
International Journal of Computer Applications (0975 – 8887)
Volume 34– No.3, November 2011

26

Encoding SystemC Models in Formal Synchronous
Formalism

Riadh HOCINE
Department of Computer

Science, University of Batna
Algeria

 Hamoudi KALLA
Department of Computer

Science, University of Batna
Algeria

ABSTRACT
The size and thus the complexity of many systems, that use an
intellectual property component (IP), have reached a level where
design validation with mere testing and simulation does not
deliver the required quality any more. Obtaining a formal model
from a non-formal one is a complex and error prone task. A
logical step is therefore to try to generate automatically a formal
description from an existing non-formal system model, thus
making this step faster and more reliable.

In this paper, we describe a methodology to automatically
generate formal synchronous models from existing non-formal
system level design descriptions that integrates smoothly into
existing co-design flows. We exemplify the approach with the
popular system design language SystemC and the flexible and
expressive synchronous dataflow formalism SIGNAL. SystemC
is a HDL which allows for modeling systems in behavioral
level, it is a set of library routines and macros implemented in
C++, it is a good language for input of design flow for the
systems which requires verification, but it is not a formal
language.

General Terms
Embedded Systems, Intellectual Property Components,
Hardware Description Language, Synchronous Formalism,
Formal Methods.

Keywords
SystemC, SIGNAL, Pointers Analysis, Static Single
Assignment, Functional and Compositional Correctness.

1. INTRODUCTION
The miniaturization of silicon transistors makes it possible to
integrate hundreds of millions of them on a single chip - 267
millions for example for the Power5 processor of IBM in 2004.
The Semiconductor Industry Association (SIA) is predicting that
by 2020 the number of transistors on a single high performance
chip will be exceeding 22 billion (Figure 1).
The size and therefore the complexity of systems are growing
exponentially but competition and consumer demand is asking
for shorter time to market. While observing these developments,
one may ask how companies will be able to deal with these
challenges. One possibility is the degradation of product quality.
Indeed, many electronic products we can buy today, especially
in the leading edge lines, show more or less annoying problems.
In order to work against this trend, designer productivity has to
be increased drastically. This can be done by (i) modeling at a
higher level of abstraction, (ii) the reuse of components, (iii)
using formal methods in the design process, and (iv) using more

advanced tools that properly integrate one or more of the above
in existing design flows.

Fig 1: Number of transistors on a single chip predicted by

the SIA (January 2006)

Various hardware description languages (HDLs) have been used
as input to design process of digital systems in the aim to
describe hardware and sometimes software functionality of
systems. Designers often write system models using such
languages to verify the functional correctness. In order to reduce
design cost and accelerate the design process of complex
systems, the designers are bound to reuse existing blocks called
Intellectual Property (IPs). From this IP blocks, designers adapt
quickly the system to the target application.

Functional and compositional correctness of IPs, are an
important part of design process, however they are typically a
weak spot of general purpose imperative programming
languages. The problem is even more apparent when designers
use pointers in the model description. Many automated
simulator and test tools have been developed to deal with design
verification problems such as [1]. However, mere simulation
with non-formal development tools does by no means cover all
design anomalies. This requires the use of formal methods to
ensure the quality of system design. Formal methods have a big
potential for detecting and preventing errors, however, their
application requires a formal model. There are many reasons
why most system designs languages and methodologies are non-
formal, one of them is simplicity.

SystemC presents a new approach to the concepts of HDL, as it
combines hardware and software descriptions at different levels
of design, by extending C++ with a new library [2]. This library
contains all of the necessary components required to transform

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.3, November 2011

27

C++ into a hardware description language. Such additions
include constructs for concurrently, time notion,
communication, reactivity and hardware data types. However,
the verification of SystemC designs is a serious bottleneck in the
system design flow. Much work has been developed to solving
this problem [3, 4].

