
International Journal of Computer Applications (0975 – 8887)
Volume 34– No.2, November 2011

11

A Modified Hybrid Particle Swarm Optimization Algorithm
for Multidimensional Knapsack Problem

Said Labed
Computer Science Department,

MISC Laboratory,
Mentouri University,
Constantine-Algeria

Amira Gherboudj
Computer Science Department,

MISC Laboratory,
Mentouri University,
Constantine-Algeria

Salim Chikhi
Computer Science Department,

MISC Laboratory,
Mentouri University,
Constantine-Algeria

ABSTRACT
In this paper, a modified hybrid Particle Swarm Optimization
(MHPSO) algorithm that combines some principles of Particle
Swarm Optimization (PSO) and Crossover operation of the
Genetic Algorithm (GA) is presented. Our contribution has a
twofold aim: first, is to propose a new hybrid PSO algorithm.
Second is to prove the effectiveness of the proposed algorithm in
dealing with NP-hard and combinatorial optimization problems.
In order to test and validate our algorithm, we have used it for
solving the Multidimensional Knapsack Problem (MKP) which
is a NP-hard combinatorial optimization problem. The
experimental results based on some benchmarks from
OR-Library, show a good and promise solution quality obtained
by the proposed algorithm.

Keywords
Particle Swarm Optimization, Crossover Operation,
Continuous/Discrete Optimization Problems,
Multidimensional Knapsack Problem.

1. INTRODUCTION
Optimization problems can be classed into two main classes:
continuous optimization problems and discrete optimization
problems. In continuous optimization problems, the solution is
represented by a set of real numbers. However, in discrete
optimization problems, the solution is represented by a set of
integer numbers. Furthermore, discrete binary optimization
problems are a sub class of the discrete optimization problems
class in which a solution is represented by a set of bits.

Several metaheuristics such as genetic algorithm (GA),
simulated annealing (SA) and tabu search (TS)… have been
proposed in the literature and utilized to solve various
optimization problems (continuous or discrete problems).
However, most of them are very greedy in terms of computation
time required to reach the optimal solution.

Particle Swarm Optimization (PSO) is an evolutionary
metaheuristic that mimics the collective behavior of animals
living in groups such as bird flocking and fish schooling. The
original PSO version operates in continuous search spaces and it
has proved its simplicity of implementation, its effectiveness
and its very fast convergence [1]. However, the selection and
adaptation of the large number of PSO parameters such as:
swarm size, inertia coefficient, acceleration coefficients ... play a
crucial role for good and efficient operation of PSO. On the
other hand, PSO may be easily trapped into local optima if the
global best and local best positions are equal to the position of
particle over a number of iterations [2].

The main purpose of this paper is to propose a modified hybrid
Particle Swarm Optimization algorithm that we have called
MHPSO, in which we combine some principles of Particle
Swarm Optimization and the Crossover operation of the Genetic
Algorithm. The aim of this work is twofold: first, is to benefit
from PSO advantages (simplicity, efficiency and rapidity) and
propose a new hybrid algorithm which can be used to solve
different optimization problems in continuous or discrete areas.
Second, is to prove that the proposed algorithm (MHPSO) is
effective in dealing with NP-hard combinatorial optimization
problems. The feature of our approach is that it requires few
parameters to be set compared with PSO or GA. On the other
hand, this hybridization has allowed a good balance between
exploration and exploitation of the search space.

To validate and prove the performance and the effectiveness of
our algorithm, we have tested it on some multidimensional
knapsack problem instances. Moreover, we have used the
particle repair algorithm that we have proposed and a check and
repair operator [3] to transform infeasible solutions to feasible
solutions with small and big size instances respectively.
Experimental results show the effectiveness of the proposed
algorithm and its ability to achieve good quality solutions.

The remainder of this paper is organized as follows. Section 2
presents PSO principle. An overview of the Binary Particle
Swarm Optimization (BPSO) is presented in section 3. Section
4, presents the Multidimensional Knapsack Problem principle
and formulation. In section 5, the proposed algorithm is
described. Experimental results are discussed in section 6, and a
conclusion is provided in the seven section of this paper.

