
International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

37

Evolution of Database Emerging to Sybase Adaptive
Server Enterprise and Ensuring Better Server Performance

Tuning and Query Optimization

Mohammad Ghulam Ali
Fellow (BCS), UK, Life Member IACSIT (Singapore), IAENG (Hong Kong)

System Engineer
Academic Post Graduate Studies & Research

Indian Institute of Technology, Kharagpur
Kharagpur - 721 302
West Bengal, India

 ABSTRACT
Evolution of the database is emerging to a robust Sybase

Adaptive Server Enterprise Database System. Key issue in the

Sybase Database System is to obtain better server performance

by tuning the server and optimizing the query processing. The

server performance tuning and query optimization are two main

issues to gain high throughput and less or fast response time. In

this paper we have considered well two issues and explained

how to gain better server performance by tuning the server and

optimizing the query processing. We are also illustrating

solutions to some situations normally occurs related to this two

issues in this paper. This paper will introduce the reader to the

most basic concepts of server performance tuning, query

processing and optimization of query processing. We hope this

paper will provide an adequate support to Database

Administrator(s) (DBAs) who are working on Sybase and

researchers who are working on Database Server performance

tuning and query optimization. We have discussed in brief in the

introduction section of this paper about the evolution of the

database emerging to SYBASE ASE version under different

operating system environments.

General Terms
Database Server Performance Tuning and Query Optimization

Keywords
Database, Database Management System, Relational Database

Management System, Performance Tuning, Query Processing,

Query Optimization.

1. INTRODUCTION
Keeping in mind the progress in communication and database

technologies (concurrency, consistency and reliability) has

increased the data processing potential. Various protocols and

algorithms are proposed and implemented for network

reliability, concurrency, atomicity, consistency, recovery,

replication, query processing and query optimization. Any

application or information system is mainly built from four

components and that are user interface that handles information

on screen, application program logic that handles the processing

and information, integrity logic that governs how information is

processed and kept accurate within an

organization and finally data access that is the method of storing

and retrieving data from a physical device. We now want an

optimal performance of Database Server and fast query

processing in any Information System proposed and that will

access to the database. We want an efficient and quick retrieval

of information for any kind of decision supports. For this, server

performance in general and optimization in particular are two

main issues. We have considered Sybase as a robust database

system in this paper. Recent versions of Sybase ASE have

brought a great deal of change in the realm of optimization.

Sybase ASE is known for its reliability, robustness, and

availability, supports large applications with hundreds and

thousands of concurrent users, and well-suited for customized

transactional applications. This paper has addressed two issues

(Server Performance Tuning and Query Optimization) well

however this two issues are big. We can also say poor SQL

statement performance and high CPU usage on our Sybase ASE

server almost always indicates the need for performance tuning.

This paper has an introduction section including evolution of

database in brief and an introduction to Sybase SQL Server and

Sybase ASE including Sybase ASE overview, performance

tuning section and query processing and optimization of query

processing section. We are also illustrating some solutions to

situations normally occurs during server run time related to the

server performance tuning and query optimization in a separate

section, and finally we conclude the paper.

 1.1 Evolution of Database
We first discuss few about evolution of database. We first

explain about Data Hierarchy. A bit binary digits, A byte

represents a character (basic building unit of data), A field (a

logical grouping of characters), A record (a logical grouping of

related fields), A file (a logical grouping of related records), A

database (a logical grouping of related files).

In general database is a collection of organized and related

records. The Database Management System (DBMS) provides a

systematic and organized way of storing data, managing data

and retrieving data from a collection of logically related

information stored in a database. Database Management System

(DBMS) did not come into industries until 1960‘s. First DBMS

appeared right before 1970. All database systems are evolved

from a file system.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

38

Originally, databases were flat. This means that the information

was stored in one long text file, called a tab delimited file. Each

entry in the tab delimited file is separated by a special character,

such as a vertical bar (|). Each entry contains multiple pieces of

data in the form of information about a particular object or

person grouped together as a record. The text file makes it

difficult to search for specific information or to create reports

that include only certain fields from each record.

The File Management System also called as FMS in short is one

in which all data is stored on a single large file.

Researchers in database field, however, found the data has its

value, and models based only on data be introduced to improve

the reliability, security, efficiency of the access and to come out

from the drawbacks of the file based systems and that leads to

the introduction of the Hierarchical Data Model and the

Hierarchical Database Management System.

Data models provide a way in which the stored data is organized

as specified structure or relation for quick access and efficient

management. Data models formally define data elements and

relationships among data elements for a domain of interest.

A data model instance may be one of three kinds according to

ANSI/SPARC (American National Standards Institute,

Standards Planning and Requirements Committee) in 1975. 1)

Logical Schema/Conceptual Schema/Conceptual Level, 2)

Physical Schema/Internal Level and 3) External

Schema/External Level.

We discuss in brief about different generation data models and

database management systems.

1.1.1. 1st Generation Data Model and Database

Management System (DBMS)
Hierarchical and Network Data Models are considered under 1st

Generation Data Model.

Hierarchical Data Model and Hierarchical Database

Management System existed from mid 1960- early 1980. The

previous system FMS drawback of accessing records and sorting

records which took a long time was removed in this by the

introduction of parent-child relationship between records in the

database. Each parent item can have multiple children, but each

chilled item can have one and only one parent. Thus

relationships in the hierarchical database either one-to-one or

one-to-many. Many-to-Many relationships are not allowed. The

origin of the data is called the root from which several branches

have data at different levels and the last level is called the leaf.

Hierarchical databases are generally large databases with large

amounts of data. The hierarchical data model organizes data in a

tree structure or as some call it, an "inverted" tree. There is a

hierarchy of parent and child data segments. Prominent

hierarchical database model was IBM‘s first DBMS called IMS.

In mid 1960s Rockwell partner with IBM created information

Management System (IMS), IMS DB/DC leads to the

mainframe database market in 70‘s and early 80‘s.

In order to avoid all drawbacks of the Hierarchical Data Model,

a next data model and database management system took its

origin which is called as the Network Model and Network

Database Management System. Network Data Model and

Network Database Management System was introduced in 1969

almost the exact opposite of the Hierarchical Data Model. In this

the main concept of many-many relationships got introduced.

Network Model eliminates redundancy but at the expense of

more complicated relationships. This model can be better than

hierarchical model for some kinds of data storage tasks, but

worse for others. Neither one is consistently superior to other.

1.1.2. 2nd Generation Data Model (Relational

Model) and Relational Database Management

System (RDBMS) – 1970
Relational Data Model is considered under 2nd Generation Data

Model.

In order to overcome all the drawbacks of the previous data

models and database management systems the Relational Data

Model and the Relational Database Management System got

introduced in 1970, in which data get organized as tables and

each record forms a row with many fields or attributes in it.

Relationships between tables are also formed in this system. A

tuple or row contains all the data of a single instance of the

table. In the relational model, every tuple must have a unique

identification or key based on the data that uniquely identifies

each tuple in the relation. Often, keys are used to join data from

two or more relations based on matching identification. The

relational model also includes concepts such as foreign keys,

which are primary keys in one relation that are kept in another

relation to allow for the joining of data.

In 1970 Dr. Edgar F. Codd at IBM published the relational

Model. A relational database is a collection of relations or

tables. By definition, a relation becomes a set of tuples having

the same attributes. Operations, which can be performed on the

relations are select, project and join. The join operation

combines relations, the select queries are used for data retrieval

and the project operation identifies attributes. Similar to other

database models, even relational databases support the insert,

delete and update operations.

Basically, relational databases are based on relational set theory.

Normalization is a vital component of relational model of the

databases. Relational operations which are supported by the

relational databases work best with normalized tables. A

relational database supports relational algebra, relational

calculus, consequently supporting the relational operations of

the set theory. Apart from mathematical set operations namely,

union, intersection, difference and Cartesian product, relational

databases also support select, project, relational join and division

operations. These operations are unique to relational databases.

Relational databases support an important concept of dynamic

views. In a relational database, a view is not a part of the

physical schema, it is dynamic. Hence changing the data in a

table alters the data depicted by the view. Views can subset data,

join and simplify multiple relations, dynamically hide the

complexity in the data and reduce the data storage requirements.

Relational databases use Structured Query Language (SQL)

which is invented by IBM in 1970 and SQL is a declarative

language, which is an easy and human-readable language. SQL

instructions are in the form of plain instructions, which can be

put to the database for implementation. Most of the database

vendors support the SQL standard.

Relational databases have an excellent security. A relational

database supports access permissions, which allow the database

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

39

administrator to implement need-based permissions to the access

of the data in database tables. Relational databases support the

concept of users and user rights, thus meeting the security needs

of databases. Relations are associated with privileges like create

privilege, grant privilege, select, insert and delete privileges,

which authorize different users for corresponding operations on

the database.

The other important advantages of relational databases include

their performance, power, and support to new hardware

technologies as also flexibility and a capacity to meet all types

of data needs. Relational databases are scalable and provide

support for the implementation of distributed systems.

Owing to their advantages and application in the operations of

data storage and retrieval of the modern times, relational

databases have revolutionized database management systems.

SYBASE is an example of relational database. However,

SYABASE ASE has also objected oriented features.

In relational Model, values are atomic (value as one that cannot

be decomposed into smaller pieces by the DBMS such as Bank

Account No., Employee Code etc. or Columns in a relational

table are not repeating group or arrays), each row is unique,

column values are of the same kind, the sequence of columns is

insignificant (ordering of the columns in the relational table has

no meaning. Columns can be retrieved in any order and in

various sequences. The benefit of this property is that it enables

many users to share the same table without concern of how the

table is organized. It also permits the physical structure of the

database to change without affecting the relational tables), the

sequence of rows is insignificant (the main benefit is that the

rows of a relational table can be retrieved in different order and

sequences. Adding information to a relational table is simplified

and does not affect existing queries), each column has unique

name, certain fields may be designed as keys which means that

searches for specific values of that field will use indexing to

speed up them.

The RDBMS allows for data independence, this helps to provide

a sharp and clear boundary between the logical and physical

aspects of database management.

The RDBMS provides simplicity, this provides a more simple

structure than those that were being before it. A simple structure

that is easy to communicate to users and programmers and a

wide variety of users in an enterprise can interact with a simple

model.

The RDBMS has good theoretical background, this means that it

provides a theoretical background for database management

field.

1.1.3. 3rd Generation Data Model and Database

Management System (DBMS)
ER-Model and Semantic Data Model are considered under 3rd

Generation Data Model.

In 1976, six year after Dr. Codd published the relational Model,

Dr. Peter Chen published a paper in the ACM Transaction on

Database Systems, introducing the Entity Relationship Model

(ER Model). An ER Model is intended as a description of real-

world entities. The ER data model views the real world as a set

of basic objects (entities) and relationships among these objects

(Entities, relationships, and attributes). It is intended primarily

for the DB design process by allowing the specification of an

enterprise scheme. This represents the overall logical structure

of the database. Although, it is constructed in such a way as to

allow easy translation to the relational model. The ER diagram

represents the conceptual level of database design. A relational

schema is at the logical level of database design. ER model is

not supported directly by any DBMS. It needs to be translated

into a model that is supported by DBMSs. The entity-

relationship model (or ER model) is a way of graphically

representing the logical relationships of entities (or objects) in

order to create a database. Any ER diagram has an equivalent

relational table, and any relational table has an equivalent ER

diagram.

Semantic Data Model was developed by M. Hammer and D.

McLeod in 1981. The Semantic Data Model (SDM), like other

data models, is a way of structuring data to represent it in a

logical way. SDM differs from other data models, however, in

that it focuses on providing more meaning of the data itself,

rather than solely or primarily on the relationships and attributes

of the data.

SDM provides a high-level understanding of the data by

abstracting it further away from the physical aspects of data

storage.

The semantic data model (SDM) has been designed as a natural

application modeling mechanism that can capture and express

the structure of an application environment. It can serve as a

formal specification and documentation mechanism for a data

base, can support a variety of powerful user interface facilities,

and can be used as a tool in the data base design process.

Object-Oriented Data Model (OODM) and Object Relational

Data Model (ORDM) are considered under Semantic Data

Model.

Object-Oriented Data Model and Object-Oriented Database

Management System (OODBMS) - (early 1980s and 1990s).

Research in the field of databases has resulted in the emergence

of new approaches such as the object-oriented data model and

Object-Oriented Database Management System, which

overcome the limitation of earlier models.

Object-oriented model has adopted many features that were

developed for object oriented programming languages. These

include objects, inheritance (the inheritance feature allows new

classes to be derived from existing ones. The derived classes

inherit the attributes and methods of the parent class. They may

also refine the methods of the parent class and add new methods.

The parent class is a generalization of the child classes and the

child classes are specializations of the parent class),

polymorphism (a mechanism associating one interface with

multiple code implementations) and encapsulation (the

association of data with the code that manipulates that data, by

storing both components together in the database).

Object-Oriented features mainly are Complex objects, object

identity, encapsulation, classes, inheritance, overriding,

overloading, late binding, computational completeness,

extensibility.

Object Database features are mainly persistence, performance,

concurrency, reliability, and declarative queries.

We do not discuss in details here about OODM.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

40

Object-Relational Data Model and Object Relational Database

Management System (ORDBMS). The object-relational model

is designed to provide a relational database management that

allows developers to integrate databases with their data types

and methods. It is essentially a relational model that allows users

to integrate object-oriented features into it. The primary function

of this new object-relational model is to more power, greater

flexibility, better performance, and greater data integrity then

those that came before it.

The ORDBMS provides an addition of new and extensive object

storage capabilities to the relational models at the center of the

more modern information systems of today. These services

assimilate the management of conventional fielded data, more

complex objects such as a time-series or more detailed

geospatial data (such as imagery, maps, and vector data) and

varied dualistic media (such as audio, video, images, and

applets). This can be done due to the model working to

summarize methods with data structures, the ORDBMS server

can implement complex analytical data and data management

operations to explore and change multimedia and other more

complex objects.

It can be said that the object relational model is an evolutionary

technology, this approach has taken on the robust transaction

and performance management aspects of its predecessors.

