
International Journal of Computer Applications (0975 – 8887)

Volume 34– No.7, November 2011

10

Service Crawling using Google Custom Search API

Maria Allauddin
College of Electrical and Mechanical Engineering
National University of Sciences and Technology

(NUST) Islamabad, Pakistan

Farooque Azam
College of Electrical and Mechanical Engineering
National University of Sciences and Technology

(NUST) Islamabad, Pakistan

ABSTRACT

The area of Web Service Discovery (WSD) is a primary area of

research today. It has root importance for utilizing web services

for personal or organizational needs. However the users of web

service are yet facing a challenge to find the desired web service

due to rapid growth of web services available on internet. There

is a need of a strategy to locate web services with issues

covering like performance, flexibility and reliability across

multiple heterogeneous registries, which is a challenging task

yet. Our proposed framework covers the limitations of current

techniques; it actively obtains user required web service by

crawling among different repositories. We have used Google

Custom Search API for this purpose. The search is both

interface based and functional level and there is flexibility to add

more links to expand the needs of user request. We have

performed some verification and validation checks to confirm

the retrieved document is a web service and is currently

available.

General Terms

Web Service Discovery

Keywords

Web Service, Discovery, interface, functional, Google API.

1. INTRODUCTION
A wonderful trend in technology of the age is that Web services

serve on internet as replacement of applications. Services are

small components present on internet that cooperatively make a

complete application environment.

Services have many characteristics that make them able to be a

part of an architecture that is mutually service oriented, but it is

also quality of service that it can function completely

independently. So we can say that each service is accountable

for its own operation as a whole. Due to independence of

individual operation or service domain, the structure they have

and their programming logic

need not obey to any specific platform or technology.

Web Services are applications that can be published to be found

on internet and then invoked to give result of the operation

defined in it.

A Web service can be an application component like: currency

conversion, weather reports, or even dictionary as service. They

also solve interoperability problems by providing a way to

exchange data between different applications with different

platforms. So they are gradually attaining preference as a

technology among developers and businesses.

Services are registered in registries bye their providers. Usually

in UDDI. For communication between providers and consumers

SOAP messages are exchanged. HTTP protocol is used for such

communications. It is becoming critical day by day to find the

required service due to rapidly increasing number of web

services available on internet. A procedure called Web Service

Discovery is used to find the required needs.

UDDI search allows only specific keywords to be searched for

example Service Name, key or category. So this was only

interface based search.

Using different crawling open source applications the user is

limited to search single domain at a time.

Google WSDL API was specific for wsdl search in web service

discovery. For some reasons it has been depreciated.

We have used Google Custom Search API to provide the user

search its required service. Though the API is not specific for

web service search but we have customized it to produce results

that are only web services.

Current approaches for service discovery have some limitations

these are:-

1. Querying Heterogeneous registries at a time.

2. Retrieving up to date information on user’s request.

3. In case of searching from web there is a need of in time

response.

4. One time consuming task is that the users have to search

whole registry each time they need a service. It requires a lot of

effort.

5. Majority of current approaches, lack a reliable, stable and

trust-worthy discovery.

6. Services are themselves heterogeneous i.e. they have different

formats for exchanging data.

7. The web services published are tagged with a lot of

information that makes a program difficult to trace out the

required web service on given attributes.[2]

Keywords are used to discover web services in UDDI. Ranking

services and filtering them is main advantage of UDDI. Main

drawback is that search can only be made on basis of metadata

so it limits the search criteria.

A. Contribution

We have proposed a framework to overcome some web service

discovery problems. Using Google Custom Search API provides

the flexibility to search the user query on more than one

heterogeneous registry at a time. We have programmed to

retrieve only relevant wsdl files that are valid and available. The

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.7, November 2011

11

limitation of UDDI search is also defeated as whole web is

searched for the user query word, so there is no more

specification of searching by service name/category only. It

takes less time as compared to a usual open source crawler

which reads every word of each child link one by one in desktop

application.