SystemC

SIGNAL

SIGALI

Fig 2: Our approach

As for any non-formal language, simulation and testing are its
most important debugging and validation tools. However, the
combination of formal verification methods and simulation may
improve verification productivity and reduce the co stand time-
to-market. Formal methods are mathematically based techniques
for the description of system properties in the development of
software and hardware systems. One major problem with formal
methods however is the building of the formal system models.
This is still considered too complex for a standard design
engineer and an error prone and time consuming task. This
paper is hence trying to leverage the situation by automatically
generating formal models from SystemC programs. Fig 2
illustrates the approach of how to translate existing standard
SystemC models into SIGNAL descriptions.

As the subject of the correctness of SystemC is receiving
increasing attention, there are quite some attempts to link formal
or semi-formal methods to a SystemC design flow. Some of
them are SystemPerl [5], EDG [6], or C++ as in the BALBOA
framework [7]. However, each of these approaches have their
own drawbacks. SystemPerl and gSysC [8] for instance, require
the user to add certain hints into the source file and although
SystemPerl handles all SystemC structural information, it does
not recognize all C++ constructs. EDG is a commercial front-
end parser for C/C++ that parses C/C++ intoa data structure,
which can then be used to interpret SystemC constructs.
However, interpretation of SystemC constructs is a complex and
time consuming task, plus EDG is not to be freely used in public
domain. BALBOA implements its own reflection mechanism in
C++ which again only handles a small subset of the SystemC

language. Other approaches such as [9] require modifications of
the SystemC libraries.

The paper is structured as follows. Section 2 covers
preliminaries, and Section 3 presents our approach to
automatically translate SystemC models into SIGNAL Models.
Section 4 presents the implementation of our approach. Section
5 discusses how the resulting model can then be used to apply
formal methods, and finally the article concludes in Section 6.

2. BASIC CONCEPTS
2.1 Intellectual Property (IP)
Designers try to encourage the reuse of code, moving towards
the assembly of predesigned blocks and pre verification
designated by the term “Intellectual Properties” (IP). This
concept, born in the mid-90s, has led to several concepts: reuse
components [10], virtual components or simply macros.
The Intellectual Property (IP) design reuse is one of the most
promising techniques that solve the productivity gap problem. It
is now accepted that SoC will be verified and synthesized from
high-level description using HDL language [11].

2.2 Hardware/Software Co-design Using
SystemC Language
SystemC is an object-oriented system level language for
embedded systems design, co-design and verification. It presents
a new approach to the concepts of HDLs, as combines hardware
and software descriptions at different levels of design, by
extending C++ with a new library. This library contains all of
the necessary components required to transform C++ into a
hardware description language which provide an event-driven
simulation kernel [2]. Such additions include constructs for
concurrency, time notion, communication, reactivity and
hardware data types.

2.3 Synchronous Formalism in SIGNAL
Language
A synchronous formalism rely on the synchronous
hypothesis[12], which lets computations and behaviors be
divided into a discrete sequence of computation steps which are
equivalently called reactions or execution instants. In itself, this
assumption is rather common in practical embedded system
design. The synchronous hypothesis is based on the principle of
determinism that in each instant of any signal’s clock, the
propagation of value is well behaved so that the status of every
signal is established and defined before to being tested or used.
SIGNAL is a data flow synchronous language for reactive
systems that offers a framework to give executable specification
of hardware/software components [13]. A SIGNAL program is a
set of relationship between signals, which specified the
constraints on the values of the clocks signals.
In SIGNAL, an executable specification is represented by a
process P, which itself consists of the simultaneous composition
of elementary equations x:=f(y,z). Equations and processes are
combined using synchronous composition P|Q to denote the
simultaneity of P and Q with respect to the lexical scope of a
process P is written P|x.