Database developers can now work with somewhat familiar

tabular structures and data definition but with more power and

capabilities.

Object-relational models allow users to define data types,

function, and also operators. As a direct result of this the

functionality and performance of this model are optimized. The

massive scalability of the object-relational model is its most

notable advantage, and it can be seen at work in many of today‘s

vendor programs.

In ORDBMS, SQL-3 is supported. SQL3 is a superset of

SQL/92. SQL3 supports all of the constructs supported by that

standard, as well as adding new ones of its own such as

Extended Base Types, Row Types, User-Defined Types, User-

Defined Routines, Sub-Types and Super-Types, Sub-Tables and

Super-Tables, Reference Types and Object Identity, Collection

Types.

1.1.4. 4th Generation DBMS
4th Generation DBMS is also based on Object-Oriented Data

Model has come into an existence. VERSANT Database is an

example of 4th Generation Database.

Each of these models modeled the data and the relationship

between the data in different ways. Each of the models

encountered some limitations in being able to represent the data

which resulted in other models to compensate for the limitations.

1.2 Sybase (10/11) SQL Server and

Sybase Adaptive Server Enterprise (ASE)
Sybase first began to design its relational database management

system in 1984. Sybase Adaptive Server Enterprise (i.e., the

product formerly known as the Sybase SQL Server) became the

leading RDBMS product for high performance transaction

processing supporting large numbers of client application

connections on relatively small, inexpensive hardware. To be

successful in this demanding area, Sybase focused heavily to

optimize and streamline all the layers of database engine for

transaction processing workloads. While this focus turned out to

be the asset that catapulted Sybase to a dominant position in

high end OLTP applications during the 1990's, it increasingly

became a liability in some environments as application

workloads have changed and hardware performance has

increased [12].

Sybase SQL Server is unique among the most popular

Relational Database Management System (RDBMS) products in

that it was planned and designed to operate a client-server

architecture. Sybase Inc., built SQL Server with the network in

mind. Each client process establishes a connection to SQL

Server over the network. Information is sent from client to

server and back again over the network, using standard

Application Programming Interfaces (APIs) [1].

The architecture of SYBASE SQL Server enables developers to

create robust, production-level client-server applications. A

basic understanding of the components of that architecture will

aid developers to create optimally performing applications.

Nowadays the Sybase Data Server is known as Adaptive Server

Enterprise or ASE (to distinguish it from other Sybase database

products like Sybase IQ). Previously it was known as Sybase

SQL Server. The basic unit of storage in ASE is data page. A

data page is the minimum amount of data transferred to and

from disk to the cache. The supported page sizes for ASE are

2K, 4K, 8K and 16K [6].

Version 15.5 of Sybase ASE provides in-memory database

(IMDB) capabilities designed to deliver low response time and

high throughput for mission-critical system. More specifically,

IMDB tends to deliver better performance for write-intensive

workloads [32].

1.2.1 Classification of DBMS Software Architecture

and Sybase Architecture
Single Process

A product is designed to use a single-process architecture single

thread requests through the DBMS. This can produce

bottlenecks in a multi-user environment. Single process

architectures are typical for single-user workstation DBMS

products.

Multi-Process

A product is designed to use a multi-process architecture creates

new processes to handle each new request. Quick exhaustion of

system resources (such as memory) can occur as more processes

are initiated. Many multi-user DBMS products are multi-process

architecture.

Single Process, Multi-thread Architecture (SYBASE)

Single Process, multi-thread architecture, employing multiple

threads within a single process to service multiple users. Only

one process will ever run on the server regardless of how many

clients are connected [1].

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

41

Figure - 1 SYBASE ASE Architecture

Sybase ASE runs as an application on top of an operating

system and depends solely on the services exported by the

operating system to function. It uses operating system services

for process creation and manipulation; device and file

processing; shared memory for interprocess communication.

ASE uses its own thread package for creating, managing, and

scheduling tasks inside Sybase ASE engines for running SQL

Queries and for System tasks like checkpoint, network handler,

house keeper etc. [29]. Figure – 1 illustrates the architecture of

the SYBASE ASE. We do not go in details on this issue here.

We refer to SYBASE manual.

1.2.2. Sybase ASE Overview
We discuss few about Sybase ASE overview [5]. For details

please refer to Sybase Manual.

1.2.2.1 The Sybase Server
A Sybase database server consists of A) two processes, data

server and backup server. Besides there are Monitor Server, XP

Server and Adaptive Server Utilities. Data Server or Adaptive

Server maintains overall operations of the system databases and

user databases. Backup Server is an open server-based

application that manages all databases backup (dump) and

restore (load) operations for Adaptive Server. Monitor Server is

an open server application that obtains performance statistics on

Adaptive Server makes those statistics available to monitors

Monitor Historical Servers and application build with Monitor

Client Library. XP Server is an open server application that

manages and executes extended stored procedures from within

Adaptive Server. B) devices which house the databases; one

database (master) contains system and configuration data. When

we install Sybase, default databases are [master (6MB), tempdb

(3 MB), sybsystemdb (2 MB), model (2 MB)], and

sybsystemprocs (120 MB). master database controls the

operation of Adaptive Server as whole and stores information

about all users, users databases, devices, objects, and system

table entries as we have discussed earlier too. The master

database is contained entirely on the master device and cannot

be expanded onto any other device. model database provides a

template for new user databases. The model database contains

required system tables, which are copied into a new user

database with the create database command. tempdb is a work

area for Adaptive Server, each time Adaptive Server is started,

the tempdb database is created and built from the model

database. sybsystempdb stores information about transaction in

progress, and which is also used during recovery.

sybsystemprocs database contains most of the Sybase-supplied

System Stored Procedures. System Procedures are collection of

SQL statements and flow-of-control statements that perform

system tasks. Optional databases are sybsecurity for the

auditing. The pubs2 and pubs3 databases are sample databases

provided as learning tool for Adaptive Server. sybsyntax

database contains syntax help for Transact-SQL commands,

Sybase system procedures, dbccdb database stores the result of

dbcc when dbcc checkstorage or dbcc check verifying are used,

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

42

interpubs database contains French and German data, inetpubs

contains Japanese data. Adaptive Server utilities and open client

routines. C) a configuration file which contains the server

attributes. We do not discuss in details about these here. Please

refer to Sybase Manual.

1.2.2.2. Memory Model
The Sybase memory model consists of A) the program area,

which is where the data server executable is stored; B) the data

cache, stores recently fetched pages from the database device;

C) the stored procedure cache, which contains optimized SQL

calls. The Sybase data server runs as a single process within the

operating system as we have discussed earlier; when multiple

users are connected to the database, only one process is

managed by the OS. Each Sybase database connection requires

40-60k of memory. The "total memory" configuration parameter

determines the amount of memory allocated to the server. This

memory is taken immediately upon startup, and does not

increase.

1.2.2.3. Transaction Processing
Transactions are written to the data cache, where they advance

to the transaction log, and database device. When a rollback

occurs, pages are discarded from the data cache. The transaction

logs are used to restore data in event of a hardware failure. A

checkpoint operation flushes all updated (committed) memory

pages to their respective tables. Transaction logging is required

for all databases; only image (blob) fields may be exempt.

During an update transaction, the data page(s) containing the

row(s) are locked. This will cause contention if the transaction is

not efficiently written. Record locking can be turned on in

certain cases, but this requires sizing the table structure with

respect to the page size.

The transaction logging subsystem is one of the most critical

components of a database server. To be able to accomplish the

goal of providing recoverability of databases, transactions write

log records to persistent storage. Since a number of such log

record writes is directly dependent on the number of executing

transactions, the logging system can potentially become a

bottleneck in high throughput OLTP environments. All the users

working on a particular database share the log; thus, to

guarantee high performance of the application, it is essential for

the DBA to monitor and configure the log to provide for best

throughput and response time of the application. Out-of-the-box,

Adaptive Server Enterprise (ASE) already provides a high

performance logging subsystem that scales to thousands of users

and very large database (VLDB) environments. ASE also

provides options for the DBA to customize the logging

subsystem to satisfy their unique environments for best

throughput and response times [14].

1.2.2.4. Backup Procedures
A "dump database" operation can be performed when the

database is on-line or offline. Subsequent "dump transaction"

commands need to be issued during the day, to ensure

acceptable recovery windows.

1.2.2.5. Recovery Procedures
A "load database" command loads the designated database with

the named dump file. Subsequent "load transaction" commands

can then be issued to load multiple transaction dump files.

1.2.2.6. Security and Account Setup
The initial login shipped with Sybase is "sa" (System

Administrator). This login has the role "sa_role" which is the

super-user, in Sybase terms. User logins are added at the server

level, and then granted access to each database, as needed.

Within each database, access to tables can be granted per

application requirements. A user can also be aliased as "dbo",

which automatically grants them all rights within a database.

1.2.2.7. Database Creation
User databases are initialized with the "create database"

command. In practical Sybase can maintain 100 different

databases in one box. Tables are created within each database;

users refer to tables by using

databasename.ownername.tablename. When we first create a

database, Adaptive Server creates three segments in the database

(System Segment, Log Segment and Default Segment). A

typical Sybase database will consist of six segments spread

across various devices (non-SAN environment). Maximum

database size may be 8 Tera Bytes. Maximum size of the

database devices may be 32 Giga Bytes. We can create

maximum number of database devices per server is 256. We can

create maximum number of segments per database is 31.

1.2.2.8. Data Types
Supported data types include integer, decimal, float, money,

char, varchar, datetime, image, and text data types.

1.2.2.9. Storage Concepts
Tables are stored in segments; a segment is an area within a

device, with a name and a size, that is allocated for a database.

The transaction log is stored in its own segment, usually on a

separate device.

1.2.2.10. Transact-SQL
SQL is a relational calculus, and when we submit SQL query it

is decomposed into a relational algebra. SQL includes

commands not only for querying (retrieving data from) a

database, but also for creating new databases and database

objects, adding new data, modifying existing data, and other

functions. Sybase provides Transact-SQL (T-SQL) is a robust

programming language in which stored procedures can be

written. The procedures are stored in a compiled format, which

allows for faster execution of code. Cursors are supported for

row by row processing. Temporary tables are supported, which

allows customized, private work tables to be created for

complex processes. Any number of result sets can be returned to

calling applications via SELECT statements.

2. PERFORMANCE TUNING SYBASE
Sybase Adaptive Server Enterprise and Sybase SQL Server

provide extensive performance and tuning features.

Performance and tuning is an art, not a science. As just

discussed, there are many environmental factors that can have an

impact on performance. There are many tuning strategies to

choose from, and scores of configuration parameters that can be

set. In the face of this complexity, all we can do is use our

training and experience to make informed judgments, about

which configurations might work, try each, then measure

performance and compare the results [9]. See details in [15, 16,

17, 18, 19].

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

43

Database server performance tuning means adjustment and

balancing the server. A systems administrator (SA) is

responsible, at the server level, for maintaining a secure and

stable operating environment; for forecasting capacity

requirements of the CPU; and for planning and executing future

expansion. Further, an SA is responsible for the overall

performance at the server level. Database administration is the

act of migrating a logical model into a physical design and

performing all tasks essential to consistent, secure, and prompt

database access. A Database Administrator (DBA) is responsible

for access, consistency, and performance within the scope of the

database. The Systems Administrator of a Sybase ASE (also

referred to as SA, Database Administrator, or sometimes DBA)

is responsible for all aspects of creating, maintaining, and

monitoring the server and database environment [4].

Performance of any Database Server is the measure of efficiency

of an application or multiple applications running in the same

environment. Performance is usually measured in response time

and throughput. After all, performance can be expressed in

simple and clear figures, such as "1 second response time", or

"100 transactions per second". Response time is the time that a

single task takes to complete. Throughput refers to the volume

of work completed in a fixed time period. Tuning is optimizing

performance. Sybase Adaptive Server and its environment and

applications can be broken into components, or tuning layers. In

many cases, two or more layers must be tuned so that they work

optimally together.

SQL Server performance issues includes configuration options,

database design, locking, query structure, stored procedure

usage, hardware and network issues, and remote processing

considerations. Anyone seeking to improve system performance

is eager to find the one magic parameter they can set to suddenly

improve performance by an order of magnitude. Unfortunately,

there are no magic bullets for SQL server. Rather, the

practitioner must follow some basic configuration guidelines

and tailor the environment to the application‘s needs and then

design the application carefully. SQL server can only be

expected to deliver proper performance if we design the

application with performance in mind from the outset. Over

80% of the things that an SQL server user can do to improve

performance relate to application and database design [3].

According to Sybase, 80% of Sybase database performance

problems can be solved by properly created index and carefully

design of SQL queries.

Performance is determined by all these factors:

1) The client application itself; How efficiently is it written? We

look at application tuning 2) The client-side library; What

facilities does it make available to the application? How easy are

they to use? 3) The network; How efficiently is it used by the

client/server connection? 4) The DBMS; How effectively can it

use the hardware? What facilities does it supply to help build

efficient fast applications? 5) The size of the database; How long

does it take to dump the database? How long to recreate it after a

media failure? [8].

We broadly classify the tuning layers in Sybase Adaptive Server

as follows [2]:

2.1. Tuning Layers in Sybase Adaptive

Server [2]

2.1.1. Application Layer
Most performance gains come from query tuning, based on good

database design. Most of this guide is devoted to an Adaptive

Server internals and query processing techniques and tools.

Most of our efforts in maintaining high Adaptive Server will

involve tuning the queries on our Server. Decision support

(DSS) and online transaction processing (OLTP) require

different performance strategies. Transaction design can reduce

concurrency, since long-running transaction hold locks, and

reduce the access of other users to data. Referential integrity

requires joins for data modification. Indexing to support selects

increases time to modify data. Auditing for security purposes

can limit performance. Issues at the Network Layers are using

remote or replicated processing to move decision support off the

OLTP machine, using stored procedures to reduce compilation

time and network usage and using minimum locking level that

meets our application needs.

2.1.2. Database Layer
Applications share resources at the database layer, including

disk, the transaction log, and data and procedure cache. Issues at

the database layer are developing a backup and recovery

scheme, distributing data across devices, auditing affect

performance; audit only what we need, schedule maintenance

activities that can slow performance and lock users out of table.

