
International Journal of Computer Applications (0975 – 8887)

Volume 34– No.6, November 2011

18

Static Workload Distribution of Parallel Applications in

Heterogeneous Distributed Computing Systems with

Memory and Communication Capacity Constraints

Marwa Shouman
Department of Computer
Science and Engineering,

Faculty of Electronic Eng.,

Minufiya University, Egypt.

Gamal Attiya
Department of Computer
Science and Engineering,

Faculty of Electronic Eng.,

Minufiya University, Egypt.

Ibrahim Z. Morsi
Department of Electrical

Engineering,
Faculty of Engineering,

Minufiya University, Egypt.

ABSTRACT

This paper addresses the problem of static load balancing in

heterogeneous distributed computing systems taking into

account both memory and communication capacity constraints.

The load balancing problem is first modeled as an optimization

problem. Then, a heuristic approach, called Adaptive Genetic

Algorithm (AGA), is proposed to solve the problem. The

performance of the proposed algorithm is evaluated by

simulation studies on randomly generated instances and the

results are compared with that obtained by applying both the

Genetic Algorithm (GA) and the Simulated Annealing (SA).

Also, the qualities of the results are compared with the optimal

solutions that obtained by applying the Brach-and-Bound (BB)

algorithm.

General Terms

Distributed Computing, Allocation and Scheduling, Heuristics.

Keywords

Load Balancing, Mapping, Simulated Annealing, Genetic

Algorithm, Heuristics.

1. INTRODUCTION
Distributed computing systems have become competitive in

providing the power of super machines with only a small initial

cost. Such system has further benefit of providing the industry

with an easy and modular upgrade path to increase the power of

the system by increasing the number of networked computers. A

major problem arises with such system is how to balance the

workload of a parallel application over the available computers

of the system so as to minimize the application turnaround time.

If this step is not done properly, an increase in the number of

computers may actually result in a decrease of total throughput.

This degradation is caused by what is commonly called the

’saturation effect’ which occurs due to heavy communication

traffic incurred by data transfer between tasks that reside on

separate computers.

Several approaches have been suggested to solve the load

balancing problem. They may be roughly classified into two

main categories, namely, exact algorithms and heuristic

methods. The exact algorithms may be developed using different

strategies such as graph theory [1], state space search [2-4] and

mathematical programming [5-7]. However, the exact

algorithms are limited by the time required to obtain an optimal

solution, where the time grows exponentially with the problem

size. Thus, they are properly used for small problems. On the

other hand, heuristic methods provide fast and effective means

for obtaining suboptimal solutions. Different approaches may be

used for building heuristics such as greedy heuristics [8], tabu

search [9], genetic algorithm [10-15], simulated annealing [16-

18] and clustering [19]. Most of the existing approaches

however deal with homogenous systems or heterogeneous

systems without considering different types of constraints that

may be imposed by the system resources or the application

tasks. The load balancing problem becomes more complicated

when the system contains heterogeneous components such as

different processors with different speeds and different resources

such as memory and communication capacities.

 This paper tackles the load balancing problem in heterogeneous

distributed computing systems taking into account both memory

and communication capacity constraints. It first models the load

balancing problem as an optimization problem. It then presents a

modified genetic algorithm, called Adaptive Genetic Algorithm

(AGA) that adapts the mutation rate of the well known genetic

algorithm, to solve the problem in less computation time. The

performance of the proposed algorithm is evaluated by

simulation studies on randomly generated instances and the

results are compared with that obtained by applying two

heuristic approaches; Genetic Algorithm (GA) and Simulated

Annealing (SA). Also, the qualities of the results are compared

with the optimal solutions that obtained by applying the Brach-

and-Bound (BB) algorithm.

The remainder of this paper is organized as follows; Section 2

illustrates the load balancing problem while Section 3 presents a

mathematical model for the problem. The proposed algorithm is

described in Section 4 and the performance evaluation is

presented and discussed in Section 5. Finally, the paper

conclusions are given in Section 6.

2. LOAD BALANCING PROBLEM
A distributed computing system consists of a set of N heteroge-

neous computers interconnected by an interconnection network,

as shown in Figure 1(a). Each computer has some computational

facilities and a local memory. Furthermore, the interconnection

network has communication capacity and cost of transferring a

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.6, November 2011

19

data unit from one computer to another. A parallel application,

on the other hand, consists of a set of M communicating tasks as

shown in Figure 1(b). Each task requires some computational

facilities and communicating tasks require some communication

capacity. The load balancing problem is concerned with

balancing the workload distribution of the parallel application

tasks onto processors of the distributed computing system to

minimize the application turnaround time. The workload

distribution must be done such that the requirements of tasks are

met and the availability of the system resources is not violated.

