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ABSTRACT 

In this paper, a new nonlinear wavelet identification structure is 

proposed for high noise resistive soft sensors. This method uses 

proposedPolynomial Nonlinear Auto Regressive Exogenous 

Model, which can be solved with linear Gaussian Least Square 

Method, alongside the Averaging Wavelet Method (AWM) 

filter. AWM uses the approximation spaces for analyzing the 

signals and reduce the noise by a mean filtering over sub-

resolutions. Conventional wavelet modeling methods use the 

detail spaces of the decomposed signal for signal modeling. 

Theapplication results show that this method can be more 

accuratein high level noisy environments than the conventional 

wavelet modeling methods cab tolerate.  
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1. INTRODUCTION 
The real world systems are rarely linear and well defined for 

controlling. Most systems show nonlinear behaviors. The low 

power μ-sensors produce low power results inPico-voltages or 

Pico-Amperes, which by transmitting over wires or wireless 

would be highly corrupted by noise.  Employing these sensors to 

acquire data from nonlinear systems deteriorates the overall 

Signal to Noise Ratio (SNR). Analog hardware or digital 

hardware smoothing filters are conventionally employed to 

solve this problem. These kinds of filters reject the high 

frequencies or pass a frequency band that is needed in the 

process. 

However, nonlinear systems may contain vital frequency 

components in the rejected region of the employed smoothing 

filters. These frequency components must be preserved to 

generate appropriate signals which will be used for system 

identification purposes. The solution is to develop an algorithm 

which trulyextracts the nonlinear system structures and 

parameters usingthe acquired unfiltered sensor signals. The 

developed algorithm achieves this goal by simultaneously 

denoising and identifying the system. 

Studies on wavelet algorithms for denoising have recently been 

started[1-3]. These algorithms reduce the noise in both time and 

frequency scales through analyzing different resolutions of 

frequencies in space bounds, which makes this technique 

different from conventional cut-off filters. 

In section (2), Polynomial Nonlinear Auto Regressive 

Exogenous(PNARX) modeling will be introduced. Section (3) 

discussesthe Averaging Wavelet Method. In section (4) the 

ConventionalWavelet Method (CWM) for identification is 

studied.The newly proposed PNARX Averaging Wavelet 

Method (PNARX-AWM)has been discussed in section (5). In 

section (6),PNARX-AWM is compared to the conventional 

wavelet identification method. 

2. THE PNARX MODELING 
For aSISO nonlinear system the general nonlinearmathematical 

model can be given as: 


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According to Shannon sampling theory we can write this model 

as the following nonlinear difference equation [4]: 

        [ ] y k 1 , , y k p ,u k 1 ,u k 2 , ,u[k r]; ,y k f P W         (2) 

𝑦is the output, 𝑢 is the input, 𝑘 is the sample index, 𝑃 is the 

parameters vector and 𝑊 is the uncertainty of the model. 

If we consider the effect of each shifted input and output 

individually, then the equation (2) can be separated as: 
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Figure 1.The PNARX identification method. 
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We can find the Taylor series expansion of each function in 

equation (3) at its operating point as: 
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Equation (4) can be further simplified to: 
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(5) 

This structure is nonlinear, however the equation is linear with 

respect to parameters which can be can be found by Gaussian 

Least Square method as: 

𝑚 = 𝑚𝑎𝑥 𝑝, 𝑟  (6) 
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Figure (1) demonstrates the input and output signals of a typical 

PNARX model. The upper figure shows the Polynomial 

Nonlinear Dynamic System (PNDS) of a 19 parameters system 

(in green), output of the identified system using the PNARX 

model (in dashed blue line) and the error between identified and 

the real system (in red). The figure shown at the bottom is the 

APRBS input to the system. The green portion of this figure is 

used for the training time and the blue portion is employed for 

testifying the system. 