Options to address these issues include using transaction log

thresholds to automate log dumps and avoid running out of

space, using thresholds for space monitoring in data segments,

using partition to speed loading data, placing objects on devices

to avoid disk contention or to take advantage of I/O parallelism

and caching for high availability of critical tables and indexes.

2.1.3. Server Layer
At the server layer there are many shared resources, including

the data and procedure caches, locks, and CPUs. Issues at the

Adaptive Server layer are the application types to be supported:

OLTP, DSS, or a mix, the number of users to be supported can

affect tuning decisions – as the number of users increases,

contention for resource can shift, network loads, replication

server or other distributed processing can be option when the

number of users and transaction rate reach high level. Options to

address these issues include tuning memory and other

parameters, deciding on client vs. server processing – can some

processing take place at the client side?, configuring cache sizes

and I/O sizes, adding CPUs to match workload, Configuring the

housekeeper task to improve CPU utilization (following

multiprocessor application design guideline to reduce

contention) and configuring multiple data caches.

2.1.4. Device Layer
The disk and controllers that stores data.

2.1.5. Network Layer
The network or networks that connect users to Adaptive Server.

2.1.6. Hardware Layer
The CPU(s) available

2.1.7. Operating System Layer
Adaptive server a major application shares CPU, memory, and

other resources with the operating system, and other Sybase

software such as Backup Server and Monitor Server. At the

operating system layer, the major issues are the file system

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

44

available to Adaptive Server, Memory Management – accurately

estimating operating system overhead and other program use,

CPU availability, network interface, choosing between files and

raw partition, increasing the memory size, moving client

operations and batch processing to other machines and multiple

CPU utilization for Adaptive Server. Following two system

procedures are very useful for server monitoring and

performance tuning:

sp_sysmon a system procedure that monitors Adaptive Server

performance and provides statistical output describing the

behavior of our Adaptive Server system.

sp_monitor a system procedure displays statistics about

Adaptive Server.

2.2. Sybase ASE Configuration Issues
Sybase ASE has many configuration parameters that we can set

as per our requirements and to obtain better server performance.

That can be set by using system procedure sp_configure. We do

not discuss in details about this here.

2.3. How Memory Affects Performance
Having ample memory reduces disk I/O, which improves

performance, since memory access is much faster than disk

access. When a user issues a query, the data and index pages

must be in memory, or read into memory, in order to examine

the values on them. If the pages already reside in memory,

Adaptive Server does not need to perform disk I/O [10].

Adding more memory is cheap and easy, but developing around

memory problems is expensive. Give Adaptive Server as much

memory as possible. Memory conditions that can cause poor

performance are:

Total data cache size is too small. Procedure cache size is too

small. Only the default cache is configured on an SMP system

with several active CPUs, leading to contention for the data

cache. User-configured data cache sizes are not appropriate for

specific user applications. Configured I/O sizes are not

appropriate for specific queries. Audit queue size is not

appropriate if auditing feature is installed [27].

2.4. How Much Memory to Configure
Memory is the most important consideration when we are

configuring Adaptive Server. Memory is consumed by various

configuration parameters, procedure cache and data caches.

Setting the values of the various configuration parameters and

the caches correctly is critical to good system performance.

Ttotal memory allocated during boot-time is the sum of memory

required for all the configuration needs of Adaptive Server. This

value can be obtained from the read-only configuration

parameter 'total logical memory'. This value is calculated by

Adaptive Server. The configuration parameter 'max memory'

must be greater than or equal to 'total logical memory'. 'max

memory' indicates the amount of memory we will allow for

Adaptive Server needs.

During boot-time, by default, Adaptive Server allocates memory

based on the value of 'total logical memory'. However, if the

configuration parameter 'allocate max shared memory' has been

set, then the memory allocated will be based on the value of

'max memory'. The configuration parameter 'allocate max shared

memory' will enable a system administrator to allocate, the

maximum memory that is allowed to be used by Adaptive

Server, during boot-time.

The key points for memory configuration are:

1) The system administrator should determine the size of shared

memory available to Adaptive Server and set 'max memory' to

this value. 2) The configuration parameter 'allocate max shared

memory' can be turned on during boot-time and run-time to

allocate all the shared memory up to 'max memory' with the

least number of shared memory segments. Large number of

shared memory segments has the disadvantage of some

performance degradation on certain platforms. Please check our

operating system documentation to determine the optimal

number of shared memory segments. Note that once a shared

memory segment is allocated, it cannot be released until the next

server reboot. 3) Configure the different configuration

parameters, if the defaults are not sufficient. 4) Now the

difference between 'max memory' and 'total logical memory' is

additional memory available for procedure, data caches or for

other configuration parameters.

The amount of memory to be allocated by Adaptive Server

during boot-time, is determined by either 'total logical memory'

or 'max memory'. If this value too high:

1) Adaptive Server may not start, if the physical resources on

our machine does is not sufficient. 2) If it does start, the

operating system page fault rates may rise significantly and the

operating system may need to re configured to compensate.

The System Administration Guide provides a thorough

discussion of:

1) How to configure the total amount of memory used by

Adaptive Server, 2) Configurable parameters that use memory,

which affects the amount of memory left for processing queries,

3) Handling wider character literals requires Adaptive Server to

allocate memory for string user data. Also, rather than statically

allocating buffers of the maximum possible size, Adaptive

Server allocates memory dynamically. That is, it allocates

memory for local buffers as it needs it, always allocating the

maximum size for these buffers, even if large buffers are

unnecessary. These memory management requests may cause

Adaptive Server to have a marginal loss in performance when

handling wide-character data, 4) If we require Adaptive Server

to handle more than 1000 columns from a single table, or

process over 10000 arguments to stored procedures, the server

must set up and allocate memory for various internal data

structures for these objects. An increase in the number of small

tasks that are performed repeatedly may cause performance

degradation for queries that deal with larger numbers of such

items. This performance hit increases as the number of columns

and stored procedure arguments increases, 5) Memory that is

allocated dynamically (as opposed to rebooting Adaptive Server

to allocate the memory) slightly degrades the server‘s

performance 6) When Adaptive Server uses larger logical page

sizes, all disk I/Os are done in terms of the larger logical page

sizes. For example, if Adaptive Server uses an 8K logical page

size, it retrieves data from the disk in 8K blocks. This should

result in an increased I/O throughput, although the amount of

throughput is eventually limited by the controller‘s I/O

bandwidth.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

45

What remains after all other memory needs have been met is

available for the procedure cache and the data cache. Figure-2

shows how memory is divided [27].

Figure-2 How Adaptive Server uses memory

2.5. Server Performance Gains Through

Query Optimization [27,28]
It is very important in this paper to discuss well about table,

index and page as these are very important for better Server

Performance Tuning and Query Optimization.

The Adaptive Server optimizer attempts to find the most

efficient access path to our data for each table in the query, by

estimating the cost of the physical I/O needed to access the data,

and the number of times each page needs to be read while in the

data cache.

In most database applications, there are many tables in the

database, and each table has one or more indexes. Depending on

whether we have created indexes, and what kind of indexes we

have created, the optimizer‘s access method options include:

A table scan – reading all the table‘s data pages, sometimes

hundreds or thousands of pages. Index access – using the index

to find only the data pages needed, sometimes as few as three or

four page reads in all. Index covering – using only a non

clustered index to return data, without reading the actual data

rows, requiring only a fraction of the page reads required for a

table scan.

Having the proper set of indexes on our tables should allow

most of our queries to access the data they need with a minimum

number of page reads.

2.5.1. Query Processing and Page Reads
Most of a query‘s execution time is spent reading data pages

from disk. Therefore, most of our performance improvement —

more than 80%, according to many performance and tuning

experts — comes from reducing the number of disk reads

needed for each query.

2.5.2. Adaptive Server pages
The basic unit of storage for Adaptive Server is a page. Page

sizes can be 2K, 4K, 8K to 16K. The server‘s page size is

established when we first build the source. Once the server is

built the value cannot be changed. These types of pages store

database objects:

Data pages – store the data rows for a table, Index pages – store

the index rows for all levels of an index and Large object (LOB)

pages – store the data for text and image columns, and for Java

off-row columns.

2.5.3. Extents
Adaptive Server pages are always allocated to a table, index, or

LOB structure. A block of 8 pages is called an extent. The size

of an extent depends on the page size the server uses. The extent

size on a 2K server is 16K where on an 8K it is 64K, etc. The

smallest amount of space that a table or index can occupy is 1

extent, or 8 pages. Extents are deallocated only when all the

pages in an extent are empty.

The use of extents in Adaptive Server is transparent to the user

except when examining reports on space usage.

2.5.4. Allocation Pages
When we create a database or add space to a database, the space

is divided into allocation units of 256 data pages. The first page

in each allocation unit is the allocation page. Page 0 and all

pages that are multiples of 256 are allocation pages.

The allocation page tracks space in each extent on the allocation

unit by recording the object ID and index ID for the object that

is stored on the extent, and the number of used and free pages.

The allocation page also stores the page ID for the table or

index‘s OAM page.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

46

2.5.5. Object Allocation Map Pages
Each table, index, and text chain has one or more Object

Allocation Map (OAM) pages stored on pages allocated to the

table or index. If a table has more than one OAM page, the

pages are linked in a chain. OAM pages store pointers to the

allocation units that contain pages for the object.

The first page in the chain stores allocation hints, indicating

which OAM page in the chain has information about allocation

units with free space. This provides a fast way to allocate

additional space for an object and to keep the new space close to

pages already used by the object.

2.5.6. How Indexes Work
We discuss here Adaptive Server stores indexes and how it uses

indexes to speed data retrieval for select, update, delete, and

insert operations.

Indexes are the most important physical design element in

improving database performance and mainly are 1) Indexes help

prevent table scans. Instead of reading hundreds of data pages, a

few index pages and data pages can satisfy many queries, 2) For

some queries, data can be retrieved from a nonclustered index

without ever accessing the data rows, 3) Clustered indexes can

randomize data inserts, avoiding insert ―hot spots‖ on the last

page of a table and 4) Indexes can help avoid sorts, if the index

order matches the order of columns in an order by clause.

In addition to their performance benefits, indexes can enforce

the uniqueness of data.

Indexes are database objects that can be created for a table to

speed direct access to specific data rows. Indexes store the

values of the key(s) that were named when the index was

created, and logical pointers to the data pages or to other index

pages.

Although indexes speed data retrieval, they can slow down data

modifications, since most changes to the data also require

updating the indexes. Optimal indexing demands are 1) An

understanding of the behavior of queries that access unindexed

heap tables, tables with clustered indexes, and tables with

nonclustered indexes, 2) An understanding of the mix of queries

that run on our server and 3) An understanding of the Adaptive

Server optimizer.

2.5.7. How Indexes Affect Performance
Carefully considered indexes, built on top of a good database

design, are the foundation of a high-performance Adaptive

Server installation. However, adding indexes without proper

analysis can reduce the overall performance of our system.

Insert, update, and delete operations can take longer when a

large number of indexes need to be updated.

Analyze our application workload and create indexes as

necessary to improve the performance of the most critical

processes.

The Adaptive Server query optimizer uses a probabilistic costing

model. It analyzes the costs of possible query plans and chooses

the plan that has the lowest estimated cost. Since much of the

cost of executing a query consists of disk I/O, creating the

correct indexes for our applications means that the optimizer can

use indexes to 1) Avoid table scans when accessing data, 2)

Target specific data pages that contain specific values in a point

query, 3) Establish upper and lower bounds for reading data in a

range query, 4) Avoid data page access completely, when an

index covers a query and 5) Use ordered data to avoid sorts or to

favor merge joins over nested-loop joins.

In addition, we can create indexes to enforce the uniqueness of

data and to randomize the storage location of inserts.

2.5.8. Types of Indexes
Adaptive Server provides two types of indexes; 1) Clustered

indexes, where the table data is physically stored in the order of

the keys on the index such as for allpages-locked tables, rows

are stored in key order on pages, and pages are linked in key

order and for data-only-locked tables, indexes are used to direct

the storage of data on rows and pages, but strict key ordering is

not maintained and 2) Nonclustered indexes, where the storage

order of data in the table is not related to index keys.

We can create only one clustered index on a table because there

is only one possible physical ordering of the data rows. We can

create up to 249 nonclustered indexes per table.

A table that has no clustered index is called a heap. The rows in

the table are in no particular order, and all new rows are added

to the end of the table.

2.5.9. Index Pages
Index entries are stored as rows on index pages in a format

similar to the format used for data rows on data pages. Index

entries store the key values and pointers to lower levels of the

index, to the data pages, or to individual data rows.

Adaptive Server uses B-tree indexing, so each node in the index

structure can have multiple children.

Index entries are usually much smaller than a data row in a data

page, and index pages are much more densely populated than

data pages. If a data row has 200 bytes (including row

overhead), there are 10 rows per page.

An index on a 15-byte field has about 100 rows per index page

(the pointers require 4–9 bytes per row, depending on the type of

index and the index level).

Indexes can have multiple levels 1) Root level, 2) Leaf level and

3) Intermediate level.

Root level: The root level is the highest level of the index. There

is only one root page. If an allpages-locked table is very small,

so that the entire index fits on a single page, there are no

intermediate or leaf levels, and the root page stores pointers to

the data pages. Data-only-locked tables always have a leaf level

between the root page and the data pages. For larger tables, the

root page stores pointers to the intermediate level index pages or

to leaf-level pages.

Leaf level: The lowest level of the index is the leaf level. At the

leaf level, the index contains a key value for each row in the

table, and the rows are stored in sorted order by the index key.

For clustered indexes on allpages-locked tables, the leaf level is

the data. No other level of the index contains one index row for

each data row. For nonclustered indexes and clustered indexes

on data-only-locked tables, the leaf level contains the index key

value for each row, a pointer to the page where the row is stored,

and a pointer to the rows on the data page. The leaf level is the

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

47

level just above the data; it contains one index row for each data

row. Index rows on the index page are stored in key value order.

Intermediate level: All levels between the root and leaf levels

are intermediate levels. An index on a large table or an index

using long keys may have many intermediate levels. A very

small allpages-locked table may not have an intermediate level

at all; the root pages point directly to the leaf level.