It provides a reliable and trust-worthy service discovery. And

further it provides up to date information.

The organization of paper is such that Section 2 describes the

previous research related to web service discovery. Section 3

presents the detailed overview of proposed framework including

algorithm. Section 4 presents the implementation and key

mechanism and Section 5 gives analysis of proposed framework.

Finally, conclusion and future work is given in section 6.

2. RELATED WORK
A web service search engine [1] has its basis on the study that

centrally maintained repositories are not enough to service

search and keyword search does not provide full matching

requirements for user query.

At first there is a focused crawling for WSDL. They have

considered the information provided in WSDL documentation.

In a next step they have refined the results on user’s explicit

feedback from users. They used HeritrixWeb crawler by adding

some rules to crawl only relevant pages. In next stage they

removed duplicate results. However they could not achieve a

relative accuracy in the retrieval.

A survey paper [2] has given very brief and interesting

investigation of service discovery on basis of requirements given

by the user. They say that WSDL document does not contain

semantic descriptions of the service. So they do not provide non

functional attributes of the service. For UDDI service discovery

they raised a problem that it provides limited space for user to

search on basis of keyword. As it only offer service name and

category search. Also they indicated that most public UDDI’s

have been shut down. And there is no worldwide registry where

all web services are published so there is no procedure to check

performance and scalability. While describing middle agent

challenges they narrated that WSDL documents contain lots of

tags, which make it difficult for the agent to extract the

information.

They concluded that WSDL handles functional requirements of

a web service. An analysis of the various techniques used by

search engines such as Google, Yahoo, and Web Crawlers has

been provided to find their limitations.

Woogle [3] is a web service search engine. They have done

extraction of information about wsdl functionality descriptions,

inputs and outputs. They used clustering of parameters,

matching of input output and operations, and stored the results

in a database.

They compared their method with Func and Comb.

Comparison of words only with operation names is done by

Func method. Whereas in Comb method web service names,

parameters names and descriptions are also used for matching;

in contrast to Woogle, both of the mentioned keywords are used.

In multi-registry environments THE WEB SERVICES

RESPOSITORY BUILDER [4] provides foundation for web

service discovery. It also provides reliability to some extent. A

responsibility of crawler is that it actively seeks Web services;

they made a registry monitor to track any changes of the

provided registries. Further there is a Term Probing (TB)

component which is responsible to extract words from WSDL

descriptions, at end they provide web service storage to enable

web service search. However there is no semantic support for

service UDDI. They have used the specific registries such as

MUBR, MUTR, SUBR and SUTR and they go around among

them. So the framework is not flexible to be scaled.

The architecture in [5] extends SOA with Quality of service

support for web services. In addition, it verifies, certifies,

confirms, and monitors QoS properties. The architecture

contains these major roles: - UDDI with QoS Information,

Verifier and Certifier, Discovery Agent, QoS Matching,

Ranking and Selection Algorithm. The discovery agent

discovers functionally similar web service from provided UDDI

registry when it receives request from the user.

They described main features required for a Qos based agent.

Response Time, Availability, Throughput, Price are considered

.Their approach is dynamic which keep cover on actual systems

complexity. However their architecture is theoretical so there is

no performance test. They argue that there framework will

enable a more flexible, and trustable architecture.

Web services are XML based software components [6].

So they can be discovered in basis of signature and interface

matching. So the search process depends on actual components

of the service completely. WSDL is an XML based format

which not only defines it functionality but also abstract

operations and network bindings. [7].

Keyword matching is used for service discovery using UDDI.

The work is matching XML schema with various comparisons

using intelligent algorithms. Suffix, prefix and infix can be used

for string matching. [8]

Liang-Jie Zhang, Qun Zhou [9] their framework solves the

problem of linked documents. WSIL is used to search the chain

services and results are return to the users after aggregation. So

they solved the problem of manual link documents search. The

chains of the documents are retrieved by re exploring the links

in history using some calculations and caching.