3. AVERAGING WAVELET METHOD 

(AWM)[5] 
Here we use, the Haar wavelet transformexplained in[6]. A 

function 𝑓(𝑥) defined on [0,1] has an expansion in terms of 

Haar functions as follows: 

Given any integer  𝐽 ≥ 0 in𝐿2 on [0,1] we have: 

𝑓 𝑥 =    𝑓, ℎ𝑗 .𝑘 ℎ𝑗 .𝑘 𝑥 

2𝑗−1

𝑘=0

∞

𝑗 =𝐽

+   𝑓, 𝑝𝐽 .𝑘 𝑝𝐽 .𝑘 𝑥 

2𝑗−1

𝑘=0

 (12) 

In order to motivate a discrete version of this expansion, 

theDiscrete Haar Transform(DHT), we assume that we have 

only a finite, discrete approximation to 𝑓(𝑥). In this case, the 

most natural approximation is by the dyadic step 

function 𝑃𝑁𝑓(𝑥), where 𝑁 ∈ ℕ and 𝑁 > 𝐽. That is, given 𝑓(𝑥), 

𝑓 𝑥 ≈ 𝑃𝑁𝑓 𝑥 =   𝑓, 𝑃𝑁,𝑘 𝑃𝑁,𝑘(𝑥)

2𝑁−1

𝑘=0

 (13) 

Thus, the Haar coefficients of 𝑓(𝑥) can be approximated by the 

Haar coefficients of𝑃𝑁𝑓(𝑥). That is: 

 𝑓, ℎ𝑗 ,𝑘 ≈  𝑃𝑁𝑓, ℎ𝑗 ,𝑘    𝑎𝑛𝑑    𝑓, 𝑝𝑗 ,𝑘 ≈  𝑃𝑁𝑓, 𝑝𝑗 ,𝑘  (14) 

Therefore, we can make the following definition: 

Given 𝐽, 𝑁 ∈ ℕ with 𝐽 < 𝑁 and a finite sequence𝑐0 =

 𝑐0(𝑘) 2𝑁−1
𝑘=0

, the DHT of𝑐0 is defined by: 

 𝑑𝑗  𝑘 : 1 ≤ 𝑗 ≤ 𝐽; 0 ≤ 𝑘 ≤ 2𝑁−𝑗 − 1 

∪  𝑐𝐽  𝑘 : 0 ≤ 𝑘 ≤ 2𝑁−𝐽 − 1  
(15) 

, where: 

𝑐𝑗  𝑘 =
1

 2
𝑐𝑗−1 2𝑘 +

1

 2
𝑐𝑗−1 2𝑘 + 1  (16) 

𝑑𝑗  𝑘 =
1

 2
𝑐𝑗−1 2𝑘 −

1

 2
𝑐𝑗−1 2𝑘 + 1  (17) 

The inverse DHT is given by the formula: 

𝑐𝑗−1 2𝑘 =
1

 2
𝑐𝑗  𝑘 +

1

 2
𝑑𝑗 (𝑘) (18) 

𝑐𝑗−1 2𝑘 + 1 =
1

 2
𝑐𝑗  𝑘 −

1

 2
𝑑𝑗 (𝑘) (19) 

Based on the Haar transform the AWM is constructed. The 

traditional wavelet denoising method is based on computing the 

two composed and detail vectors of signal, then thresholding 

details in each𝑑𝑗  and consequently reconstructing the signal𝑐𝑗+1. 

However,the detail vectors are important and the noise is 

unwanted. We use the DHT’s equation(16) and the detail vectors 

are ignored. From equation (16) we find the composition vectors 

for 𝐿 ≤ 𝑁/2. Then we write the𝑆𝑖  sequences using𝑐𝑖  as: 

𝑆𝑖 𝑘 =
𝑐𝑖   

𝑘

2𝑖
  

 2
𝑖

; 1 ≤ 𝑖 ≤ 𝐿; 0 ≤ 𝑘 ≤ 2𝑁 − 1 (20) 

The denoised sequences will then be constructed by averaging 

of all𝑆𝑖  as: 
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𝑆 𝑘 =
 𝑆𝑖 𝑘 𝐿

𝑖=1

𝐿
 (21) 

Then we can repeat this procedure 𝑅 times. Each time 𝑆(𝑘) is 

used as input to the algorithm. The codes and results can be 

downloaded from[4]. 

4. OFFLINE PNARX USING THE 

CONVENTIONAL WAVELET METHOD 

(PNARX-CWM) 
For illustration, consider the nonlinear system shown in figure 

(2). The output of the system is the summation of two 

exponential functions of input signal (with coefficient constants 

of 1 and 2) as: 

𝑦 𝑡 = 𝑒𝑢(𝑡) + 𝑒2𝑢(𝑡) (22) 

The structure of the PNARX-CWM can be seen in figure (3). 