IP component IP component

HDL Model

SSA Form

Synchronousformalism

Formal Verification

Functional &Compositional

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.3, November 2011

28

2.4 Static Single Assignment (SSA)
The control structure of C++ is very complex, and because of
the inherent differences compared to synchronous languages,
these complex control structures would be difficult to represent
in SIGNAL. The C++ compilers internally reduce the
complexity of the control in order to simplify the application of
optimizations. In GCC this step is called gimplification, and the
result is the GIMPLE representation. GIMPLE retains much of
the structure of the parse trees: lexical scopes and control
constructs such as loops are represented as containers, rather
than markers. However, expressions are broken down into a 3-
address form, using temporary variables to hold intermediate
values. Similarly, in GIMPLE no container node is ever used for
its value; if a condition for example has a value, it is stored into
a temporary variable within the controlled blocks, and that
temporary variable is used in place of the container. For
example if (x<10) will result in a GIMPLE code T1 = x<10; if
(T1). All conditional jump expressions are transformed to gotos.
Since GCC version 4.0 the internal data structure uses another
modification called Static Single Assignment (SSA) [14]. SSA
is a form of GIMPLE where each program variable is assigned
one time only in the entire program. The SSA represents a
procedure or a program as a directed graph G = (V,E), where the
set V represents the control flow nodes or vertices and the
relation E represents the jumps in the control flow.

3. ENCODING SYSTEMC STRUCTURES
IN SIGNAL LANGUAGE
3.1 Encoding SSA structures
3.1.1 Encoding SSA Graph
There are three types of SSA blocks (nodes): Basic, Test and
Join. Each of these blocks contains atomic statements, and every
variable in Basic and Join blocks receives exactly one
assignment. It is therefore possible to execute all atomic
statements may be conditioned by one Boolean condition signal
and the statement of that block are then scheduled for execution
only when this signal is present and its value is true.

Fig 3: Encoding SSA Basic blocks into SIGNAL

3.1.2 Encoding SSA φFunction
The φ function of Join block Jk merges all the different versions
of the variables coming of the predecessors of Jk. It produces as
output the most recent version of variable. In SIGNAL, this
function is represented by a sampling equation. For example, the
statement of block Jk of Fig 4.

Fig 4: Example of Encoding of φin SIGNAL

3.2 Encoding Conditional Statements
Each SSA Test block defines a conditional branching statement.
For example, the execution of two successors blocks Bj and Bk
of a Test block Tm depends on the value of its conditional
expression.

Fig 5: Example of Encoding Conditional Statement in

SIGNAL

3.3 Encoding Assignment Statements
An SSA assignment statement never contains more than three
operands (except function call) and has implicit side effects
[14].SIGNAL assignment equations have the same form than the
SSA assignment statement [15], which makes it straightforward
to provide for each SSA assignment an equivalent SIGNAL
equation.

Block Bi

Boolean Bi

SSA Basic blocks Code in SIGNAL language

 Block Bi Block Bj

Block Jk

X3 := X1 when Bi default

 X2 when Bj

φFunction Code in SIGNAL language

Bk

Tm

BiBj

Bi:= true when (Y1>X1)
 default false
Bj:= true when not(Y1>X1)
default false

Conditional Statement SSA Code in SIGNAL language

IF(Y>X) <Statement1> ELSE <Statement2>

Statement1

IF(Y1>X1) GOTO Bi ELSE
GOTO Bj

Statement2

X1 = …

…

X1 = …

X3 = φ(X1, X2)

X2 = …

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.3, November 2011

29

Fig 6: Encoding SSA assignment statement inSIGNAL

Since statements are executed only when heir corresponding
block is activated, we condition the execution of their SGNAL
counterparts by the Boolean signal of the corresponding block
except Join block statements.

3.4 Encoding Module Structure
A Module is the basic object in SystemC that includes ports,
constructors, data members, function members and maybe
internal memory storage and internal functions. A Module can
be thought of as a process or a box in the hardware block
diagram. The following figure(Fig 7) shown example of a
simple Module and its translation in SIGNAL. The idea is to
replace the module constructor process whose sensitivity list
contains only (in this example) the Boolean signal "select" by a
new SIGNAL process that is activated according to the Boolean
value of the Bk block.

select

input1

input2

Fig 7: Example of a module and its SystemCdescription

• Translation into SIGNAL language

3.5 Encoding Pointers
In SystemC (C/C++), the semantics of pointers is the address of
an element in memory and their uses in load (...=*P, ...=P) and
store (*P=... or P=...) instructions. It is also used into pass
parameters by reference; access array elements and address
dynamically allocated memory.