Paul Palathingal [11] gave an agent based approach. The agent

acts dynamically to discover, invoke and then execute the web

services. Using agents it is possible that the sender never knows

the receivers address. The agent who sends request for the

service gets results from then the next agent; composition agent

composes the web service.Service Profile method is used for

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.7, November 2011

12

Service Crawling

Using Google Custom Search API

U
s
e

r
Q

u
e

ry

G
o

o
g

le
 C

u
s
to

m
 S

e
a

rc
h

 A
P

I

Client Provider

Scale to

desired Links

Results

Parse

Extract WS

Initial Display

Validity

Database Database

Valid Display

Fig 1. Framework for Service Crawling using Google Custom search API

Dynamic Web Service Discovery in [14]. They do not describe

the internal web service behavior.

Lots of work has been done for web service discovery. All the

frameworks provide best results in some way or other. But there

is still a need for better discovery processes. Our paper gives an

approach and proposes a framework that is flexible, scalable,

reliable, and efficient.

3. PROPOSED FRAMEWORK
The framework shown in Fig 1 is quite simple and

understandable. It includes following steps.

1. User queries the system. The input can be any word in users

mind. The system matches the query word not only with service

interface but also with its methods.

2. The request goes to Google Custom Search Engine through

Google Custom Search API.

3. The engine has been scaled to the desired links to crawl. It

can be scaled any time.

4. Engine crawls on all the links given and produces the results.

5. Results produced are not user understandable format. So the

system parses the results produced.

6. System Extracts the Wsdl files from the set of results.

7. Results are displayed to the Client.

8. To check whether the service is available at given time. We

have performed the validity check.

9. Results are displayed and sent to local database.

10. A backup database is maintained to provide reliability.

A. Pseudo Code: The pseudo code of proposed technique is

given as:

Fig 2. Algorithm for Service Crawling using Google Custom

search API

Algorithm: Web Service Crawling

Input: Request for Web service

Output: Desired Service

Crawling links are added to Google Custom Search

Engine;

User enters input request for web service;

For each input

Input goes to Google Custom Search Engine

through Google Custom Search API.

Engine produces results.

Results are parsed to human readable format.

Only wsdl link and related information are

extracted from the results.

Results are displayed to user.

Validity check is performed

Valid results at present are displayed

If result is not already in database

Results are stored in database.

Results are stored in backup database.

If no result found for user query word

 Message dialogue is displayed to enter

synonym query word, Or to scale the engine to

more links

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.7, November 2011

13

4. IMPLEMENTATION
The implementation has been done using Netbeans 6.9. Json is

used along with google custom search api to get results of user

query. JSON (JavaScript Object Notation) is a data-interchange

format. JSON is completely independent of any language or

environment but uses standards that are familiar to

programmers. The specific format for the single JSON/Atom

Custom Search API URI is:

“https://www.googleapis.com/customsearch/v1?parameters”

And the parameters we inserted are:

“https://www.googleapis.com/customsearch/v1?key=INSERT-

YOUR-KEY&cx=017576662512468239146:omuauf_lfve

&callback=processResults &q=weather”;

Where key is given to authenticate user, cx: The identifier of the

custom search engine, callback is JSON Callback function to

handle response. And q is actual query word. Being free user of

the engine we can query 100 words per day. Can extend this

limit by some payments required.

After getting the result from API into Net Beans we parsed the

results to display only required information to user. Parsing

required many matching and splitting statements. Next to

parsing we have done wsdl extraction by matching end part

resulting URL links to “asmx” or “wsdl”. It is possible that

when the user queries for a service the engine responds links

that are not available at present time, i.e. timed out or any

network error. We have performed validity check for that. To

make the system reliable we maintained databases. MYSQL 5.5

is used to store information for future use. Only that information

is stored which is not added to the database previously. Also we

maintained a duplicate database to provide reliability. Following

is responses message of JSON, we have only displayed two

results of message.