Each wavelet space and the last approximation space havetheir 

own PNARX model. 

Figure (4) shows the Amplitude-modulated Pseudo Random 

Binary Signal (APRBS)described in [7].In this work, this signal 

is used as the excitation signal.Thelength, amplitude and 

sampling time of the excitation signal must be chosen to capture 

the nonlinearity and frequency range of the system to be 

identified. 

As shown in figure (4), after identification of the system, the 

identified parameters have been testified by a variable frequency 

non-stationary input and the simulation results are shown in 

figure (6): 
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(23) 

By adding noise to the signal from 1% to 100%,as shown in 

table (1), the MSE obtainedusingPNARX-CWMwill be around 

43 to 68.  As shown in this table the identification technique 

deteriorates the MSE if the level of added noise is less than 

50%. Improvement in the magnitudes of MSE is achieved for 

the level of noise greater than 50%. At 100% noise level, the 

MSE of the identified signal will almost be half of the MSE of 

the original signal. According to table (2), the SNR of this 

method will vary from 4 to 6. 

5. OFFLINE PNARX USING THE 

AVERAGING WAVELET METHOD 

(PNARX-AWM) 
Unlike PNARX-CWM, this method identifies each 

approximation space in lower resolutions and reconstructs the 

original signal by the AWM algorithmexplained in section (3). 

The structure of the identification algorithm is shown in figure 

(5) and the simulation results are shown in figure (7). 

For identification, we use an APRBS signal in offline mode and 

then testify the identified system by non-stationary input given 

by equation (26). As shown in table (1) the identification 

technique deteriorates the MSE if the level of added noise is less 

than 20%. Reduction in the magnitudes of MSE is achieved for 

the level of noise greater than 20%. At 100% noise level, the 

MSE of the identified signal will almost be one tenth of the 

MSE of the original signal. Therefore, the level of achieved 

MSE for this technique is always less than the MSE obtained in 

PNARX-CWM. According to table (2), the SNR of this method 

will vary from 10 to 13, which are always better than the SNR 

quoted for PNARX-CWM. 

 

Figure 2.Nonlinear system in the presence of noise. 

 

 

Figure 3. Each wavelet space and the last approximation 

space have its own PNARX identification. 

 

 

 

Figure 4.  The APRBS excitation signal (the upper 

signal). The variable frequency signal (the lower signal) 

used for testifying the identified model. 
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6. CONCLUSIONS 
The results in table (1) and table (2) show that the developed 

PNARX-AWM method outperforms the conventional wavelet 

identification method for signals withhigh level of noises. The 

proposed method results a substantial reduction of MSE. In 

addition, a significant improvement in SNR is achieved. These 

data are derived using the PNARX and Wavelet structure with 

the following parameters: N=12, v=6, p=5, r=1, np=3, 

nr=2.Codes and results of simulation can be downloaded from: 

http://ekoshv.persiangig.com/MATLABCODES/PNARX_ACW

M/PNARXACWM.rar 
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Figure 6. Identification of the nonlinear system using 

PNARX-CWM (the training is performed using 50% 

input-output noisy data). 
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Table 1.MSE comparison of PNARX-CWM and 

PNARX-AWM. 

Noise 

Percent 

Noisy 

System 

MSE 

MSE of 

PNARX-

CWM 

MSE of 

PNARX-

AWM 

1% 0.013 68.71 8.161 

5% 0.339 51.79 7.665 

10% 1.388 50.37 9.189 

20% 5.440 58.65 10.27 

50% 33.80 53.65 10.86 

80% 86.75 43.83 12.65 

100% 138.3 63.17 14.17 

 

 

 

Figure 7. Identification of the nonlinear system using 

PNARX-AWM (the training is performed using 50% 

input-output noisy data). 
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Table 2.SNR comparison of PNARX-CWM and PNARX-

AWM. 

Noise 

Percent 

Noisy 

System 

SNR 

SNR of 

PNARX-

CWM 

SNR of 

PNARX-

AWM 

1% 41.62 4.61 13.11 

5% 27.71 5.161 13.44 

10% 21.61 4.599 12.49 

20% 15.73 4.427 12.55 

50% 8.352 6.299 11.84 

80% 5.205 5.693 11.91 

100% 3.770 4.338 10.73 
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