We propose a solution for encoding pointers in SIGNAL that
allows fast alias analysis as in the case of [16]. Our solution is
based on approach proposed in [17] and [18] to encoding of
pointers for hardware synthesis from C language.

3.5.1 Expressions of reading pointers (Load
statements)
For this, we have two types of expressions that:

- The assignment statements of the form: Ai = f(Pk)where Pk
is a pointer to a data set.

- The conditions of: loop, if and switch a statement which
contains Pk. The idea is to assign to each expression Ai =
f(…,*Pk,…) where Pk is a pointer to a finite set of variables
or array elements. The pointer Pk points to yk where yk∈{y0
,y1 , …, yn}.

1. The first step is to replace each pointer Pk of input
program by the following new variables :

• Start_Pk: which contains the value of yk, pointed
by Pk at this time.

• Pk_tag:which contains the k where k∈{0,1, 2,…,
n}a value associated with each element of yk
pointed by Pk.

• Pk_index :the offset within the array (defined
only in the case of a pointer to an array element),
it contains the index of the array’s cell pointed by
Pk.

2. The second step consists to apply the SSA renaming
variables to Start_Pk only for different conditional
statements and we may uses more than one definition
Pk_tag inside a function.

• Remove the symbols “*” and “&” associated
with pointers in SSA form.

• Replace each statement of the form aj = *Pk by
the following conditional statements:

Bi

boolean Bi

X1 := (Y1 + Z1)when Bi

SSA form Code in SIGNAL language

IF(Pk_tag == 0) Start_Pk = y0;
ELSE IF(Pk_tag == 1) Start_Pk = y1;
ELSE …
…
ELSE IF(Pk_tag ==n) Start_Pk = yn;

X1 = Y1 + Z1

#include”systemc.h”
SC_MODULE(module_example)
{ sc_in<int> input1;
 sc_in<int> input2;
 sc_in<bool> select;
 sc_out<int> output;
 void module_process()
 { output = input1 + input2;
 }
 SC_CTOR(module_example) //constructor
 { SC_METHOD(module_process);
 Sensitive << select ;
 };
};

Module_example output

process module_example =
(? integer input1, input2 ;
 ? Boolean select ;
 ! integer output ;
)
(| output := input1 + input2 when B1
 | B1 := true when select default false
)
where Boolean B1;
end

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.3, November 2011

30

In order to simplify and improve the automatic generation of
SSA form, we replace the nesting if-else.

Finaly, we most add the aj = Start_Pk_m statement to
completely replace aj = *Pk.

3. The last step is to translate all the code in SIGNAL
language as follows:

For reasons of simplification of automatic generation from SSA
form, we propose the following SIGNALcode:

3.5.2 Examples of translation reading pointers
statement into synchronous formalism
The code gives a short example of our translation approach for
reading pointers statements into SSA and Signal language.

First example: Translation of X=*P+1
We suppose that Pis a pointer which pointing at set of variables
space {a,b,c,tab[]} and P_tag ={0,1,2,3}

• Translation into SSA form

• Translation into SIGNAL language

Second example: Translation of if(X>*P) X=X-1 else X=0
We suppose yet that Pis a pointer which pointing at set of
variables space {a,b,c,tab []} and P_tag ={0,1,2,3}.