Figure 3 shows response of JSON when queried through Google

API. Figure 4 and 5 are GUI for Service Crawling through

Google Custom Search API.

Fig 3.JSON response Message, Crawling using Google

Custom search API

// API callback

processResults

(

{

 "kind": "customsearch#search",

 "url":

{

 "type": "application/json",

 "template":

"https://www.googleapis.com/customsearch/v1?q={searc

hTerms}&num={count?}&start={startIndex?}&hr={lang

uage?}&safe={safe?}&cx={cx?}&cref={cref?}&sort={s

ort?}&filter={filter?}&gl={gl?}&cr={cr?}&googlehost=

{googleHost?}&alt=json"

 },

"queries":

 {

 "request":

 [

 {

 {

"title": "Google Custom Search - .*weather.* ",

 "totalResults": "2",

 "searchTerms": ".*weather.*asmx?wsdl",

 "count": 10,

 "startIndex": 1,

 "inputEncoding": "utf8",

 "outputEncoding": "utf8",

 "safe": "off",

 "cx": "00138924657042:ocz3xgu",

 "filter": "1"

 }

]

},

 "context": { "title": "Service Search"

 },

 "items": [

 {

 "kind": "customsearch#result",

 "title": "global weather wsdl - WebserviceX.NET",

 "htmlTitle": "\u003cb\u003eglobal weather

wsdl\u003c/b\u003e - WebserviceX.NET",

 "link":

"http://www.webservicex.com/globalweather.asmx?wsdl",

 "displayLink": "www.webservicex.com",

 "snippet": "Get weather report for all major cities around

the world. Get all major cities by country name(full /

part). Get weather report for all major cities around the

world. ...",

 "cacheId": "R77gPNVFbxMJ"

 },

 {

 "kind": "customsearch#result",

 "title": "Global Weather - WebserviceX.NET",
 "htmlTitle": "\u003cb\u003eGlobal

Weather\u003c/b\u003e - WebserviceX.NET",

 "link":

"http://www.webservicex.com/ws/WSDetails.aspx?WSID

=56&CATID=12",

 "displayLink": "www.webservicex.com",

 "snippet": "Current weather and weather conditions for

major cities around the world ... http://

www.webservicex.net/globalweather.asmx?WSDL Demo

of this Web service ...",

 "cacheId": "D5o5Lqe8nGAJ",

 "pagemap": {

 "metatags": [

 {

 "code_language": "C#",

 "vs_defaultclientscript": "JavaScript",

 "vs_targetschema":

"http://schemas.microsoft.com/intellisense/ie5"

 }

]

 },

);

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.7, November 2011

14

Fig 4.Crawl results

Fig 5.Valid WSDLS

5. EXPERIMENTAL EVALUATION
Since we can add more parent links to Google Custom engine,

the user has more chances of getting the required service which

is updated and exact. So our framework is scalable and flexible.

Crawling a link is same as compared to other open source

crawlers. The user query is matched on all the available child

links of the provided link. But the engine response is efficient

than those application crawlers.

Further those crawlers can crawl only one domain at a time. The

custom search engine crawls all the provided links at once. We

measured top-k precision (Pk) to check the overall performance.

The formula we used is

𝑝𝑘 =
 𝑟𝑒𝑡𝑟𝑖𝑣𝑒𝑟𝑒𝑙𝑘

𝑘

Where k is total number of results retrieved and retriverelk is

total number of relevant results. [3]

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.7, November 2011

15

6. RESULTS AND DISCUSSION
Applying above formula for results and analysis. We have taken

average of 25 samples for each k precision. The results we got

are shown in graph below Figure 6. Since we performed a check

to extract only wsdl. And our system is matching the user query

to both interface and functional level of wsdl. We got better top

k precision as compared to [3] and two other naïve algorithms

Func and Comb.

 Fig 6.Top K Precision

7. CONCLUSION
This paper presents a framework for service crawling using

Google Custom Search API. The framework is flexible,

scalable, efficient and reliable.