Please see manual in details about Clustered indexes and select

operations, Clustered indexes and insert operations, Clustered

indexes and delete operations, Nonclustered indexes and select

operations, Nonclustered indexes and insert operations,

Nonclustered indexes and delete operations.

2.5.10. New Optimization Techniques and Query

Execution Operator Supports in ASE
The query optimizer provides speed and efficiency for online

transaction processing (OLTP) and operational decision-support

systems (DSS) environments. We can choose an optimization

strategy that best suits our query environment. Query optimizer

uses a number of algorithms and formulas. The information

needed by the optimizer is supplied by the statistics.

The query optimizer is self-tuning, and requires fewer

interventions than versions of Adaptive Server Enterprise earlier

than 15.0. It relies infrequently on worktables for materialization

between steps of operations; however, the query optimizer may

use more worktables when it determines that hash and merge

operations are more effective.

Some of the key features in the release 15.0 query optimizer

include support for 1) New optimization techniques and query

execution operator supports that enhance query performance,

such as a) On-the-fly grouping and ordering operator support

using in-memory sorting and hashing for queries with group by

and order by clauses b) hash and merge join operator support for

efficient join operations and c) index union and index

intersection strategies for queries with predicates on different

indexes, 2) Improved index selection, especially for joins with

or clauses, and joins with and search arguments (SARGs) with

mismatched but compatible datatypes, 3) Improved costing that

employs join histograms to prevent inaccuracies that might

otherwise arise due to data skews in joining columns, 4) New

cost-based pruning and timeout mechanisms in join ordering and

plan strategies for large, multiway joins, and for star and

snowflake schema joins, 5) New optimization techniques to

support data and index partitioning (building blocks for

parallelism) that are especially beneficial for very large data

sets, 6) Improved query optimization techniques for vertical and

horizontal parallelism and 7) Improved problem diagnosis and

resolution through a) Searchable XML format trace outputs, b)

Detailed diagnostic output from new set commands.

List of optimization techniques and operator support provided in

Adaptive Server Enterprise are hash join, hash union distinct,

merge join, merge union all, merge union distinct, nested-loop-

join, append union all, distinct hashing, distinct sorted, group-

sorted, distinct sorting, group hashing, multi table store ind,

opportunistic distinct view, index intersection. Please see

manuals for these techniques and operators in details. Please see

details work on join in [30].

3. QUERY PROCESSING AND

OPTIMIZATION OF QUERY

PROCESSING

3.1. Query Processing and Optimization
In modern database systems queries are expressed in a

declarative query language such as SQL or OQL. The users need

only specify what data they want from the database, not how to

get the data. It is a task of database management system

(DBMS) to determine an efficient strategy for evaluating a

query. Such a strategy is called an execution plan. A substantial

part of the DBMS constitutes the query optimizer which is

responsible for determining an optimal execution plan. Query

optimization is a difficult task since there usually exist a large

number of possible execution plans with highly varying

evaluation costs [24].

We can say Query Plan is the set of instructions describing how

the query will be executed. This is the optimizer‘s final decision

on how to access the data. Costing is the process the optimizer

goes through to estimate the cost of each query plan it examines.

Optimizer uses two phases to find the cheapest query plan and

are 1) Index selection phase and 2) Search engine phase. Please

see details in [31].

The core of query optimization is algebraic query optimization.

Queries are first translated into expression over some algebra.

These algebraic expressions serve as starting point for algebraic

optimization. Algebraic optimization uses algebraic rewrite rules

(or algebraic equivalences) to improve a given expression with

respect to all equivalent expressions (expressions that can be

obtained by successive applications of rewrite rules). Algebraic

optimization can be heuristic or cost-based. In heuristic

optimization a rule improves the expression most of the time

(but not always). Cost-based optimization however uses a cost

function to guide the optimization process. ASE uses cost-based

optimization. Among all equivalent expression an expression

with minimum cost is computed. The cost function constitutes a

critical part of a query optimizer. It estimates the amount of

resources needed to evaluate a query. Typically resources are

CPU time, the number of I/O operations, or the number of pages

used for temporary storage (buffer/disk page).

Without optimization, some queries might have excessively high

processing cost.

We can also say query processing is a process of transforming a

high level and non procedure query/language such as SQL into a

plan (procedural specification) that executes and retrieve data

from the database. It involves four phases which are query

decomposition (scanning, parsing and validating), query

optimization, code generation and run time query execution

[22,25,26,36]. The scanner identifies the language token- such

as SQL keywords, attribute names and relation names – in the

text of the query, whereas parser checks the query syntax to

determine whether it is formulated according to the syntax rules

(rules of grammar) of the query language. The query must also

be validated, by checking that all attributes and relation names

are valid and semantically meaningful names in the schema of

the particular database being queried. We do not discuss in

details here in this paper. Figure 3 shows the query processing

strategy.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

48

We can also say query optimization is the process of choosing

the efficient execution strategy for execution a query. In

systematic query optimization, the system estimates the cost of

every plan and then chooses the best one. The best cost plan is

not always universal since it depends on the constraints put on

data. The cost considered in systematic query optimization

includes access cost to secondary storage, storage cost,

computation cost for intermediate relations and communication

cost.

In ASE 15 the query processing engine has been enhanced to

include very efficient techniques. ASE 15 incorporates into

optimizer component of the query processing engine proven and

well tested ‗start-of-the-art‘ technology. ASE 15 performs very

well out of the box by automatically analyzing and selecting

high performance query plan using much wider array of options

and methods than were available in earlier versions [20].

Optimization Goals are provided in ASE 15 in order to allow

query optimization behavior to fit the needs of our application.

The optimization goals are groupings of pre-set optimization

criteria that in combination affect the overall behavior of the

optimizer component of the query processing engine. Each of

the goals is designed to direct the optimizer to use features and

functionality that will allow it to find the most efficient query

plan.

There are three optimization goals that can be set. The first is

designed to allow the query processing engine to use all the

techniques available, including the new features and

functionality to find and execute the most efficient query plans.

This goal optimizes the complete result set and balances the

needs of both OLTP and DSS style queries; it is on by default.

The second optimizer goal will allow the query processing

engine to use those techniques most suitable to finding the most

efficient query plan for purely OLTP query.

The third optimization goal is designed to generate query plans

that will return the first few rows of the result set as quickly as

possible. This goal is very efficient in cursor-based and web-

based applications.

These optimization goals are designed to be set at the server-

wide level. However, they can also set at the session or query

level for testing purposes. Once set there should be no further

need to tune the query processing engine‘s behavior for the

environment we have chosen.

To start with query processing and optimization, first we

execute:

set showplan on

go

set statistics io on

go

then we run our query. We check if the query plan chooses the

indexes we expected. We check the logical I/Os for each table

and look for unexpected (i.e. high) values.

Steps to tune our query involved our database is normalized, our

SQL code is reasonably well designed, the ASE resources have

been allocated appropriately for (a) the system and (b) our

database, the indices on the table(s) in the query are correct and

the table(s) in each query are implemented correctly (physical

attributes).

SET FORCEPLAN ON instructs the Optimizer to use the order

we have listed in the FROM clause.

SET STATISTICS IO ON, SET STATISTICS TIME ON is

important when tuning.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

49

Figure 3 Query Processing and Optimization

3.2. Abstract Query Plans (APs)
ASE introduces a new and powerful feature, Abstract Query

Plans (APs) [11]. This is a very large feature which cannot be

fully covered here. Please also see [12,13,23]. APs are persistent

human-readable and editable copy of the query plan created by

the optimizer. APs can be captured when a query is run. Once

captured, they can then be associated to their originating query

and used to execute that query whenever it is run again. This

features allow us to run a query, capture and save the query plan

created by the query optimizer and then reuse it whenever the

same query is run again. We can edit an Abstract Plan, thus

telling the optimizer exactly what to do, or simply use it as is.

This is a very powerful and flexible feature.

We can say abstract plan is a description of a query plan which

is kept in persistent storage, can be read and edited, and is

associated with a specific query. When executing that query, the

optimizer‘s plan will be based on the information in the abstract

plan. We cannot generate abstract plans on pre ASE 12.0 server.

We turn on the AP capture mode and run the slow-performing

query(s) to capture APs. Then we examine the AP to identify

any possible problem. We edit the plan, creating a partial or full

AP to resolve the issue. We make sure the AP is used whenever

we run the query.

Before we go into APs in detail, let‘s back up a bit and define

query plans and their role in executing a query. The optimizer‘s

job is to determine the most efficient way (method) to access the

data and pass this information on for execution of the query. The

query plan is the information on how to execute the query,

which is produced by the optimizer. Basically, the query plan

contains a series of specific instructions on how to most

efficiently retrieve the required data. Prior to ASE 12.0, the only

option has been to view it via showplan or dbcc traceon 310

output (as FINAL PLAN). In most cases, changes to the

optimizer‘s cost model result in more efficient query plans. In

some cases, of course, there will be no change; and in some

there may be performance regression. APs can be captured

before applying the upgrade, and then, once the upgrade has

been completed, queries can be rerun to see if there is any

negative change in performance. If a performance regression is

identified after the upgrade, the AP from previous version can

then be used in the newer version to run the query and we can

contact Sybase regarding the problem. In the case of possible

optimization bug, we may write an AP to workaround the

problem while Sybase investigates it.

Once execution is complete, the query plan is gone. In ASE

12.0, however, APs make each query plan fully available to us.

They can be captured, associated to their original query, and

reused over and over, bypassing the optimizer fully or partially.

They can even be edited and included in a query using the new

T-SQL PLAN statement as we have stated earlier. Abstract

Query Plan was first introduced in ASE 12.0 version.

When ASE creates an AP, it contains all the access methods

specified by the optimizer such as how to read the table (table or

index scan), which index to use if an index scan is specified,

which join type to use if a join is performed, what degree of

parallelism, what I/O size, and whether the LRU or MRU

strategy is to be utilized.

Let‘s take a quick look at a couple of simple APs.

select * from t1 where c=0

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

50

The simple search argument query above generates the AP

below:

(i_scan c_index t1)

(prop t1 (parallel 1)(prefetch 16)(lru))

This AP says access table t1 is using index c_index. It also says

that table t1 will be accessed using no parallelism, 16K I/O

prefetch, and the LRU strategy.

select * from t1, t2

where t1.c = t2.c and t1.c = 0

The simple join above results in the AP below:

(nl_g_join t1.c = t2.c and t1.c = 0 (i_scan i1 t1) (i_scan i2 t2)

(prop t1 (parallel 1)(prefetch 2)(lru)

(prop t2 (parallel 1)(prefetch 16)(lru))

This AP says to perform a nested loop join, using table t1 as the

outer table, and to access it using an index i1. Use table t2 as the

inner table; access it using index i2. For both tables, use no

parallelism and use the LRU strategy. For table t1, use 2K

prefetch and for table t2, use 16K prefetch. As we can see, with

a little practice APs are easy to read and understand.

APs are captured when we turn on the capture mode.

set plan dump on

ASE configuration value:

sp_configure "abstract plan dump", 1

The optimizer will optimize the query as usual, but it will also

save a copy of its chosen query plan in the form of an AP. Keep

in mind that if we are capturing an AP for a compiled object,

such as stored procedure, we will need to ensure that it is

recompiled. We can do this by executing it with recompile or by

dropping and recreating it and then executing again.

As APs are captured, they are written to the new system table

sysqueryplans and placed in a capture group.

When an AP is captured, it is stored along with a unique AP ID

number, a hash key value, the query text (trimmed to remove

white space), the user‘s ID, and the ID of the current AP group.

The hash key is a computed number used later to aid when

associating the query to an AP, created using the trimmed query

text. In general, there are atleast one million possible hash key

values for every AP, thus making conflicts unlikely.

APs can also be created manually without conflict by using the

new create plan T-SQL statement, writing the AP text along

with the SQL statement. When we save an AP using the create

plan command, the query will not be executed. It‘s advisable to

run the query as soon as possible using the AP to ensure that it

performs the way we expect it to. Let‘s take a look:

create plan

select c1, c2 from tableA

where c1 = 10

and c2 > 100

"(i_scan tableA_index tableA)"

The AP in this example will access tableA using index

tableA_index.

There are many more related to APs, please see the Sybase

manual.

3.3. Optimization of Query Processing
Query optimization is the process of analyzing a query to

determine what resources it requires and how the execute the

query with the least possible query cost. To understand the

optimization a query, we need to understand how the query

accesses database objects, the sizes of the objects, and the

indexes on the tables in order to determine whether it is possible

to improve the query‘s performance [2]. Please also see [12].

Symptoms of optimization problems are a query runs more

slowly than we expect, based on indexes and table size, a query

runs more slowly than similar query, a query suddenly starts

running more slowly than usual, a query processed within a

stored procedure takes longer than when it is processed as an

adhoc statement and the query plan shows the use of a table scan

when we expect it to use an index.

Source of optimization problems are statistics have not been

updated recently so the actual data distribution does not match

the values used by Adaptive Server to optimize queries, the rows

to be referenced by a given transaction do not fit the pattern

reflected by the index statistics, an index is being used to access

a large portion of the table, where clauses are written in

unoptimizable form, no appropriate index exists for a critical

query and a stored procedure was compiled before significant

changes to the underlying tables were performed.

ASE 15 introduces completely new Optimizer and Query

Processing engines, incorporating many fundamental changes.

With these improvements comes the requirement that we give

the optimizer as much accurate information about our data and

databases as we possibly can. All that the optimizer needs to

know is found in the ‗statistics‘. ASE 15‘s optimizer

incorporates state of the art technology. A great deal of highly

skilled and dedicated work went into the huge project of

redesigning and rewriting it. It will produce amazing

performance levels as long as it gets the most accurate

information about our data as possible. The statistics contain

everything the optimizer needs to do its job quickly and

efficiently [7].