(a) Distributed Computing System

(b) Parallel Application

Figure 1: Distributed System and Parallel Application

3. PROBLEM FORMULATION
Formulating a mathematical model to the load balancing

problem involves two steps:

1. Formulate a cost function to represent the main

objective.

2. Formulate some constraints or inequalities in terms of

both the tasks requirements and the availability of the

system resources.

To do so, let X be an M x N binary matrix corresponding to an

assignment of M tasks onto N processors such that






wise Other

r po processoassigned task i is if t
ip

0

 1
X

3.1 Cost Function
The objective is to balance the workload over all processors in

the system so as to minimize the completion time of the entire

application. For an assignment X, a processor load comprises of

the execution time and the communication time associated with

tasks that are assigned to it. The required time by the heaviest

loaded processor determines the entire application turnaround

time. Therefore, balancing the workload may be achieved by

minimizing the load at the maximum loaded processor.

The total workload (Lp) at processor p is defined as the sum of

the total execution time (EXECp) and communication time

(COMMp) corresponding to the tasks that are assigned to the

processor p. Hence, the workload at processor p may be

formulated as:

 Lp = EXECP + COMMp

Where,

ip

i

ip XCEXECp  and 
 



pq i ij

jqipijpq XXCCOMMp

Cip is the cost of processing task i at processor p and Cijpq is the

cost of communication between task i and task j if i is assigned

to processor p and j is assigned to processor q.

The maximum load (Cmax) at the heaviest loaded processor may

be formulated as

Cmax = max {Lp│1≤p≤N}

To minimize completion time, the cost at the heavy loaded

processor should be minimized, i.e,

min Cmax

In other words
















 pq i ij

jqipijpqip

i

ip XXCXC m ax m in p

This represents the main cost function to be optimized by the

algorithms.

3.2 Constraints
During workload distribution, additional constraints should be

considered to achieve the application requirements and validate

the availability of the system resources.

Location constraints: Each task should be assigned to one and

only one processor on which it is entirely executed without

preemption. The following equality must hold at each task

1
p

ipX

Memory Constraints: The total memory required by all tasks

assigned to a processor p must be less than or equal to the

available memory capacity of the processor p. Let mi denotes the

amount of memory required for processing a task i and Mp

defines the available memory at processor p, then the following

inequality must hold at each processor p in the system:

 P1 P2 P3 Pn

M1 M2 M3 Mn

Interconnection Network

t1

t2

t3

t4

t5

t6

1; 1

2; 2

3; 3

4; 4

5; 5

2

3

4

5

6

4

2

t1

t2

t3

t4

t5

t6

1; 1

2; 2

3; 3

4; 4

5; 5

6; 6

2

3

4

5

6

4

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.6, November 2011

20

p

i

i Mm 

Processing Constraints: The total processing time required by

all tasks assigned to a processor p must be less than or equal to

the available computational time of processor p. Let pi denotes

the processing time requirements of a task i and pp denotes the

available processing time of processor p, then the following

inequality must hold at each processor p in the system

p

i

i Pp 

Communication Capacity Constraints: The total

communication capacity required by all edges mapped to a

communication path/link pq must be less than or equal to the

available communication capacity of the path pq. Let bij denotes

the amount of communication capacity required to communicate

data between tasks i and j residing at different processors p and

q respectively, and Apq denotes the avai1able communication

capacity of the path/link pq. Then, the following inequality must

hold at each communication path/link pq.

pq

i ij

ij Ab 


3.3 Mathematical Model
From sections 3.1 and 3.2, the load balancing problem may be

formulated as:
















 pq i ij

jqipijpqip

i

ip XXCXC m ax m in p

Subject to

i tasks1  X

p

ip

p processors  Mm p

i

i

p processors  Pp p

i

i

pq paths 


 Ab pq

i ij

ij

In this model, the cost function is formulated to minimize the

maximum cost at a bottleneck processor p, where, the cost is the

total time required for the processor p to process all the tasks

assigned to it and to communicate with other processor q. Also,

several constraints are incorporated into the model so as to

achieve the application requirements and validate the

availability of the system resources.

4. PROPOSED ALGORITHM
The proposed algorithm is basically based on modifying the

simple genetic algorithm so as to obtain good quality solutions

in less computational time. In the following, we first present the

simple genetic algorithm and then present our modifications to

it.