• Translation into SSA form

• Translation into SIGNAL language

IF(Pk_tag == 0) Start_Pk_0 = y0;
IF(Pk_tag == 1) Start_Pk_1 = y1;
…
IF(Pk_tag == n) Start_Pk_n = yn;
Start_Pk_m = φ(Start_Pk_0, Start_Pk_1,…, Start_Pk_n)

| Start_Pk := y0 when (P_tag = 0) when Bk
 default y1 when (P_tag = 1) when Bk+1
…
 default yn when (P_tag = n) when Bk+n

| Start_P1 := y0 when Bk
| Start_P2 := y1 when Bk+1
…
| Start_Pn+1 := yn when Bk+n
| Start_Pm := Start_P1 when Bk default
 Start_P2 when Bk+1default
 ...

 Start_Pn when Bk+1default
 Start_Pn+1 when Bk+ndefault false
// associating code with the assignment of reading the value
pointed by Pk (Start_Pm)
| Bk := true when(P_tag1 = 0)
| Bk+1 := true when(P_tag2 = 0)
…
| Bk+n := true when(P_tagn = 0)

Bk: IF(_tag1 == 0) Start_P1 = a1;
Bk+1: IF(_tag1 == 1) Start_P2 = b1;
Bk+2: IF(_tag1 == 2) Start_P3 = c1;
Bk+3: IF(_tag1 == 3) Start_P4 = tab[P_index];
J: Start_P5 = φ(Start_P1, Start_P2, Start_P3, Start_P4)
Bj: X1 = Start_P5 + 1;

| Start_P1 := a when Bk
| Start_P2 := b when Bk+1
| Start_P3 := c when Bk+2

| Start_P4 := tab[P_index] when Bk+3
| Start_P5 := Start_P1 when Bk default
 Start_P2 when Bk+1 default
 Start_P3 when Bk+2 default
 Start_P4 when Bk+3
| X1 := (Start_P5+1) when Bj
| Bj := true when Bkdefault
 true when Bk+1 default
 true when Bk+2 default
 true when Bk+3 default false
| Bk:= true when(P_tag1=0) default false
| Bk+1 := true when(P_tag1=1) default false
| Bk+2 := true when(P_tag1=2) default false
| Bk+3 := true when(P_tag1=3) default false

Bk: IF(_tag1 == 0) Start_P1 = a1;
Bk+1: IF(_tag1 == 1) Start_P2 = b1;
Bk+2: IF(_tag1 == 2) Start_P3 = c1;
Bk+3: IF(_tag1 == 3) Start_P4 = tab[P_index];
J1: Start_P5 = φ(Start_P1, Start_P2, Start_P3, Start_P4)
Bj/Bi: IF(X1> Start_P5) X2= X1– 1; ELSE X3= 0;
J2: X5 = φ(X1, X2, X3, X4)

| Start_P1 := a when Bk
| Start_P2 := b when Bk+1
| Start_P3 := c when Bk+2

| Start_P4 := tab[P_index] when Bk+3
| Start_P5 := Start_P1 when Bk default
 Start_P2 when Bk+1 default
 Start_P3 when Bk+2 default
 Start_P4 when Bk+3
| X2 := X1 -1 when Bi

| X3 := 0 when Bj

| X4 := X2when Bi default X3 when Bj

| Bi := true when (X1> Start_P5)when B default false
| Bj := true when not(X1> Start_P5) when B default false
| B :=true when Bk+1 default
 true when Bk+2 default
 true when Bk+3 default false
| Bk:= true when(P_tag1=0) default false
| Bk+1 := true when(P_tag1=1) default false
| Bk+2 := true when(P_tag1=2) default false
| Bk+3 := true when(P_tag1=3) default false

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.3, November 2011

31

3.5.3 Expressions of writing pointers (Store
statements)
There are two cases for writing pointers:

• The case of a change of address: Pk = &xi. When xi
is any variable program

• The case of a change memory location value
pointed by Pk: Pk := <statement>

3.5.4 The case of Pk = &xiassignment
In this case, just replace this assignation in SSA form by:

3.5.4.1 The case of Pk = <statement>assignment
In SSA form:

In SIGNAL language:

4. IMPLEMENTATION
One of the main reasons why we chose to use the SSA form in
our work is that SSA has been adopted as an optimization
framework by compilers, such as GCC and the Java virtual
machine Jikes RVM. This allows an easy use of our approach by
designers using a common software programming language to
describe their systems. In this work, we are targeting SystemC
models for which we have implemented our SSA to SIGNAL
transformation using GCC. Designers using C/C++ can easily
integrate our SIGNAL generation pass into their installed C/C++
software programming framework. We are using the GCC
version 4.0, which implements a new optimization framework
(Tree-SSA) based on SSA that operates on GCC’s tree
representation. One advantage of our transformation scheme is
that systems modeled using some programming languages that
are supported by GCC other than SystemC, such as Java and
C/C++, can be easily transformed into Signal processes with no
additional effort.

5. VERIFICATION
The design verification of the generated SIGNAL models can be
accomplished at the selected level of abstraction using SIGNAL
compiler and SIGALI tool. The Signal compiler allows static
checking for types, dependencies, and clock constraints, while
dynamic properties can be checked by SIGALI, which can
verify for example the liveness of the system using the vivace
command, safety properties using theinvariant command, and
reachability properties using the accessible command. Other
custom dynamic properties can also be constructed and verified.
If an error is detected in the SIGNAL formal model, it has to be
corrected directly in the SystemC model. This is because the
transformation process is automated and there is no way to go

back in the opposite direction. An error found in the formal
model therefore still has to be located in the SystemC model;
however the preservation of structure of the transformation is
helping to localize it.

6. CONCLUSION
We present a methodology and tools to exemplify how a formal
support platform for SystemC could work without having to deal
with the complexity of formal design entry and inconsistencies
of two separate models. We show how to create a formal model
based on existing SystemC descriptions, which can then be used
for verification and validation purposes. One characteristic of
the approach is to separately obtain the structural and the
behavioral information by extensively using existing tools and
therefore concentrating on the actual problems. We detail the
methodology, present the tools involved and show the process
with the help of an example. The major difficulties in this
approach were threefold: (i) choosing the proper intermediate
format, that could lower the complexity of SystemC without
making it unmanageable. (ii) the definition and verification of
the correspondences between elementary SSA statements and
SIGNAL constructs was a big part of the work. In hindsight we
are surprised how smoothly each element found its counterpart.
In order to support a larger subset of SystemC an equivalent
library in SIGNAL has to be established that includes all the
SystemC statements.

7. ACKNOWLEDGMENTS
We wish to thank David Berner member of the ESSRESSO
Team, IRISA, University of Rennes, France, for help.

8. REFERENCES
[1] Séméria L.and Ghosh A. 2000. Methodology for

Hardware/Software Co-verification in C/C++.In
Proceedings of the 2000 Asia and South Pacific Design
Automation Conference(ASP-DAC)pp 405-408 (24-28 Jun.
2000),Yokohama, Japan.

[2] IEEE Std 1666-2005. IEEE Standard SystemCLangauge
Reference Manual, 2005.

[3] Marquet K., Moy M. and JeannetB. "Efficient Encoding of
SystemC/TML in Promela". DATICS-IMECS03, Hong-
Kong 2011.

[4] Habibi A. and Tahar S. "On the Transformation of
SystemC to AsmL Using Abstract Interpretation".
Electronic Notes in Theoretical Computer Science
(ENTSC) vol. 131, pp. 39-49, 2005 in press.

[5] Snyder W.2006.SystemPerl - APerl Library for SystemC.
http://www.veripool.com/systemperl.html.

[6] E.D.G.C. Front-End. Edison Design Group C++ Front-End.
Website:http://edg.com/cpp.html, 2006.

[7] Doucet F., Shukla S., and Gupta R.2003. Introspection in
System-Level Language Frameworks: Meta-level
vs.Integrated.In Proceedings of 2003 Design, Automation
and Test in Europe Conference (DATE)vol. 1, pp. 382–
387,(2003).