Before we continue let‘s quickly review exactly what statistics

are available to the optimizer. There are two types of statistics –

column level and object level. The column level statistics

describe the distribution of values in the column; they consist of

the column‘s histogram and density values and are updated

when an index is created or an ‗update statistics‘ command is

run. The object level statistics describe a table and its indexes

and include values such as number of rows and pages in the

table and/or index (es), the number of empty pages, and the

cluster ratios among others. Some of the object level statistics

are updated automatically by ASE, others when ‗update

statistics‘ is run.

3.3.1. Factors analyzed in optimizing queries
Query plans consist of retrieval tactics and an ordered set of

execution steps, which retrieve the data needed by the query. In

developing query plans, the query optimizer examines:

1) The size of each table in the query, both in rows and data

pages, and the number of OAM and allocation pages to be read,

2) The indexes that exist on the tables and columns used in the

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

51

query, the type of index, and the height, number of leaf pages,

and cluster ratios for each index, 3) The index coverage of the

query; that is, whether the query can be satisfied by retrieving

data from the index leaf pages without accessing the data pages.

Adaptive Server can use indexes that cover queries, even if no

where clauses are included in the query, 4) The density and

distribution of keys in the indexes, 5) The size of the available

data cache or caches, the size of I/O supported by the caches,

and the cache strategy to be used, 6) The cost of physical and

logical reads; that is, reads of physical I/O pages from the disk,

and of logical I/O reads from main memory, 7) join clauses,

with the best join order and join type, considering the costs and

number of scans required for each join and the usefulness of

indexes in limiting the I/O, 8) Whether building a worktable (an

internal, temporary table) with an index on the join columns is

faster than repeated table scans if there are no useful indexes for

the inner table in a join, 9) Whether the query contains a max or

min aggregate that can use an index to find the value without

scanning the table and, 10) Whether data or index pages must be

used repeatedly, to satisfy a query such as a join, or whether a

fetch-and-discard strategy should be employed to avoid flushing

of the buffer cache of useful pages of other tables, since the

pages of this table need to be scanned only once.

For each plan, the query optimizer determines the total cost by

computing the costs of logical and physical I/Os, and CPU

processing. If there are proxy tables, additional network related

costs are evaluated as well. The query optimizer then selects the

cheapest plan.

Statements in a stored procedure or trigger are optimized when

the respective statements are first executed, and the query plan is

stored in the procedure cache. If a respective statement is not

executed, then it will not be optimized until a later execution of

the stored procedure in which the statement is executed. If other

users execute the same procedure while an unused instance of a

stored procedure resides in the cache, then that instance is used,

and previous executed statements in that stored procedure are

not recompiled [35].

3.3.2. Why Creating and Maintaining Accurate

Statistics is Important to ASE 15
The optimizer has always been dependant on the statistics

because it is ‗cost based‘. That is, it makes its decisions about

which query plan to use based on the estimated resource costs of

executing it. Without them it‘s flying blind and can only guess at

which is the most efficient query plan.

In fact, the statistics have become even more critical to good

performance. Why is this? Because many of the optimizer‘s new

features and functionality can be very I/O intensive, especially if

an inefficient query plan is used. Some of the new features and

functionality include new methods for handling groupings,

unions and all query level sorting operations.

New and improved join processing that is sensitive to the

accuracy of the statistics has also been added. Hash joins are

new to ASE and Sort-Merge joins have been improved and are

turned on by default in ASE 15 [28]. If there are no useful

indexes or if the statistics tell the optimizer that an index would

not be efficient to use, then a worktable has to be created for the

join. Joining values are moved into the worktable where they are

sorted into the order required by the join and then merged with

rows from the other joining table. All this, especially the sorting

of the values in the worktable requires a great deal of I/O. Since

both of these join methods can include sorting steps it is

imperative that efficient query plans are chosen by the

optimizer. The bottom-line is that large, unnecessary sorts are

the bane of good query performance. It can‘t be over

emphasized how important it is to keep accurate statistics

available for the optimizer to take advantage of when estimating

the costs of joins. Even though ASE 15 is designed to avoid

worktables that were often used in earlier versions, inaccurate

statistics can lead to query plans that revert to using them.

One new piece of functionality added to ASE 15 in order to deal

directly with a long-standing join performance issue is Join

Histograms.

3.3.3. Join Histograms
The Problem - Prior to ASE 15 the optimizer could only use a

column‘s density value, if it was available, to estimate the cost

of joining one column to another. The density value is a

‗weighted average‘ of the distribution of values in the column. If

there was no density value, the optimizer used a preset

selectivity value, a sort of ‗magic number‘ that was based on the

join operator. Since the most common join is an equi-join, the

‗magic number‘ used was 0.10 (the optimizer believed that 10%

of the rows in the column qualified for the join). As we might

imagine most joins don‘t qualify exactly 10% of either column.

When the column contained a fairly even distribution of values,

the density value was accurate. However, when the column

contained any degree of data skew (many values occupying a

small number of rows each and a few values occupying many

rows each) the density value was not accurate. When the

optimizer used a density value of a skewed column it would lead

the optimizer to believe that a join of the skewed table would be

more efficient than it actually was. This in turn resulted in some

very poorly performing joins.

The ASE 15 Solution - The join histograms of ASE 15 always

give the optimizer an accurate view of the table. For example if

the where clause of a join statement disqualifies a highly

duplicated value it is not included in the join histogram; why

estimate the cost of retrieving the skewed values if they aren‘t

needed for the join? How do join histograms work? Very simply

– If there are statistics on a column that is being joined and there

is a search argument (SARG) in the query then a histogram will

be built on the fly containing only the values that the SARG has

qualified.

A quick example: customerID table contains 100 distinct

customer ids, orderID table contains all the orders placed by the

100 customers, 100K rows. Let‘s say that of the 100 customers 3

have placed 50% of all the orders and of the 3 all have placed

close to the same number of orders; the orderID table will

contain data skew while the customerID table will be evenly

distributed.

In pre-ASE 15, the density value would be larger due to the

highly duplicated values for the three big customers. There is a

good chance that the optimizer would estimate that an index on

the custID column in the orders table would be expensive to use

and call for a table scan. In fact, the index would be very

selective for the query. In ASE 15, the join histogram would not

include the highly duplicated values thus accurately making the

index access look cheaper than a table scan.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

52

Of course, for join histograms to be accurate and useful,

accurate statistics need to be in place for the joining columns.

Here‘s another situation that missing or inaccurate statistics can

cause – The optimizer having to examine more query plans than

is necessary [13].

3.3.4. Timeout
The Problem – In ASE 15 the new functionality in the optimizer

can lead to the optimizer having MANY more query plans to

examine than in earlier versions. Add to this the large and

complex queries common today and the optimizer is working

much harder than ever before. The more query plans to estimate

costs for, the more time it takes to find the best plan to execute.

In fact, there is a possibility that the optimizer can take more

time optimizing the query than it takes to actually execute it and

return the results.

The ASE 15 Solution - It is for this reason that ‗timeout‘ was

included in the ASE 15 optimizer. Put simply, once the

optimizer has reached the timeout limit it will choose the

cheapest (most efficient) query plan it has examined up to that

point. This plan will be used to execute the query whether it‘s

the best or not. Accurate statistics can result in the optimizer

having to examine far fewer query plans and finding the most

efficient plan before the timeout limit is reached. This in turn

will result in less procedure cache usage for the optimizer‘s

search. When there are no statistics or the statistics are

inaccurate the optimizer can overestimate the cost of what is

actually the best query plan and go on to examine many more

[13].

3.3.5. How to Create and Maintain Accurate

Statistics
Statistics are kept up to date by regularly running the update

statistics command, or by dropping and recreating indexes,

which can be very time and resource consuming. In the past,

there were a number of ‗rules of thumb‘ floating around among

DBAs about when to update statistics. Some of the more popular

were 1) when 5-10% of the data has changed, 2) once a week, 3)

every day, 4) only when queries start performing badly, 4) only

when we have time to do it and 5) We never run update

statistics, etc.

The honest answer to the question was, is, and will always be -

It all depends on our data and our queries [13].

3.4.6. Locking and Concurrency
The Optimizer decides on Lock Type and Granularity. Decisions

on lock type (share, exclusive, or update) and granularity (page

or table) are made during optimization so make sure our updates

and deletes don't scan the table. Exclusive Locks are only

released upon Commit or Rollback. Lock Contention can have a

large impact on both throughput and response time if not

considered both in the application and database design. Keep

transactions as small and short as possible to minimize blocking.

Consider alternatives to "mass" updates and deletes such as a

v10.0 cursor in a stored procedure which frequently commits.

Never include any "user interaction" in the middle of

transactions. Shared Locks generally released after page is read.

Share locks "roll" through result set for concurrency. Only

"HOLDLOCK" or "Isolation Level 3" retains share locks until

commit or rollback. Remember also that HOLDLOCK is for

read-consistency. It doesn't block other readers. Use optimistic

locking techniques such as timestamps and the tsequal() function

to check for updates to a row since it was read (rather than

holdlock)[8].

3.4.7. Tuning Transact-SQL Queries
Poor Performance SQL problem can occur at any stage of the

development lifecycle, but catching them early is always much

less expensive that letting them reach a production environment.

Often times, the main bottleneck is a SQL statement taking up

too many resources then we examine the following 1) Are the

table and index statistics up to date? 2) Are there any missing

indexes? 3) Do any of the columns need extended histogram or

frequency statistics? 4) Are all the unique and not-null

constraints correctly defined on the columns and tables? 5) Is the

database choosing the right access path? [21].

One of the largest factors determining performance is TSQL.

Test not only for efficient plans but also semantic correctness.

3.4.8. Normalized -vs- Denormalized
Always start with a completely normalized database.

Denormalization should be an optimization taken as a result of a

performance problem. Benefits of a normalized database

include; reduce data redundancy, accelerates searching, sorting,

and index creation since tables are narrower, allows more

clustered indexes and hence more flexibility in tuning queries,

since there are more tables, accelerates index searching since

indexes tend to be narrower and perhaps shorter, allows better

use of segments to control physical placement of tables, fewer

indexes per table, helping UPDATE, INSERT, and DELETE

performance, fewer NULLs and less redundant data, increasing

compactness of the database, accelerates trigger execution by

minimizing the extra integrity work of maintaining redundant

data, joins are generally very fast provided proper indexes are

available, cost of a logical I/O (get page from cache) only 1-2

milliseconds. We can say benefits of normalization mainly are

1) More rows per page (less logical I/O), 2) More rows per I/O

(more efficient), and 3) More rows fit in cache (less physical I/).

There are some good reasons to denormalize; all queries require

access to the "full" set of joined data, majority of applications

scan entire tables doing joins, computational complexity of

derived columns require storage for SELECTs [8]. We have also

discussed well in section 4.13. For details please see [15].

3.4.9. Index Selection
Without a clustered index, all INSERTs and "out-of-place"

UPDATEs go to the last page. The lock contention in high

transaction environments would be prohibitive. This is also true

for INSERTs to a clustered index on a monotonically increasing

key.

High INSERT environments should always cluster on a key

which provides the most "randomness" (to minimize lock /

device contention) that is usable in many queries. Note this is

generally not our primary key!

Prime candidates for clustered index (in addition to the above)

include: Columns Accessed by a Range, Columns Used with

Order By, Group By, or Joins

Indexes Help SELECTs and Hurt INSERTs

Too many indexes can significantly hurt performance of

INSERTs and "out-of-place" UPDATEs.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

53

Prime candidates for non-clustered indexes include; Columns

Used in Queries requiring Index Coverage, Columns Used to

Access Less than 20% (rule of thumb) of the Data, Unique

indexes should be defined as UNIQUE to help the optimizer,

minimize index page splits with fill factor (helps concurrency

and minimizes deadlocks), Keep the Size of the Key as Small as

Possible, Accelerates index scans and tree traversals

Use small datatypes whenever possible. Numerics should also

be used whenever possible as they compare faster than strings.

For details please see [27].

4. ILLUSTRATING SOLUTIONS TO

SOME SITUATIONS NORMALLY

OCCURS DURING SERVER RUN TIME

RELATED TO THE SERVER

PERFORMANCE TUNING AND QUERY

OPTIMIZATION
This section is illustrating solutions to some situations normally

occurs during server run time to obtain better server

performance and query optimization. Following two system

procedures that we always use during server monitoring and

performance tuning:

sp_sysmon a system procedure that monitors Adaptive Server

performance and provides statistical output describing the

behavior of our Adaptive Server system. Mainly we use

sp_sysmon to look buffer hit ratio and spinlock contention.

Buffer hit ratio reports the % times a requested datapage is

found in the data caches. A buffer hit ratio of less than 97%

could indicate memory starvation. If sufficient amount of

memory is not allocated to the data cache the first thing to do

would be to increase memory. Spinlock Contention reports the

number of times an engine encountered spinlock contention on

the cache, and had to wait to acquire memory. Splitting the data

caches into cachelets will reduce spinlock contention in case of

SMP environments.

sp_monitor a system procedure displays statistics about

Adaptive Server. It is a well known stored procedure available

for the longest time on ASE to capture CPU busy and IO busy

statistics since the last run of the same procedure. This for me

provides a first insight at what is going on in the data server as

far as IO and CPU utilization is concerned. Besides this stored

procedure, there are some other features that can help us for

performance troubleshooting.

We have discussed about sp_sysmon and sp_monitor in section

2.1.7 also. For details please refer to Sybase manual.

4.1. We normally use following tools to

evaluate and tune query
We use the "set showplan on" command to see the plan chosen

as "most efficient" by optimizer. We run all queries through

during development and testing to ensure accurate access model

and known performance. Information comes through the Error

Handler of a DB-Library application. We can also say set

showplan on is used for look for table scans in the results. We

can also say showplan enables us to find out which plan the

optimizer has chosen, what indexes it intends to use, and which

tables will be accessed most heavily. Given this knowledge, we

could alter our queries, create indexes, or alter our table design,

caching etc to improve application performance. We use set

noexec on, so that the showplan is returned, but the server does

not actually return the data. We show here an example.

select * into #dennis from sysobjects

go

set showplan on

set noexec on

go

select name from #dennis where type = ‗U‘ order by name

go

We use the "dbcc traceon(3604, 302, 310)" command to see

each alternative plan evaluated by the optimizer. Generally, this

is only necessary to understand why the optimizer won't give us

the plan we want. If we think the problem is with an index, here

is how to see they are chosen using dbcc traceon(302) and dbcc

traceon(310).