In our approach the requester always gets up to date services the

retrieval is fast and efficient. Also the client is able to add more

repositories from where the services can be crawled. Our

framework covered the limitations of formal UDDI search by

searching whole page for user query. So user is not limited to

give only the service name or category.Also it covers the

limitation of usual crawlers in which the crawling for service

can be done on only one domain at a time. We can crawl on

heterogeneous registries.

Though there are many web service crawlers available online

but our framework is for those clients who want to crawl and

invoke services from a desktop applications. To provide

reliability we have made a database to store the crawled

services. To prevent duplication the system only adds those

services which are not already present in the database. The

updated information retrieval means the system checks weather

the service is available at present or not. Also the results give

better precision as compared to online engines for service

search. Thus the proposed algorithm fix current issues of web

services discovery. In future, the framework can be extended by

making use of AI algorithms for discovery process. We will also

experiment with Indexer discovery algorithm [15]. We plan to

add ranking mechanism to index the links such that more trusted

ones can be prioritized.

8. REFERENCES
[1] Holger Lausen and Thomas Haselwanter, “Finding Web

Services” 2007.

[2] Mydhili K Nair, Dr. V.Gopalakrishna, “Look Before You

Leap: A Survey of Web Service Discovery” International

Journal of Computer Applications (0975 – 8887) Volume

7– No.5, September 2010

[3] Xin Dong Alon Halevy Jayant Madhavan Ema Nemes Jun

Zhang, “Similarity Search for Web Services” Proceedings

of the 30th VLDB Conference,Toronto, Canada, 2004

[4] Eyhab Al-Masri and Qusay H. Mahmoud, “ Framework for

Efficient Discovery of WebServices across Heterogeneous

Registries”, (NSERC), 2007

[5] T. Rajendran, Dr.P. Balasubramanie “An Optimal Agent-

Based Architecture for Dynamic Web Service Discovery

with QoS”, 2010 Second International conference on

Computing, Communication and Networking Technologies

[6] Eyhab Al-Masri and Qusay H. Mahmoud, “WSCE: A

Crawler Engine for Large-Scale Discovery of Web

Services” (ICWS 2007)

[7] Karastoyanova and A. Buchmann, "Components,

Middleware and Web Services," Technische Universität

Darmstadt, 2003

[8] E. Christensen, F. Curbera, G. Meredith, and

S.Weerawarana, "Web Services Description Language

(WSDL) 1.1," 2001.

[9] H. H. Do and E. Rahm, "COMA – “A system for flexible

combination of schema matching approaches," presented at

28th VLDB Conference, 2002.

[10] Liang-Jie Zhang, Qun Zhou, Tian Chao “A Dynamic

Services Discovery Framework for Traversing Web

Services Representation Chain”, Proceedings of the IEEE

International Conference on Web Services

[11] Paul Palathingal “Agent Approach for Service Discovery

and Utilization”, Proceedings of the 37th Hawaii

International Conference – 2004.

[12] Aabhas V. Paliwal “Web Service Discovery via Semantic

Association Ranking and Hyperclique Pattern Discovery”,

Proceedings of the 2006 IEEE/WIC/ACM International

Conference.

[13] Holger Lausen and Thomas Haselwanter “Finding Web

Services”.

[14] Lei Li and Ian Horrocks. A Software Framework for

Matchmaking Based on Semantic Web Technology. In

Proc. Of the Twelfth International World Wide Web

Conference (WWW 2003), pages 331-339, ACM, 2003.

[15] Saba Bashir, M.Younus Javed,Farhan Hassan Khan,

“INDEXER BASED DYNAMIC WEBSERVICES

DISCOVERY” (IJCSIS) International Journal of

Computer Science and Information Security,Vol. 7, No. 2,

February 2010

0

0.2

0.4

0.6

0.8

1

Top 2 Top 5 Top 10

Top K Precision

Func

Comb

Woogle

Our Framework Crawling