[8] Eibl C. J., Albrecht C., and R. Hagenau.2005. gSysC: A
Graphical Front End for SystemC. In Proceedings of 19th

Bj : Pk_tag1 = i ; // when i is the only value associated to xi

Start_pk_1 = xi

Bj : Start_pk_1 = <statement>

| Start_pk_1 : = <statement> when Bj

http://www.ijcaonline.org/�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8443�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8443�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8443�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.3, November 2011

32

European Conference on Modelingand Simulation
(ECMS), Riga, Latvia (Jun. 2005).

[9] Große D., Drechsler R, Linhard L. and Angst G.2003.
Efficient Automatic Visualization of SystemC Designs.In
Proceedings of the Forum on Specification and Design
Languages (FDL), Frankfurt, Germany (Sep. 2003).

[10] Gajski, D.D., Wu A.C.-H., Chaiyakul V., Mori S.,
Nukiyama T. and Bricaud P. 2000. Essential Issues for IP
Reuse. In Proceedings of the 2000 Asia and South Pacific
Design Automation Conference (ASP-DAC)pp. 37-42 (25-
28 Jan. 2000). Yokohama, Japan.

[11] Martin G. 1998. Design Methodologies for System Level
IP. In Proceedings of the 1998 Design, Automation and
Test in Europe Conference(DATE)pp. 286-189 (23-26 Feb.
1998), Paris France.

[12] Potop-Butucaru D., De Simone R. andTalpin J.-P."The
Synchronous Hypothesis and Polychronous Languages".
Embedded Systems Design and Verification, pp 6-16-6-27,
CRC press 2009.

[13] Marchand H. and Rutten E. 2002. SIGNAL and SIGALI
User’s Manual. Research Report IRISA/INRIA-Rennes,
France.

[14] Novello D. 2003. Tree SSA - A New High-Level
Optimization Framework for the GNU Compiler
Collection. In Proceeding of the Nord/USENIX Users
Conference (Feb. 2003).

[15] Kalla H., TalpinJ.-P., Berner D. and BesnardL. 2006.
Automated Translation of C/C++ Models into a
Synchronous Formalism. In Proceedings of the 13th
Annual IEEE International Symposium and Workshop on
Engineering of Computer Based Systems (ECBS)vol. 9 pp.
436 (27-30 Mar. 2006). Postdam, Germany.

[16] Séméria L. 2001. Applying Pointer Analysis to the
Synthesis of Hardware from C. Doctoral thesis, Department
of Electrical Engineering of Stanford University, USA.

[17] SémériaL. and De Micheli G. "Encoding of Pointers for
Hardware Synthesis". IEEE Transactions on Very Large
Scale Integration (VLSI) Systems - System Level Design.
Vol 9 Issues 6 (Jan. 2001).

[18] Séméria L. and De MicheliG.1998. SpC: Synthesis of
Pointers in C Application of Pointer Analysis to the
Behavioral Synthesis from C. In Proceedings of the 1998
IEEE/ACM International Conference on Computer-Aided
Design (ICCAD)pp. 340-346 (8-12 Nov. 1998).

http://www.ijcaonline.org/�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6731�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5270�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5270�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5270�

	INTRODUCTION
	BASIC CONCEPTS
	Intellectual Property (IP)
	Hardware/Software Co-design Using SystemC Language
	Synchronous Formalism in SIGNAL Language
	Static Single Assignment (SSA)

	ENCODING SYSTEMC STRUCTURES IN SIGNAL LANGUAGE
	Encoding SSA structures
	Encoding SSA Graph
	Encoding SSA (Function

	Encoding Conditional Statements
	Encoding Assignment Statements
	Encoding Module Structure
	Encoding Pointers
	Expressions of reading pointers (Load statements)
	Examples of translation reading pointers statement into synchronous formalism
	Expressions of writing pointers (Store statements)
	The case of Pk = &xiassignment
	The case of Pk = <statement>assignment

	IMPLEMENTATION
	VERIFICATION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