We use the "set statistics io on" command to see the number of

logical and physical i/o's for a query. Scrutinize those queries

with high logical i/o's and it usually takes a lot of time.

We use the "set statistics time on" command to see the amount

of time (elapsed, execution, parse and compile) a query takes to

run or we can say it gathers time statistics so we can see where

the time is spent.

We use "set forceplan on" command to change join order to be

the order of the tables in the FROM clause.

If the optimizer refuses to select the proper index for a table, we

force it by adding the index id in parentheses after the table

name in the FROM clause.

SELECT * FROM orders(2), order_detail(1) WHERE ... [8]

We use set statistics subquerycache on to display the number of

cache hits and misses and the number of rows in the cache for

each subquery.

We also use optdiag utility command to display statistics for

tables, indexes, and columns. This utility allows us to read, write

and simulate the statistics used by the optimizer to determine the

most efficient method to retrieve the required data. Please see

details in [11,13].

We also use set table count that increases the number of tables

that the optimizer considers at one time while determining join

order.

Adaptive Server's cost-based optimizer uses statistics about the

tables, indexes, and columns named in a query to estimate query

costs. It chooses the access method that the optimizer determines

has the least cost. But this cost estimate cannot be accurate if

statistics are not accurate. For details please also see [12]. We

have also discussed well in section 3.3.1 and 3.3.2.

Some statistics, such as the number of pages or rows in a table,

are updated during query processing. Other statistics, such as the

histograms on columns, are only updated when we run the

update statistics command or when indexes are created.

We can use the optdiag command to see the time update

statistics was last run.

The update statistics commands update the column-related

statistics such as histograms and densities. So statistics need to

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

54

be updated on those columns where the distribution of keys in

the index changes in ways that affect the use of indexes for our

queries.

Running the update statistics commands requires system

resources. Like other maintenance tasks, it should be scheduled

at times when load on the server is light. In particular, update

statistics requires table scans or leaf-level scans of indexes, may

increase I/O contention, may use the CPU to perform sorts, and

uses the data and procedure caches. Use of these resources can

adversely affect queries running on the server if we run update

statistics at times when usage is high. In addition, some update

statistics commands require shared locks, which can block

updates.

4.2. To start with query processing and

optimization we first execute
set showplan on

go

set statistics io on

go

then we run our query. We check if the query plan chooses the

indexes we expected. We check the logical I/Os for each table

and look for unexpected (i.e. high) values.

4.3. Checking how much time query taking
The goal is to optimize a set of queries to run faster, improve

performance. By knowing the meaning of data we can help

query optimizer to develop a better query plan and in some cases

we can override the query optimizer to follow a certain query

plan.

Suppose we have a batch of queries, which we want to optimize.

First we need to identify which query is creating the problem

and then to identify where the problem lies in that query. Query

that is taking maximum time is the first we want to consider for

the optimization. To check which query is taking maximum time

to execute we place getdate() both before and after the query.

We identity the type of the query whether it is a data look-up

query or data modification query.

We use ‗set showplan on‘ to see what query plan is executed by

the SQL Server? If query is taking a lot of time to execute it is

not possible to execute it again and again. We use ‗set noexec

on‘ to just build the query plan and not to execute it. When these

two options are set SQL Server will parse the query, optimize it

and develop a query plan, but will not submit it to execute.

As SQL server uses cost based query optimizer, it‘s always

better to turn on the following options to check the statistics of

the query:

set statistics io on gives actual logical and physical page reads

incurred by the query.

set statistics time on gives total CPU and elapsed time to execute

a query and the time to parse and compile the query [40].

4.4. Server was running fine when starts and

if we find slow we can think of just few
If query plans are used by query optimizers to execute a

Query/Stored Procedure. Over time the query plans become

outdated and are no longer efficient then we should run update

statistics <table name> and sp_recompile <table name>.

If the query optimizer does a table scans when it cannot resolve

a badly written query or Stored Procedure. Here query

optimization is the only solution for this. We try to find out such

queries by running them during off-peak time.

4.5. Increase RAM size and number of

concurrent user connections
Every user will consume resources on the Sybase Server, which

reduces the amount of memory that Sybase has for itself. For

this we should increase RAM on our server and increase the

amount of memory dedicated to Sybase server. Increase the no.

of concurrent user connections.

4.6. Rebuild Reorg command improve

Performance
We always clean-up tables that have been updated frequently by

using command rebuild reorg.

4.7. Checking whether query is using an

index
We look at the query plan that is generated by the optimizer. We

check whether the optimizer is picking up proper indexes for the

SARG, OR clauses and Join operations. We see whether it is

using indexes to execute the query or not, and if yes which

indexes are used. If there is an index on the table and optimizer

is not using that index to resolve the query, we try to figure out

why optimizer is not using the index [40]. We have figured out

this issue in section 4.1, 4.2 and 4.8.

4.8. Checking whether statistics is up-to-date
As a general advice, once the table gets 20% updated, we have

to run the update statistics for the table. Update statistics for a

table updates the distribution page [server keeps distribution

information for each index on a separate page in the datebase]

(so distribution statistics) for the indexes used in the table. We

use ‗update statistics‘ command to update the statistics for all

indexes on a table, using following commands:

To update the statistics of all the indexes related to the table:

update statistics Sales.SalesOrderDetail where Sales is a

database and SalesOrderDetailes is a table.

To update the statistics of a particular index on the table:

update statistics Sales.SalesOrderDetail

AK_SalesOrderDetail_rowguid where

AK_SalesOrderDetail_rowguid is an index under table

SalesOrderDetail

We run dbcc traceon 302 for getting the meta-information to

know how the query optimizer is handling the index selection

and OR clauses. We run dbcc traceon 310 for getting the meta-

information to know how query optimizer is picking up the join

order [40].

Again we run that query and see if it using the indexes or not. If

the query is still not using any indexes, and we think that an

index can be used to execute the query faster, we can force the

optimizer to use the index by specifying the index ID number

after the table name in the query. SQL Server would use that

index to satisfy the query. We can always use ‗set statistics io‘

option to verify whether there was an I/O savings over the

optimizers choice or not.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

55

We identify which indexes to use to resolve the query: clustered

or non-clustered. Clustered index is better for range queries, if

data is in sorted order, column has number of duplicate values,

and column is frequently referenced in the order by clause. Non-

clustered index is better for single row lookups, queries

containing joins, queries with small range retrieval.

We keep following things in mind for the indexes 1) unless the

OR strategy is applied, SQL server uses only one index per table

to satisfy the query, 2) sometimes a table scan may be cheaper

than a candidate index in terms of total I/O. e.g. large range

retrievals on a non-clustered-index column and 3) a non-

clustered index that covers a query will be faster than a similarly

defined clustered index.

4.9. If we are using Join and Subquery
If the query contains any joins, we look what is the join order

selected by the optimizer. Joins are performed as a set of nested

loops. Generally Join queries consume more memory than

subquery. Subquery involves the table creation so affects

performance, because of I/O fetches need for processing.

Subquery is always better than join if we have hardware

bottleneck (memory constraints). We check if we can replace

join with the subquery. But if we can scale up our hardware

(nowadays it is not a big deal) then we go with join.

Order in which the join is performed has effect on the total

number of I/O performed. By knowing the meaning of data we

can select a particular join order and we check if it improves

performance. We can force join order with the ‗set forceplan‘

option:

set forceplan {on / off}

It might be possible that optimizer was using different indexes

before forcing the join order, as certain indexes may not be

useful for certain join orders. As the number of table increases,

query optimizer takes more time to determine the join order. If

the optimizer is picking the proper join order but taking a lot of

time in determining the join order, we can force that particular

join order and save time. One another reason query not picking

up proper indexes may be ―set table count value‖ is set to lower

number but the number of tables involved in the join operations

is relatively higher [40]. We have also discussed in section 4.15.

4.10. We can avoid transaction logging under

some circumstances
Another factor while optimizing the query is to avoid the

transaction log in data modification queries. In the following

cases we can avoid the transaction to be logged; 1) we use fast

BCP instead of slow BCP to avoid the data to be logged, 2) we

use truncate table instead of delete and 3) we use select into

instead of creating temporary table to avoid the transaction log

[40].

4.11. We should prefer dropping and

rebuilding index under some circumstances
A table having indexes and triggers takes long time to perform

data modification queries. Depending on how important the

query is, we can think of dropping the indexes during the

daytime and rebuilding the indexes at end of the day. For these

types of queries, in many cases index usage is discouraged,

because the update statements.

If we need to perform large data modification its better to drop

indexes and rebuild indexes after the data modification operation

is performed.

Another factor we want to consider is whether query is using

any worktable/temporary table to resolve the query. Creating the

worktable to solve the query always take much time to process.

Queries containing ‗order by‘, ‗group by‘, ‗distinct‘ always uses

a worktable. We check if we can satisfy the query by avoiding

these clauses. Probable solutions to avoid these clauses are 1) if

column has a unique/primary key, then there is no need to

specify the ‗distinct‘ clause, 2) if we have more than four tables

to joins, it will definitely use a worktable to resolve the query.

We try to keep the number of tables to join to minimum. We try

to create subquery to avoid join of more than four tables, 3) if

there is an index on a column, which keeps the column sorted,

we don‘t need to specify ‗order by‘ clause in the query, 4) if we

know that data is unique, then there is no need to specify the

‗group by‘ clause in the query.

We check for the following scenarios in the where clause of the

query 1) negative Logic (!=, <>): negative logic always results

in the table scan unless index covering is applied, 2) calculated

comparison: if right side of an expression needs to be calculated

first, it will not be evaluated until it reaches the execution stage

and 3) if a query is frequently using computed expressions,

insert a column of the computed expression in the table. We

need to write a trigger to maintain that column. e.g. suppose a

query always calculates discounted price from a table, its better

to insert a column of discounted price in the table [40].

4.12. We should avoid trigger and adopt

stored procedure under some circumstances
A trigger gets fired for every transaction. It is another overhead

in the query. Depending on how important the query is we can

drop triggers and write a store procedure for that. And at end of

the day we can run that stored procedure to perform the

operations performed by the trigger. e.g. During the day we need

to handle a lot of queries for OLTP, at that time we can consider

to drop the trigger and run stored procedure at end of the day

[40].

4.13. We should denormalize tables under

some circumstances
Depending upon the type of queries we can think of de-

normalizing the tables. Denormalizing can improve performance

by 1) Minimizing the need of join, 2) Reducing the No. of

foreign keys on tables, 3) Reducing the No. of indexes, saving

storage space, and reducing data modification time, 4) Pre

computing aggregate values, that is computing them at data

modification time rather than at select time and 5) Reducing the

No. of tables (in some cases). Following are the options to de-

normalize the data depending upon the importance of the queries

1) Inserting calculated columns: it incurs another overhead to

maintain the calculated column value. When a data row is

inserted, we need to calculate the value of that column.

Depending upon the importance of the query we can insert a

calculated column, 2) Vertical merge of tables: If a query always

performs the join of two or more tables. It is better to merge the

tables and build a new table to satisfy that query faster. Again it

depends on how much important the query is and how we are

going to manage the duplicate data. Duplicating the data

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

56

improves the query to run faster but it incurs another overhead

to maintain the duplicate data, 3) Vertical split of tables: If query

always select certain columns from the table, its better to

separate the columns from the table and perform the query to

improve the performance, 4) Horizontal merge of tables: Merge

the data horizontally. e.g. If a query shows the transaction done

by the customer in the current month only and if the user wants

to see the record for certain months, we can horizontally

combine data from old transactions table and recent transactions

table to give the result and 5) Horizontal split of tables: Split the

data horizontally. e.g. in a online banking scenario, split the data

in most recent transactions and old transactions. We can just

show the most recent transactions, instead of showing the whole

transactions [40].

4.14. Query plan optimization
ASE 15 Set Plan Commands allow us to set an optimization goal

which fits our database environment.

In Decision Support System and Reporting Environments if we

give the optimizer more time to compile a query plan through

set plan command is beneficial for optimization.

set plan opttimeoutlimit 999

where current optimization timeout limit for query optimization

is 999.

The range of values for opttimeoutlimit has been changed to 0 –

4000, with 0 indicating no optimization limit.

There are three new optimization goals in Sybase ASE and

Optimization goal can be chosen at the Server, Session and

Query level.

allrows_mix – the default goal, as well as the most useful goal in

a mixed query environment. It balances the needs of OLTP and

DSS query environments (merge joins; A merge join can use

multiple worker processes to perform: The scan that selects rows

into a worktable, note a merge join may requires a sort +

allrows_oltp)

allrows_oltp – the most useful goal for purely OLTP queries

(nested loop join; Nested-loop joins provide efficient access

when tables are indexed on join columns).

allrows_dss – the most useful goal for operational DSS queries

of medium-to-high complexity (hash joins + allrows_mix). The

hash join algorithm builds an in-memory hash table of the

smaller of its targets.

We use session level syntax as follows:

set plan optgoal allrows_mix

go

set plan optgoal allrows_oltp

go

set plan optgoal allrows_dss

go

We use server level syntax as follows:

 sp_configure "optimization goal", 0, "allrows_oltp"

 go

Query as follows:

Select * from A order by A.a plan ―(use optgoal allrows_dss)‖

4.15. Various Joins operation
We have discussed about joins operation in ASE 15 in section

2.5.10. Here again we discuss few about various joins operation

in various flavors of Sybase and this will guide in query

optimization.

4.15.1. Equijoin
Joins based on equality (=) are called equijoins. Equijoins

compare the values in the columns being joined for equality and

then include all the columns in the tables being joined in the

results.

Example in Sybase ASE

select * from publisher pub, author au where pub.id = au.id

This query depicts an equijoin

Another example in Sybase ASE

SELECT * FROM employee JOIN department ON

employee.DepartmentID = department.DepartmentID;

4.15.2. Natural Join
Natural join is basically a form of equijoin where one of the join

fields is projected out. i.e. it avoids repetition of the join column.