4.1 Simple Genetic Algorithm
The general flowchart of the Simple Genetic Algorithm (SGA)

is shown in Figure 2. The algorithm starts by generating an

initial population of random candidate solutions. For load

balancing problem, each individual in the population represents

a random assignment of the application tasks onto the processors

of the distributed system. Each individual is then awarded a

score based on its performance. The individuals with the best

scores are chosen to be parents. The parents are cut and spliced

together using crossover to make children. The generated

children are mutated based on a mutation rate , then scored,

and the best individuals are chosen to be parents of the next

generation. At some point the process is terminated and the best

scored individual in the population is taken as the final result.

Figure 2: Simple Genetic Algorithm.

4.2 Adaptive Genetic Algorithm
In the simple genetic algorithm the mutation rate  is

considered to be constant over all generations. The main idea of

the proposed modifications is to adapt the mutation rate

parameter  dynamically based on the search process to

maximize relative improvement. A well-known example of this

type of parameter adaptation is the "1/5 success rule" in (1+1)

evolution strategies [20]. This rule states that the ratio of

successful mutations (a mutation is called successful if it

produces an offspring that is better than the parents) to all

mutations should be 1/5. Hence, if the ratio is greater than 1/5

then the step size (i.e., mutation rate) should be increased,

and if the ratio is less than 1/5, the step size should be decreased.

To describe the mutation rate parameter adaptation, let sp be

the relative frequency of successful mutations measured over

some n number of generations, t is the current generation

number varying from 0 to total number of generations, and c is

 Perform reproduction using crossover

Generate an initial population of

chromosomes of size k

Score each individual by calculating

the fitness of each chromosome

 Select best parents using selection rule

 Perform Mutation in children

Score each Individual by calculating

the fitness of each chromosome

Score each Individual

Yes

 End of iterations?

Keep best individual

No

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.6, November 2011

21

constant value 0.817 ≤ c ≤ 1 [20]. Thus, the parameter

adaptation is:

if (t mod n = 0) then

  (t) =















5/1)(

5/1).(

5/1/)(

s

s

s

pifnt

pifcnt

pifcnt







Else

  (t) =  (t-1);

By using this mechanism, changes in the parameter value are

now based on the feedback from the search process, and the  -

adaptation happens every n generations. If n =1, this means that

the  -adaptation happens with each generation.

Figure 3 shows the interaction of the  -adaptation mechanism

with the simple genetic algorithm. The modified algorithm is

called Adaptive genetic Algorithm (AGA).

Figure 3: Adaptive Genetic Algorithm

4.2.1 Population Encoding
An initial population of size K chromosomes is randomly

generated. Each chromosome in the population consists of M

genes (equivalent to the same M number of tasks) and each gene

is represented by a number r such that 1 ≤ r ≤ N. Where, N is the

number of processors. The generated chromosomes are then

scored and evolved for a specified number of generations.

4.2.2 Selection
At each iteration, S pairs of parents are chosen. Each pairs

produces two children using crossover, so, 2S children are

created. Mutations are then applied and the children are scored

using fitness function. From the (K + 2S) individuals (original

population plus the created children), the best scored K

chromosomes are selected for the next generation, and the

process repeated. The final distribution is taken as the fit

individual (exhibiting the lowest cost) after specified number of

iterations.

4.2.3 Crossover
Crossover refers to the mixing of information from both parents

to create children. In load balancing, the crossover process

implies a child will receive the left side from the first parent and

the right side from the second parent. The second child receives

the complement parts that not taken by the first child, i.e., it

receives the right side from the first parent and the left side from

the second parent, with the same crossover location. Where, the

crossover location is randomly selected.

4.2.4 Mutations
Following the creation of children by the crossovers, mutations

are applied to the children. In load balancing, a mutation means

replacing a distributed task from one processor to another

processor by a randomly chosen task and a randomly chosen

processor.

5. PERFORMANCE EVALUATION
The proposed algorithm is coded in Matlab and evaluated for a

large number of randomly generated instances that being

mapped into a distributed system of N computers with bus

topology. The qualities of the results are compared with those

obtained by using the Branch-and-Bound (BB) algorithm [7]

which applied on the same instances. In the following

subsections, the test conditions for applying SA [15], SGA and

AGA to solve the load balancing problem are first given and

then some simulation results are discussed.

5.1 Test Conditions
In applying the SA algorithm [15], a neighboring solution is

obtained by choosing a task randomly and assigns it to another

randomly selected processor p. For the cooling process, a

geometric cooling schedule is used. An initial temperature T is

set after executing a sufficiently large number of random moves

such that the worst move would be allowed. The temperature is

reduced so that T = α x T, where α=0.90. At each temperature,

the chain nrep is updated in a similar manner: nrep = β x nrep,

where β= 1.05. The stopping criterion is to reach the last

iteration.

