRank

oneach peer. DYNA-RANK is proven to take less computation

time and less number of iterations compared to centralized

approach [13].

8. STORAGE ISSUES OF GOOGLE

MATRIX
The size of the Markov matrix makes storage issues nontrivial.

For subsets of the web, the transition probability matrix H may or

may not fit in main memory. When a large matrix exceeds a

machine‘s memory, researchers usually try one of two things:

1. Compress the data needed so that the compressed

representation fits in main memory and then creatively

implement a modified version of PageRank on this

compressed representation.

2. Keep the data in its uncompressed form and develop

I/O-efficient implementations of the computations that

must take place on the large, uncompressed data.

For modern web structure for which the transition probability

matrix H can be stored in main memory, compression of the data

is not essential.

Rather than storing the full matrix or a compressed version of the

matrix, Web-sized implementations of the PageRank model store

the H or A matrix in an adjacency list of the columns of the

matrix [14]. In order to compute the PageRank vector, the

PageRank power method requires vector-matrix multiplications of

𝛑 𝐤−𝟏 𝐓 𝐇 at each iteration k. Therefore, quick access to the

columns of the matrix H (or A) is essential to algorithm speed.

Column i contains the inlink (Backlink) information for page i,

which, for the PageRank system of ranking WebPages, is more

important than outlink (Forwardlink) information contained in the

rows of H or A. For the tiny 6-node web from Fig 5, an

adjacency list representation of the columns of matrix A is:

Table 2.Adjacency list of matrix A

Cleve Moler gives one possible implementation of the power

method applied to an adjacency list, along with sample Matlab

code [15]. When the adjacency list does not fit in main memory

[14], suggest methods for compressing the data. Reference [16]

take the other approach and suggest I/O-efficient implementations

of PageRank. Since the PageRank vector itself is large and

completely dense, containing over 8 billion pages, and must be

consulted in order to process each user query, Reference [16] has

also suggested a technique to compress the PageRank vector. This

encoding of the PageRank vector hopes to keep the ranking

information cached in main memory, thus speeding query

processing.

9. CONCLUSION
In this paper, we have taken on the audacious task of condensing

every page on the World Wide Web into a single number, its

PageRank. PageRank is a global ranking of all web pages,

regardless of their content, based solely on their location in the

Web's link structure. Using PageRank, we are able to order search

results so that more important and central WebPages are given

preference.

The intuition behind Page Rank is that it uses information which

is external to the Web pages themselves – their backlinks, which

provide a kind of peer review. Furthermore, backlinks from

―important‖ pages are more significant than backlinks from

average pages. This is encompassed in the recursive definition of

PageRank (equation 2).

In the proposed algorithm a value of α is usedthat play a very

important role on the analysis of thealgorithm. After the analysis

it is concluded that α must not be selected closer to zero. At α = 1,

the system enters into the ideal state and theranking provided is

insignificant. As per evaluation α must be selected greater than or

equals to 0.5. However, if we consider convergence speed as only

factor toevaluate the performance than the best factor α will be

.85. The proposed algorithm is query independent algorithmand

does not consider query during ranking.As the Web continues its

amazing growth, the need for smarter storage schemes and

evenfaster numerical methods will become more evident. Both are

exciting areas for computer scientists and numerical analysts

interested in information retrieval.

Web Page BackLink From

A D, E

B A

C B

D B, C

E A, C

F C

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.11, December 2011

41

As future work, it is desirable to conduct more experiments using

larger and various kinds of datasets in order to further validate our

conclusions in this paper.

10. REFERENCES

[1] Desmond J. Higham and Alan Taylor, The Sleekest Link

Algorithm (2003).

[2] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry

Winograd, The PageRank Citation Ranking: Bringing Order

to the Web (1998).

[3] Amy N. Langville and Carl D. Meyer, The Use of the Linear

Algebra by Web Search Engines (2004).

[4] Eric W. Weisstein, Adjacency Matrix, From MathWorld- A

Wolfram Web Resource.

[5] Amy N. Langville, Carl D. Meyer, Deeper

InsidePageRank(2004).

[6] Eric W. Weisstein, Markov Chain, From MathWorld– A

Wolfram Web Resource.

[7] David Nelson, editor, The Penguin Dictionary of

Mathematics (Penguin Books Ltd, London, 2003).

[8] Sergio S. Guirreri, Markov Chains as methodology used

byPageRank to rank the Web Pages on Internet (2010).

[9] Bill Coughran, Google’s index nearly doubles, Google

Inc.(2004)

[10] Kristen Thorson. Modeling the Web and the computation of

PageRank (Hollins University, 2004).

[11] Ilse C.F. Ipsen, Steve Kirkland, Convergence Analysis Of An

Improved PageRank Algorithm (2003)

[12] Alexander Nazin, Boris Polyak, Adaptive Randomized

Algorithm for Finding Eigenvector of Stochastic Matrix with

Application to PageRank (48th IEEE Conference- December

16-18, 2009)

[13] MandarKale, Mrs.P.SanthiThilagam, DYNA-RANK: Efficient

calculation and updation of PageRank(International

Conference on Computer Science and Information

Technology 2008)

[14] Sriram Raghavan, Hector Garcia-Molina. Compressing the

graph structure of the Web. In Proceedings of the IEEE

Conference on Data Compression, pages 213–222, (March

2001).

[15] Cleve B. Moler. Numerical Computing with MATLAB.

(SIAM, 2004).

[16] Taher H. Haveliwala. Efficient encodings for

documentranking vectors. (Technical report, CS

Department,Stanford University, November 2002).