Example in Sybase ASE

select pub.id, pub.name, au.* from publisher pub, author au

where pub.id = au.id

This query depicts a natural join

Example other than Sybase ASE

SELECT * FROM employee NATURAL JOIN department;

4.15.3. Outer Join
Joins that include all rows, regardless of whether there is a

matching row, are called outer joins. Adaptive Server supports

both left and right outer joins. For example, the following query

joins the titles and the titleauthor tables on their title_id column:

Example in Sybase ASE

select * from titles, titleauthor where titles.title_id *=

titleauthor.title_id

Transact-SQL outer joins (shown above) use the *= command to

indicate a left outer join and the =* command to indicate a right

outer join.

The left outer join, *=, selects all rows from the first table that

meet the statement's restrictions. The second table generates

values if there is a match on the join condition. Otherwise, the

second table generates null values.

For example, the following left outer join lists all authors and

finds the publishers (if any) in their city:

Example in Sybase ASE

select au_fname, au_lname, pub_name from authors, publishers

where authors.city *= publishers.city

SELECT * FROM employee, department WHERE

employee.DepartmentID *= department.DepartmentID

Another example in Sybase ASE

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

57

SELECT * FROM employee LEFT OUTER JOIN department

ON employee.DepartmentID = department.DepartmentID;

The result of a left outer join (or simply left join) for table A and

B always contains all records of the "left" table (A), even if the

join-condition does not find any matching record in the "right"

table (B). This means that if the ON clause matches 0 (zero)

records in B, the join will still return a row in the result—but

with NULL in each column from B. This means that a left outer

join returns all the values from the left table, plus matched

values from the right table (or NULL in case of no matching join

predicate). If the right table returns one row and the left table

returns more than one matching row for it, the values in the right

table will be repeated for each distinct row on the left table.

The right outer join, =*, selects all rows from the second table

that meet the statement's restrictions. The first table generates

values if there is a match on the join condition. Otherwise, the

first table generates null values.

Example in Sybase ASE

SELECT * FROM employee RIGHT OUTER JOIN

department ON employee.DepartmentID =

department.DepartmentID;

Another example in Sybase ASE

SELECT * FROM employee, department WHERE

employee.DepartmentID =* department.DepartmentID

A right outer join (or right join) closely resembles a left outer

join, except with the treatment of the tables reversed. Every row

from the "right" table (B) will appear in the joined table at least

once. If no matching row from the "left" table (A) exists, NULL

will appear in columns from A for those records that have no

match in B. A right outer join returns all the values from the

right table and matched values from the left table (NULL in case

of no matching join predicate).

A table is either an inner or an outer member of an outer join. If

the join operator is *=, the second table is the inner table; if the

join operator is =*, the first table is the inner table.

4.15.4. Full Outer Join
Full outer joinConceptually, a full outer join combines the effect

of applying both left and right outer joins. Where records in the

FULL OUTER JOINed tables do not match, the result set will

have NULL values for every column of the table that lacks a

matching row. For those records that do match, a single row will

be produced in the result set (containing fields populated from

both tables).

For example, this allows us to see each employee who is in a

department and each department that has an employee, but also

see each employee who is not part of a department and each

department which doesn't have an employee.

Example other than Sybase ASE:

SELECT * FROM employee FULL OUTER JOIN

department ON employee.DepartmentID =

department.DepartmentID;

Some database systems (like MySQL) do not support this

functionality directly, but they can emulate it through the use of

left and right outer joins and unions. The same example can

appear as follows in SYBASE ASE and MySQL:

SELECT * FROM employee LEFT JOIN department

ON employee.DepartmentID = department.DepartmentID

UNION

SELECT * FROM employee RIGHT JOIN department

ON employee.DepartmentID = department.DepartmentID;

Another Example in Sybase ASE

SELECT employee.*, department.* FROM employee LEFT

JOIN department

ON employee.DepartmentID = department.DepartmentID

UNION ALL

SELECT employee.*, department.* FROM department LEFT

JOIN employee

ON employee.DepartmentID = department.DepartmentID

WHERE employee.DepartmentID IS NULL;

4.15.5. Inner Join
Inner joins, in which the joined table includes only the rows of

the inner and outer tables that meet the conditions of the on

clause. We can also say that the query compares each row of A

with each row of B to find all pairs of rows which satisfy the

join-predicate. When the join-predicate is satisfied, column

values for each matched pair of rows of A and B are combined

into a result row.

Example in Sybase ASE

SELECT * FROM employee INNER JOIN department ON

employee.DepartmentID = department.DepartmentID;

This is based on cartesian product or cross join and is inefficient.

Hash join and sort-merge join is better to this.

14.15.6. Self Join
This join is used for comparing values within a column of a

table. Since this operation involves a join of a table within itself,

we need to give the table two temporary names, or correlation

names which then are used to qualify the column names in the

rest of the query.

Example in Sybase ASE

update t1 set t1.c1 = t1.c1 + 1 FROM t1 a, t1 b where a.c1 =

b.c2

and

delete t1 FROM t1 a, t1 b WHERE a.c1 = b.c2

For example, we can use a self-join to find out which authors in

Oakland, California, live in the same postal code area. Since this

query involves a join of the authors table with itself, the authors

table appears in two roles. To distinguish these roles, we can

temporarily and arbitrarily give the authors table two different

correlation names—such as au1 and au2—in the from clause.

These correlation names qualify the column names in the rest of

the query. The self-join statement looks like this:

Example in Sybase ASE

select au1.au_fname, au1.au_lname,

au2.au_fname, au2.au_lname

from authors au1, authors au2

where au1.city = "Oakland" and au2.city = "Oakland"

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

58

and au1.state = "CA" and au2.state = "CA"

and au1.postalcode = au2.postalcode

another example

select * from table1, table1

14.15.7. Cross Join (Cartesian product)
Sybase 12 to 15 does not support Cross Joins.

CROSS JOIN returns the Cartesian product of rows from tables

in the join. In other words, it will produce rows which combine

each row from the first table with each row from the second

table.

Example of an explicit cross join other than Sybase ASE:

SELECT * FROM employee CROSS JOIN department

Example of an implicit cross join in Sybase ASE:

SELECT * FROM employee, department

Another example in Sybase ASE

Select * from table1, table2

If table1 has 6 rows and table 2 has six rows then result is 6 * 6

= 36 rows.

Example of an explicit cross join other than Sybase ASE:

SELECT * FROM employee CROSS JOIN department;

Example of an implicit cross join in Sybase ASE:

SELECT * FROM employee, department;

4.15.8. Nested loop join
Nested Loop Join was the only Join in Sybase 12.5 and lower.

Nested Loop Join works well in the condition where number of

rows to be returned or there is a SARG condition (filter

condition) in the query.

This physical operator supports the nested-loop-join algorithm.

In this join left child forming the outer data stream and the right

child forming the inner data stream. For every row from the

outer data stream, the inner data stream is opened. Often, the

right child is a scan operator.

Here is a simple pseudo-code listing for joining the two relations

r and s utilizing the nested for loop [36].

for each tuple tr in r

for each tuple ts in s

if join condition is true for (tr,ts)

add tr+ts to the result

or

We illustrate nested loop join and pseudo code again as follows:

select table1.* from table1, table2 where table1.C1 = table2.C2

where columns C1 and C2 are non-clustered indexes.

pseduo-code is as follows:

for each row R1 in table1

for each row R2 in table2

if (C1=C2)

return (table1.*)

We can also say that one of the relations is counted as the inner

relation, while the other one is counted as the outer one. Then,

all the tuple from the inner relation are compared with tuple

from the outer relation. Once a matching occurred, both tuples

are placed in the outer buffer [37].

Please see [36,37,38,39] for details.

We can also say in the nested loop join the system will pick an

outer table. System will point to the first row in the outer table.

Now the system will scan the inner table, will examine each row

and will check to see if it matches. Once the system scanned the

inner table, will move to the next row in the outer table and will

scan the inner row again.

4.15.9. Merge join is considered to be better than

the nested loop join in performance
Merge join is considered better than nested loop join in term of

performance. Merge Join is executed if it satisfies the following

condition; 1) Only under Equijoin condition and 2) Data on the

columns to be joined should be sorted, If the optimizer decides

that it is effective to sort the data then we do the join then it will

create a work table in the tempdb for the columns to be joined,

sorts it and then joins the tables. Merge joins can perform better

than hash joins if the row sources already sorted and a sort

operation does not have to be done. If merge join involves

choosing lower access method (an index scan as opposed to a

full tale scan), then the benefit of using soft merged might be

lost. Merge joins are useful when the join condition between two

tables is an inequality condition (but not a nonequality) like <,

<=, >, >=.

This physical operator supports the merge join algorithm, which

relies on ordered input. merge join is most valuable when input

is ordered on the merge key, for example, from an index scan.

merge join is less valuable if sort operators are required to order

input.

The left and right children are the outer and inner data streams,

respectively. Both data stream must be sorted on the MERGE

JOIN‘s key values.

First, a row from the outer stream is fetched. This initializes the

MERGE JOIN‘s join key values. Then, rows from the inner

stream are fetched until a row with key values that match or are

greater than (less than if key column is descending) is

encountered. If the join key matches, the qualifying row is

passed on for additional processing, and a subsequent next call

to the MERGE JOIN operator continues fetching from the

currently active scream.

If the new values are greater than the current comparison key,

these values are used as the new comparison join key while

fetching rows from the outer stream. This process continues

until one of the data streams is exhausted.

Generally, the MERGE JOIN strategy is effective when a scan

of the data streams requires that most of the rows must be

processed, and that, if any of the input streams are large, they

are already sorted on the join keys.

We illustrate merge join and pseudo code as follows:

select table1.* from table1, table2 where table1.C1 = table2.C2

 where columns C1 and C2 are non-clustered indexes

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

59

Here is a simple pseudo-code listing for joining the two relations

table1 and table2 utilizing the Merge Join.

get first row C1 from table1

get first row C2 from table2

while not at the end of table1 for table2

begin

if (C1=C2)

begin

return (table1.*)

get next C2 value from table2

end

else if (C1 < C2)

get next row C1 value from table1

else

get next C2 value from table2

end

In merge join the both tables (indexes) are read only once and

hence has very less logical and physical I/O.

Enabling and disabling merge joins

By default, merge joins are enabled, at the server level, for

allrows mix and for allrows_dss optgoal, and are disabled at the

server level for other optgoals, including allrows_oltp. When

merge joins are disabled, the server only costs other join types

that are not disabled. To enable merge joins server-wide, set

enable merge join to 1. The pre-version 15.0 configuration

enable sort-merge joins and JTC does not affect the new query

processor.

The command set merge_join on overrides the server level to

allow use of merge joins in a session or stored procedure.

To enable merge joins, we use:

set merge_join on

To disable merge joins, we use:

set merge_join off

Please see [36,37,38,39] for details.

4.15.10. Hash join improves query performance
Hashing is a Kind of Indexing technique which allows random

access to a Hashed Column value. Using the "hash" join

operator introduced in ASE 15. Hash Joins have been shown to

improve queries performance by as much as 500%. Hash Join

will be applied only in Equi Join condition. Hash joins are used

when the joining large tables. The optimizer uses smaller of the

two tables to build a hash table in memory and the scans the

large tables and compares the hash value (of rows from large

table) with this hash table to find the joined rows.

We illustrate hash join and pseudo code as follows:

select table1.* from table1, table2 where table1.C1 = table2.C2

where columns C1 and C2 are non-clustered indexes

The algorithm of hash join is divided in two parts; 1) Build an

in-memory hash table on smaller on smaller of the two tables,

and 2) Probe this hash table with hash value for each row second

table [38].

Build Phase: (We can also say optimizer takes the smaller of the

two tables to be joined (based on the statistics) and read all the

rows and constructs an in-Memory Hash table:

for each row R1 in Table1

begin

calculate hash value C1

insert R1 into the appropriate hash bucket

end

Probe Phase: (We can also say in this phase reads all rows from

the second table (often called right probe input), hashes these

rows on the same equijoin keys, and looks or probes for

matching rows in the hash table)

for each row R2 in the table2

begin

calculate hash value on C2

for each row C1 in the corresponding hash bucket

if(C1=C2)

return table1.*

end

This physical operator supports the hash join algorithm. hash

join may consume more runtime resources, but is valuable when

the joining columns do not have useful indexes or when a

relatively large number of rows satisfy the join condition,

compared to the product of the number of rows in the joined

tables.

The left child generates the build input stream. The right child

generates the probe input stream. The build set is generated by

completely draining the build input stream when the first row is

requested from the HASH JOIN operator. Every row is read

from the input stream and hashed into an appropriate bucket

using the hash key.

Each row from the probe set is hashed. A lookup is done in the

corresponding build bucket to check for rows matching hash

keys. This occurs if the build set‘s bucket is memory resident.

If there is not enough memory to hold the entire build set, then a

portion of it spills to disk. This portion is referred to as a hash

partition and should not be confused with table partitions.

Below is an example of forced hash join.

select t1.invoice_id, t1.total, t1.status_cd, t1.fiscal_qtr, t1.margin

from invoice_master t1, client_master d

where d.region_id = 2001

and t1.invoice_id = d.invoice_id

and t1.fiscal_qtr between 20031 and 20044

order by t1.invoice_id, t1.fiscal_qtr

plan " (h_join (scan t1) (scan d))"

go [42]

Enabling and disabling hash joins

By default, hash joins are enabled only at allrows_dss optgoal.

To override the server level to allow use of hash join in a session

or stored procedure, use set hash_join on.

To enable hash joins, we use:

set hash_join on

To disable hash joins, we use:

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

60

set hash_join off

Setting optimization criteria.

Use the set command to enable or disable individual criteria.

For example, to enable the hash join algorithm, enter:

set hash_join 1

To disable the hash join algorithm, enter:

set hash_join 0

To enable one option and disable another, enter:

set hash_join 1, merge_join 0

Please see [36,37,38,39] for details.

4.15.11. NaryNestedJoin
There is also a NaryNestedJoin. We do not discuss here about

this join.

4.16. Memory issue
We have discussed well in section 2.3 and section 2.4 on this

issue. Accordingly we work to tune the server.