In applying SGA, each chromosome consists of M genes. Each

gene is represented by a number r such that 1 ≤ r ≤ N. Where, M

is the number of tasks and N is the number of processors. An

initial population of size K=100 chromosomes is created.

Consequently, the population is ranked and the best 50% of

chromosomes are chosen to go forward to the next generation.

Crossover is performed on all the selected chromosomes by

selecting random pairs using Roulette Wheel method without

replacement. The mutation probability is chosen to be 0.1 and

Cmax is used as the evaluation (fitness) function.

 Perform reproduction using crossover

Generate an initial population of

chromosomes of size k

Score each individual by calculating

the fitness of each chromosome

 Select best parents using selection rule

 Perform Mutation in children

Score each Individual by calculating

the fitness of each chromosome

Score each Individual

Yes

 End of iterations?

Keep best individual

No

Adaptation Mechanism

For every n generation, adapt

the mutation rate  based on

relative improvement

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.6, November 2011

22

In applying AGA, an initial population of size K=100

chromosomes is randomly generated. For each iteration, a set of

15 pairs of parents are chosen by tournament selection, whereby

each parent is selected as the best of 5 randomly chosen

chromosomes from the best 10 candidates. Crossover is

performed on all the selected parents by selecting random pairs

using Roulette Wheel method. So, the 15 pairs of parents create

30 children. Mutation is done based on the adapted mutation

ratio and the individuals are scored using Cmax as the evaluation

(fitness) function. Over these 130 chromosomes (original

population of 100 plus the 30 children), the 100 best scoring

chromosomes are retained for the next generation. The mutation

rate is adapted with each generation (i.e., n=1).

5.2 Simulation Results
Figures 4 and 5 show the simulation results of assigning

randomly generated instances onto a distributed computing

system of 4 computers with LAN topology.

Figure 4: Computation Time of different Algorithms

Figure 5: Turnaround time of the entire application

Figure 4 shows the computation time of the SA, SGA and AGA

algorithms as a function of the number of tasks. From the figure,

the SA finds a solution very fast compared with the SGA but has

a comparable computation time with applying AGA. Figure 5

shows the quality of the results that obtained by the SA, SGA,

and AGA in comparing with the optimal solution obtained by

the BB algorithms [7]. It is clear that the quality of solutions that

obtained by the AGA are better than that obtained by both the

GA and the SA.

Figures 6, 7 and 8 show the simulation results of assigning other

randomly generated instances onto a distributed computing

system of 5 computers with LAN topology. Figure 6 shows the

computation time of the SA, SGA and AGA algorithms as a

function of the number of tasks for instances up to 50 tasks.

Figure 7 shows the quality of solutions that are obtained by

applying SA, SGA and AGA on the same instances. It is clear

that AGA has the best results compared to SA and SGA. Figure

8 shows the workload distribution onto the 5 processors by

applying SA, SGA, and AGA algorithms respectively. As shown

in the figure, the workload distribution resulting by using AGA

algorithm is better than that obtained by using SA and GA.

Figure 6: Computation Time of different Algorithms

Figure 7: Turnaround Time of the entire application

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.6, November 2011

23

(a) Workload Distribution using SA

(b) Workload Distribution using SGA

(c) Workload Distribution using AGA

Figure 8: Workload Distribution

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.6, November 2011

24

6. CONCLUSIONS
In this paper, the load balancing problem is modeled as an

optimization problem and an Adaptive Genetic Algorithm

(AGA) is developed to solve the problem. The algorithm is

based on adapting the mutation rate parameter () of the well

known Genetic Algorithm (GA) so as to solve load balancing

problem in less computation time than that required by the GA.

The proposed algorithm is tested and evaluated for a large

number of randomly generated task graphs that being assigned

to processors of a distributed computing system. The results

shown that, the proposed algorithm provides high quality

solutions in comparing with both the SA and the GA.

7. REFERENCES
[1] C.-C. Hui and S. T. Chanson, “Allocating Task Interaction

Graph to Processors in Heterogeneous Networks,” IEEE

Transactions on Parallel and Distributed Systems, Vol. 8,

No. 9, pp. 908-925, September 1997.

[2] M. Kafil and I. Ahmed “Optimal Task Assignment in

Heterogeneous Distributed Computing Systems,” IEEE

Concurrency, Vol.6, No.3, pp.42-51, July-September 1998.

[3] A. Tom and C. S. R. Murthy “Optimal task allocation in

distributed systems by graph matching and state space

search,” J. of Systems and Software, Vol. 46, No. 1, pp.

59–75, April 1999.