2. PSO PRINCIPLE
Particle Swarm Optimization (PSO) is an evolutionary
metaheuristic. It was created in 1995 by Kennedy and Eberhart
[4] for solving optimization problems. It mimics the collective
behavior of animals living in groups such as bird flocking and
fish schooling. The PSO method involves a set of agents for
solving a given problem. This set is called swarm, each swarm is
composed of a set of members, they are called particles. Each
particle is characterized by position xid= (xi1, xi2,…, xid,…, xiD)
and velocity vid= (vi1, vi2,…, vid,…, viD) in a search space of
D-dimension. During the search procedure, the particle tends to
move towards the best position (solution) found. At each
iteration of the search procedure, the particle moves and updates
its velocity and its position in the swarm based on experience
and the results found by the particle itself, its neighbors and the
swarm. It therefore combines three components: its own current
velocity, its best position pbestid= (pbesti1, pbesti2,…, pbestid,…,

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.2, November 2011

12

pbestiD) and the best position obtained by its informants. Thus the
equations for updating the velocity and position of particles are
presented below [5]:
 vid(t)= ω vid (t-1) + c1 r1 (pbestid (t-1) - xid (t-1)) + c2 r2 (gbestd (t-1)
- xid (t-1)) (1)

xid (t)= xid (t-1) + vid (t) (2)

ω is an inertia coefficient. (xid (t), xid (t-1)), (vid (t), vid (t-1)):
Position and Velocity of particle i in dimension d at times t and
t-1, respectively. pbestid (t-1), gbestd(t-1) : the best position
obtained by the particle i and the best position obtained by the
swarm in dimension d at time t-1, respectively. c1, c2: two
constants representing the acceleration coefficients. r1, r2:
random numbers drawn from the interval [0,1[. vid (t-1), c1 r1
(pbestid (t-1) - xid (t-1)), c2 r2 (gbestd(t-1) - xid (t-1)): the three
components mentioned above, respectively.

The PSO algorithm begins by initializing the size of the swarm
and the various parameters. Assign randomly to each particle an
initial position and velocity. Initialize pbestid, then calculate the
fitness f(xid) of particles in order to calculate the best position
found by the swarm (gbestd). At each iteration, particles are
moved using equations (1) and (2). Their objective functions are
calculated and pbestid, gbestd are updated. The process is repeated
until the satisfaction of stopping criterion. A pseudo PSO
algorithm is presented in our previous work in [1].

3. BINARY PARTICLE SWARM
OPTIMIZATION (BPSO) ALGORITHM
The first version of the Binary Particle Swarm Optimization
(BPSO) algorithm (The Standard BPSO algorithm) was
proposed in 1997 by Kennedy and Eberhart [6]. In the BPSO
algorithm, the position of particle i is represented by a set of bit.
The velocity vid of the particle i is calculated from equation (1).
vid is a set of real numbers that must be transformed into a set of
probabilities, using the sigmoid function as follows:

)exp(1

1)(
id

id
v

vsig
−+

= (3)

Where sig (vid) represents the probability of bit xid takes the
value 1.
To avoid the problem of the divergence of the swarm, the
velocity vid is generally limited by a maximum value Vmax and a
minimum value -Vmax, i.e. vid ∈ [-Vmax, Vmax]. The position xid
of particle i is updated as follows:

 1 if r < Sig (vid)

 xid= 0 Otherwise (4)

Where r is a random number taken from the interval [0, 1[.
Two main parameter problems with BPSO are discussed in [7].
First, the effect of velocity clamping in the continuous PSO is
opposite of that in the binary PSO (BPSO). In fact, in the
continuous PSO the maximum velocity of the particle encourage
the exploration, but it limits the exploration in the binary PSO
[7]. The second problem is the difficulties with choosing proper
values for inertia weight. In fact, w < 1 prevents convergence
[7].