4.17. Enable asynchronous disk I/O
If we are using Sybase under HP-UX environment, to improve

I/O performance on character or raw block devices, after

installation of Sybase, we enable asynchronous I/O by installing

the HP asynchronous I/O driver from SAM.

4.18. Sybase tempdb space management and

addressing tempdb log full issues
A default installation of Sybase ASE has small tempdb located

on the master device. Almost all ASE implementations need a

much larger temporary database to handle sorts and worktables

and therefore we need to increase tempdb. tempdb has also three

segments. System segment to stores system tables, default

segment to store objects such as table and logsegment for the

transaction log (syslog table). If log of tempdb is full we free up

space by using dump transaction command or we extend the size

of the database by using alter database command. We can also

use system stored procedure to prevent from situation of tempdb

full and that is sp_dboption tempdb, ―abort tran on log full‖,

true. We can also configure tempdb so that master database

device is unused. This can increase the performance of tempdb.

4.19. Improve performance at database layer
Adaptive server allows us to control the placement of databases,

tables, and indexes across our physical storage device as we

have discussed earlier also. This can improve performance by

equalizing the reads and writes to disk across many devices and

controllers. Some techniques are 1) Place database‘s data

segment on a specific device or devices, storing the database‘s

log on a separate physical device. This way, reads and writes to

the database‘s log not interfere with data access, 2) Spread large,

heavily used tables across several devices, 3) Place table on a

segment that spans on several devices and its non-clustered

indexes on a separate segment, 4) Place the text and image page

chain for a table on a separate device from the table itself and 5)

Distribute tables evenly across partition on separate physical

disks to provide optimum parallel query performance.

4.20. Improve performance at network layer
We can take advantage of several techniques that will improve

network performance and are 1) Using small packets for most

database activity, 2) Using large packet size for task that

perform large data transfer, 3) Using stored procedure to reduce

overall traffic, 4) Filtering data to avoid large transfers, 5)

Isolating heavy network users from ordinary users and 6) Using

client control mechanism for special case.

 4.21. Tuning I/O System
With more data available to query, we now has to understand

and tune the I/O system in order to provide adequate response

time for retrieving and writing data. Please see details in [31].

4.22. Forcing an index with abstract plans
We show an example to scan the lineitem table without an

index.

select count(*) from orders, lineitem where o_orederkey =

l_orderkey

This method may not create the best available query plan, and

may run faster if we use the l_idx1 index on lineitem. We try to

rewriting the query to force the index.

select count(*) from orders, lineitem (index l_idx1) where

o_orderkey = l_orderkey

Although using force parameter often solves query plan issues, it

requires that we change the application code. Even if changing

the code is not a problem for us, this can take much longer than

using abstract query plans.

First we enable abstract plan.

set option show_abstract_plan on

go

dbcc traceon(3604)

go

Adaptive server generates the abstract plans, which we edit and

then force to use an index.

select count(*) from orders, lineitem where o_orderkey =

l_orderkey

go

The abstract plan of the final query execution plan is

(nl_join (t_scan orders) (t_scan lineitem))(prop orders (paralle

1)(prefetch 2)(lru))(prop lineitem (parallel 1)(prefetch 2)(lru))

[41]

4.23. Move hot files and tables/indexes to a

faster storage device
Once all the tuning has been done and performance still does not

meet the fast enough, alternative measures must be investigated.

In this situation we can take one measure to move hot files and

tables/indexes to a faster storage device. The fastest storage

device available is a solid-state file cache. Hot files are 1)

Transaction Logs, 2) tempdb and 3) Highly accessed

tables/indexes. Solid-state file cache can retrieve a random data

block with no mechanical delays, access to the data is virtually

instantaneous.

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

61

Solid-state file caching systems have no moving parts, so they

experience no mechanical delays when accessing data. They can

support random I/O rates measured in the thousands per second.

This compares to rotating disk products that can support I/O

rates on the order of one hundred per second.

We can increase overall system performance by 200%, 400%,

800% or more by placing the most I/O intensive data segments

on a Solid Data solid-state file cache [33].

4.24. Raw Partition Vs. Unix File Systems.
For high performance applications, we typically configure

Sybase applications with data segments on raw disk partitions.

In contrast to a raw partition, a typical UNIX file system uses a

read-ahead buffer cache, which can actually slow down the I/O

performance if the database has its own buffer caches.

There is also a resiliency benefit for using raw partitions with

Sybase devices. A normal UNIX file system uses a buffer cache

for disk I/O. Since the Sybase database does a write-ahead

buffering scheme, it assumes that the write has been committed

when there is a possibility that data is still in the buffer waiting

to be written to disk. In this scenario, if there were a system/disk

failure before the buffer cache is written to disk, there would be

no way to recover or rollback the data.

By using raw partitions, the server can then manage the disk I/O

without any buffering from a file system so that if there were

any system / disk failures, the system would know what part of

the transaction completed and could recover or rollback the data

[33].

4.25. Smart Partitions
ASE 15 makes large databases easy to manage and more

efficient by allowing to divide tables into smaller partitions that

can be individually managed. We can run maintenance tasks on

selected partitions to avoid slowing overall performance and

queries run faster because ASE 15‘s smart query optimizer

bypass partitions that don‘t contain relevant data [34].

5. CONCLUSIONS
On the basis of our survey of existing works, findings, technical

merits, Sybase Reference Manuals, and illustrating solutions to

some situations normally occurs during server run time for

better server performance, we have discussed systematically

about the performance tuning of database server and query

processing and optimization of query processing taking into

consideration a Sybase Adaptive Server Enterprise as a robust

Database system at present. This paper will provide an adequate

supports to a person who is using Sybase and cater knowledge

how to achieve a challenging goal of high throughput and less or

fast response time. This paper will also provide good support to

researchers who are working on Database Server Performance

Tuning and Query Optimization. In future we shall address this

issue in other databases.

6. REFERENCES
[1] Craig S. Mullins, ―An introduction to the Architecture of

Sybase SQL Server‖, Winter 1994.

[2] ―Sybase® Adaptive Server™ Enterprise Performance and

Tuning Guide: Query Tuning‖, Adaptive Server Enterprise

Version 12, Last Revised: October 1999, Document ID:

32614-01-1200-02.

[3] Gene Leganza, ―Sybase SQL server performance

Considerations‖, Bachman Information systems.

[4] Jeffrey Garbus, Alvin Chang, Gary Tyrrel and Penny

Garbus ―Administrator's Guide to Sybase ASE 12.5‖,

Wordware Publishing, Inc.

[5] http://www.rocket99.com/techref/8681.html, ―Sybase ASE

Overview, Architecture‖.

[6] Mich Talebzadeh ―Oracle and Sybase, Concepts and

Contrasts‖, January 2006.

[7] Eric Miner, ―ASE 15 and the Optimizer Statistics – More

Influential Than Ever―, December 11, 2008

[8] http://www.isug.com/ Sybase_FAQ/ ASE/ section1.5. html,

―Sybase Performance Tuning‖.

[9] http://www.sybase.in/detail?id=47625, ―Server Enterprise‖.

[10] Chapter 15, "Memory Use and Performance, ―Sybase®

SQL Server(TM) Performance and Tuning Guide―.

[11] Eric Miner, Sr. Engineer, Sybase, Inc. DST Engineering

Optimizer Group , ―An Introduction to Sybase Adaptive

server Enterprise‘s Modern Optimizer‖.

[12] ―Sybase ASE 15 Best Practice Query Processing and

Optimization‖, Technical White Paper, Sybase Inc.

[13] Eric Miner, ―ASE 15 and the Optimizer Statistics – More

Influential Than Ever‖.

[14] ―Optimizing Transaction Performance in Adaptive Server®

Enterprise 12.5‖, A Technical White Paper.

[15] ―Performance and Tuning: Basics‖, Adaptive Server®

Enterprise 12.5.1.

[16] ―Performance and Tuning: Locking‖, Adaptive Server®

Enterprise 12.5.1.

[17] ―Performance and Tuning: Monitoring and Analyzing‖,

Adaptive Server® Enterprise 12.5.1

[18] ―Performance and Tuning Guide: Volume 2 - Query

Optimization, Query Tuning and Abstract Plans‖, Adaptive

Server Enterprise 12.5.

[19] Sybase® Adaptive Server™ Enterprise Performance and

Tuning Guide: Query Tuning, Adaptive Server Enterprise

Version 12, Last Revised: October 1999.

[20] Eric Miner, Director of Enhancements, Sybase International

User Group, ―Sybase Adaptive Server Enterprise 15‘s

Query Processing Engine (QPE) Delivers High

Performance for Applications in Mixed-Workload

Environments‖.

[21] Scott Waiz, Sr. Director of Product Management at

Embarcadero Technologies, ―The High Performance

Sybase ASE DBA‖, Managing Multiple Database

Platforms for Performance & Availibility, August 2010.

[22] John Ngubiri, ―On Query Optimization in Relational

Databases, May, 2004.

[23] Mihnea Andrei, Patrik Valduriez, ―User-Optimizer

communication Using Abstract Plans in Sybase ASE‖,

International Journal of Computer Applications (0975 – 8887)

Volume 35– No.1, December 2011

62

Proceedings of the 27th VLDB Conference, Roma, Italy,

2001.

[24] Vorgelegt Von, ―Algebraic Query Optimization in database

systems‖, 1999.

[25] Elmsari, ―Algorithms for Query Processing and

Optimization‖, 2007.

[26] Johann Christoph Freytag, ―The Basic Principles of Query

Optimization in Relational Database Management

Systems‖, 1989.

[27] Adaptive Server Enterprise 15.0, Performance and Tuning:

Basics.

[28] Adaptive Server Enterprise 15.5, Performance and Tuning

Series: Query Processing and Abstract Plans,

Understanding Query Processing.

[29] Adaptive Server Enterprise on Egenera BladeFrame

platform, A technical white paper, SYBASE Information

Anywhere, January 2003.

[30] Sybase 15 Optimization Goals and Impacts on the Joins,

malaikannan.wordpress.com, 2009.

[31] Jeffery Garbus, Eric Miner, Joel Duplessis, Alvin Chang,

Yuval Malache, ―Sybase ASE 12.5 Performance and

Tuning.

[32] Performance & Tuning for In-Memory Databases in

Adaptive Server Enterprise 15.5, white paper.

[33] SolidData, Best Practice Guide, Best Practice Guide,

Sybase: Maximizing Performance through Solid State File-

Caching, May 2000.

[34] Sybase Adaptive Server Enterprise (ASE) 15, Product

Datasheet.

[35] Adaptive Server Enterprise 15.0, Performance and Tuning:

Query Processing and Abstract Plans

[36] Michael L., Rupley Jr., ―Introduction to Query Processing

and Optimization‖.

[37] Nurazzah Abd Rahman, Tareq Salahi Saad, ―Hash

Algorithms Used in Text-Based Information Retrieval:

Guidelines for Users‖

[38] Sybase 15 Optimization Goals and Impacts on the Joins,

Malai‘s Tech Space.

[39] Sachin Arora, Nested loops, Hash Join and Sort Merge

Joins – differences, March 2, 2007.

[40] http://sybasefaqs.blogspot.com/2008/07 /sybase-query-

optimization. html, ―Sybase Database Interview Questions

and Answers‖

[41] Adaptive Server Enterprise 15.0, Migration Guide,

Ensuring Stability and Performance, Determining query

processing changes

[42] http://www.rocket99.com/techref/sybase8714.html ―ASE

15 Hints: Query Plan Optimization‖.

7. AUTHORS PROFILE
Mohammad G. Ali He was borne in Bhagalpur, Bihar India.

His date of birth is January 27, 1968. He obtained the degree of

Master Diploma in Computer Science (1991) and Master of

Science in Mathematics (1993) with 1st class. He stood 1st in

the Computer Science in the University. He is a Fellow (FBCS),

British Computer Society, the Chartered Institute for IT, UK. He

is a life member of IAENG, Hong Kong and IACSIT,

Singapore. His two papers were published in the International

Journal of Computer Science and Information Security, USA in

the month of November 2009. Another paper was published in

the Global Journal of Computer Science and Technology, USA

in the month of April, 2010. Another paper was accepted in the

International Conference, IASTED, ACIT-ICT 2010, Russia.

Another paper was published in International Journal of

Computer Applications, Foundation of Computer Science, New

York, USA in the month of September 2010. Another paper is

published in the International Journal of Computer and

Electrical Engineering (IJCEE), International Association of

Computer Science and Information Technology, Singapore.

Another paper is published in the International Journal of

Computer Theory and Engineering (IJCTE), International

Association of Computer Science and Information Technology,

Singapore. Another paper is published in the International

Journal of Computer Theory and Engineering (IJCEE),

International Association of Computer Science and Information

Technology, Singapore. His one paper was accepted in the

international conference, (ICMLC-2011), Singapore which was

held in Feb 26-28, 2011 (The conference was sponsored by the

IACSIT, IEEE, IE). He is a member of the Editorial Board of

IJCA, USA and IJCTE, Singapore. He is a member of Reviewer

Board of IAENG International Journal of Computer Science,

Hong Kong. He was a Peer Reviewer of the International

Conferences, ICMLC-2011, Singapore and IEEE ICCSIT 2011,

China. He is a System Engineer Grade I in the Indian Institute of

Technology, Kharagpur, West Bengal, India. He is associated

with IT project Management, System Analysis and Design

Methods, System Development Life Cycle, Programming,

Implementation and Maintenance of Client-Server DBMSs and

Web Applications Development. He is also associated with

Database Administration, Web Server Administration, System

Administration and Networking of the Institute. He has

deployed many small to big projects in the Institute Network. He

has been guiding undergraduate and post graduate students of

the Institute in their projects. His areas of research are Parallel

and Distributed Computing (Heterogeneous Distributed

Databases), Software Engineering, Networking and Network

Security and Database Server Performance Tuning and Query

Optimization.

http://infocenter.sybase.com/help/topic/com.sybase.help.ase_15.0/title.htm
http://infocenter.sybase.com/help/topic/com.sybase.dc34982_1500/html/mig_gde/title.htm
http://infocenter.sybase.com/help/topic/com.sybase.dc34982_1500/html/mig_gde/X27495.htm