[4] Nirmeen A. Bahnasawy, Gamal M. Attiya, Mervat Mosa

and Magdy A. Koutb, "A Modified A* Algorithm for

Allocating Tasks in Heterogeneous Distributed Computing

Systems" International Journal of Computing, Vol. 8, Issue

2, pp. 50-57, 2009.

[5] Y.-C. Ma and C.-P. Chung, “A Dominance Relation

Enhanced Branch-and-Bound Task Allocation,” J. of

Systems and Software, Vol. 58, No. 2, pp.125-134, Sep.

2001

[6] G. Attiya and Y. Hamam “Static Task Assignment in

Distributed Computing Systems,” A book chapter in

"Information processing: Recent Mathematical Advances in

Optimization and Control", Chapter XIX, pages 241-258.

Presses de l'Ecole des Mines de Paris, Paris, 2005, ISBN:

2911762568.

[7] G. Attiya and Y. Hamam. “Optimal Allocation of Tasks

onto Networked Heterogeneous Computers using minimax

Criterion,” International Network Optimization Conference

(INOC'03), pp. 25-30, Evry/Paris, France, 2003.

[8] P. Bourvy, J. Chassin, M. dobruck, L.Hluch , E. Luque, and

T. Margalef, “Mapping and Load Balancing on Distributed

Memory Systems,” Proceedings of the Eight Symposium

on Microcomputer and Microprocessor Applications, Vol.

1, pp. 315-324,1994.

[9] P. Bouvry, J. Chassin, and D. Trystram, “Efficient Solution

for Mapping Parallel Programs,” Proceedings of

EuroPar'95, LNCS: 379-390, August 1995.

[10] L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A.

Maciejewski, “Task Matching and Scheduling in

Heterogeneous Computing Environments Using a Genetic-

Algorithm-Based Approach,” J. of Parallel and Dist.

Computing, vol.47, pp.8–22, 1997.

[11] J. Aguilar and E. Gelenbe, “Task Assignment and Transac-

tion Clustering Heuristics for Distributed Systems,”

Information Sciences, Vol. 97, No.1-2, pp.199–219, March

1997.

[12] M. H. Zaharia, F. Leon, D. Gâlea, “Parallel Genetic

Algorithms for Cluster Load Balancing,” Proceedings

ECIT2004 - Third European Conference on Intelligent

Systems and Technologies, Iasi, Romania, July 21-23,

2004.

[13] Bibhudatta Sahoo, Sudipta Mohapatra, and Sanjay Kumar

Jena, "A Genetic Algorithm Based Dynamic Load

Balancing Scheme for Heterogeneous Distributed Systems"

Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications

(PDPTA 2008), Las Vegas, Nevada, USA, July 14-17,

2008. ISBN: 1-60132-084-1

[14] Kamaljit Kaur, Amit Chabra, and Gurvinder Singh,

"Modified Genetic Algorithm for Task Scheduling in

Homogenous Parallel System using Heuristics,"

International Journal of Soft Computing 5 (2), pp. 42-51,

2010. ISSN: 1816-9503.

[15] M.shouman, G.M.Attiya, and I.Z.Morsi, "Two Heuristic

Approaches for Mapping Parallel Application on

Distributed Computing Systems" Menoufia Journal of

Electronic Engineering Research (MJEER), Vol. 18, no. 2,

pp. 85-98, July 2008.

[16] Y. Hamam and K.S. Hindi, “Assignment of Program

Modules to Processors: A Simulated Annealing Approach,”

European Journal of Operational Research, Vol. 122, No. 2,

pp.509-513, April 2000.

[17] Gamal Attiya and Yskandar HAMAM, "Task Allocation

for maximizing reliability of distributed Systems: A

Simulated Annealing Approach", Journal of parallel and

distributed computing (JPDC), Vol. 66, No. 10, pp. 1259-

1266, October 2006.

[18] G. Attiya and Y. Hamam, “Two Phase Algorithm for Load

Balancing in Heterogeneous Distributed Systems,” IEEE

Proceedings of 12th Euromicro Conference on Parallel,

Distributed and Network based Processing (PDP2004), pp.

434-439, A Coruna, Spain, Feb. 11-13, 2004.

[19] M. A. Senar, A. Ripoll, A. Corts, E. Luque, “Clustering and

Reassignment–Based Mapping Strategy for Message-

Passing Architectures,” Journal of System Architecture,

Vol. 48, No. 8-10, pp.267-283, March 2003.

[20] Á. E. Eiben, R. Hinterding, and Z. Michalewicz,

“Parameter control in evolutionary algorithms,” IEEE

Trans. Evol. Comput., vol. 3, pp. 124-141, Jul. 1999.