4. MULTIDIMENSIONAL KNAPSACK
PROBLEM
The knapsack problem (KP) is one of the easier NP-hard
problems [8]. It can be defined as follows: Assuming that we
have a knapsack with maximum capacity C and a set of n
objects. Each object i has a profit pi and a weight wi. The
problem consists to select a subset of objects that maximize the
knapsack profit without exceeding the maximum capacity of the
knapsack. KP can be formulated as:

∑
=

n

i
ii xp

1
 Maximize

(5)

Cxw ii ≤∑

=

n

1i
Subject

 { }1,0∈ix

 (6)

Many variants of the knapsack problem were proposed in the
literature including the Multidimensional Knapsack Problem
(MKP). MKP is an important issue in the class of knapsack
problem. It is a combinatorial optimization problem [9] and it is
also a NP-hard problem [9, 10]. In the MKP, each item xi has a
profit pi like in the simple knapsack problem. However, instead
of having a single knapsack to fill, we have a number m of
knapsack of capacity Cj (j = 1 ... m). Each xi has a weight wij
that depends of the knapsack j (example: an object can have a
weight 3 in knapsack 1, 5 in knapsack 2, etc.). A selected object
must be in all knapsacks. The objective in MKP is to find a
subset of objects that maximize the total profit without
exceeding the capacity of all dimensions of the knapsack. MKP
can be stated as follows:

∑
=

n

i
ii xp

1
 Maximize

(7)

mjCxw jiij ...1 Subject

n

1i
=≤∑

=

 { }1,0∈ix

(8)

The MKP can be used to formulate many industrial problems
such as capital budgeting problem, allocating processors and
databases in a distributed computer system, cutting stock,
project selection and cargo loading problems [10]. Due to its
importance and its NP-Hardness, MKP has received the
attention of many researches. It was treated by several methods
for examples, Chu and Beasley [10] proposed a genetic
algorithm for the MKP, Alonso et al [11] suggested an
evolutionary strategy for MKP based on genetic computation of
surrogate multipliers, Drexl [12] proposed a simulated annealing
approach for the MKP, Stefka Fidanova [13] applied the ant
colony optimization to solve the MKP, Li et al [14] suggested a
genetic algorithm based on the orthogonal design for MKP,
Zhou et al [9] suggested a chaotic neural network combined
heuristic strategy for MKP, Angelelli et al [15] proposed Kernel
search: A general heuristic for MKP, Kong and Tian [16]
proposed a particle swarm optimization to solve the MKP and so
one.

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.2, November 2011

13

5. THE PROPOSED ALGORITHM
(MHPSO)
In this section, we present the proposed algorithm called
MHPSO which combines some principles of Particle Swarm
Optimization and Crossover operation of the Genetic Algorithm
in the aim to get benefit from the good exploration of the search
space offered by the crossover operation and the good
exploitation of the PSO algorithm and its fast convergence. The
proposed algorithm is explained in more detail in the follow:
5.1 Representation
Since the MKP is a 0-1 optimization problem and it requires a
binary solution, it is an obvious choice to represent and initialize
the population with a binary representation. In this aim, we have
utilized binary vectors of size D to represent different particles.
The representation of particle i is as follows:

 xid = [xi1, xi2,…, xid,..., xiD]

 1 If the object is selected
Where xid=

 0 Otherwise

5.2 Particle Repair Algorithm (PRA)
In the MKP, the solution must verify the m constrained of the
knapsack to be accepted as a feasible solution. If a solution x
exceed the capacity of any dimension of the knapsack, it is
considered as infeasible solution and it is not accepted. To repair
a solution x, we have proposed Particle Repair algorithm (PRA)
which allows conversion of an infeasible solution to feasible
solution. A pseudo Particle Repair algorithm is presented below.

5.3 Check and Repair Operator (CRO)
Although PRA guarantees feasible and good quality solution
with small size instances, it does not work well with big size
instances. Consequently, we have used a Check and Repair
Operator (CRO) [3] as alternative to the PRA in order to deal
with the big size instances. As described in [3 and 14], CRO is
based on two phases that are defined in Algorithm 1 and
Algorithm 2 respectively. These two phases used the profit
density of every item in every knapsack which is calculated as
follows:

ijijij wpC .=δ (9)

In the first phase the infeasible solution is transformed into
feasible solution by the Algorithm 1 [14]. Then the obtained
feasible solution is improved in the second phase by the
Algorithm 2 [14].

1. Calculate the profit density

Algorithm 1

ijijij wpC .=δ for every

item in every knapsack.
2. Compute the lowest value of the profit density

{ }ijjji wpC .min=δ for every item.

3. Sort and relabel items according to the ascending order of δi.
4. Remove the corresponding item with lowest values of δi
from the item set. (i.e. change corresponding gene 1 into gene
0).
5. Repeat Step 4 until a feasible solution is achieved.

1. Calculate the profit density
Algorithm 2

ijijij wpC .=δ of every

item out of the knapsack.
2. Compute the lowest value of the profit density

{ }ijjji wpC .min=δ for every item.

3. Sort and relabel items according to the descending order of
δi.
4. Add the corresponding item with highest values of δi into
the item set (i.e. change corresponding gene 0 into gene 1).
5. If one of knapsack constraints is not satisfied, then stop, and
output the resulting chromosome. Otherwise, return to Step 4.

5.4 Crossover Operation
Crossover operation is one of the Genetic Algorithm (GA)
operations which has introduced by John Holland in 1960 [17].
The main role of the crossover operation is to produce a new
population (individual). It consists in combining the
characteristics of two individuals (parents) to produce one or
two new individuals (childs). In the proposed algorithm and in
the aim to produce a new population, we have used the
crossover operation between the best position pbestid of particle i
and its current position xid and between the best position
obtained by the swarm gbestd and the current position xid of the
particle i. In all cases, if we assume that we have 2 particles x1
and x2 and we want to cross them, we begin by initializing the
step p, and 2 random positions c1 and c2, then we follow steps
presented in Algorithm 2. Where Algorithm 2 represents a
pseudo Crossover Algorithm. The proposed Crossover
Algorithm, gives birth to two new child. To choose which one
will represent the new particle, we calculate the fitness f(xi) of
each child and we select the best one.

Input : solution vector x

Particle Repair Algorithm (PRA)

Output : repaired solution vector x

Calculate i

n

i
ji xwR j ∑

=

=
1

, j=1,…, m;

For (j=1,…, m) {
 While Rj > Cj{
 Select randomly i∈{1 , . . . , n}
 If xi =1
 { xi = 0;

 Calculate ∑
=

=
n

i
ijij xwR

1

, j=1,…, m

 }
 }
}

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.2, November 2011

14

5.5 Outlines of the proposed algorithm
Now, we explain how the proposed algorithm MHPSO can
found a solution of an optimization problem (continuous or
discrete problem). As any algorithm, the first step in the
MHPSO algorithm is to initialize some necessary parameters for
good and efficient operation of the algorithm. The main
characteristic of the MHPSO algorithm is its simplicity. In fact,
comparing with other population metaheuristic such as PSO and
GA, there are few parameters to be set. Steps of the MHPSO
algorithm are presented below.

Step 1: Initialize a swarm size S and random position of each
particle. For each particle, let pbestid = xid

Step 2: Apply PRA on each infeasible solution and evaluate the
fitness of particles
Step 3: Calculate the gbestd
Step 4: Calculate the new xid of each particle using the following
equation:

 xid = Max [(pbestidxid), (gbestdxid)] (10)

Where the «» operator is the crossover operation of the
Genetic Algorithm. A pseudo code of the proposed crossover
operation is presented in Crossover Algorithm

Step 5: Apply PRA or CRO on each infeasible solution and
evaluate the fitness of particles
Step 6: update pbestid and gbestd as follows:
 If (f (xid) > f(pbestid)) pbestid = xid;
 If (f (pbestid) >f (gbestd)) gbestd = pbestid;
Step 7: Stop iterations if stop condition is verified. Return to
Step 4, otherwise.

The solution of the problem is the last gbestd. Fig 1 shows the
flowchart of the proposed algorithm.

Fig1: Flowchart of the proposed algorithm (MHPSO)

6. EXPERIMENTAL RESULTS
The proposed MHPSO algorithm was implemented in Matlab 7.
To assess the efficiency and performance of our MHPSO
algorithm, we have tested it on some instances from OR-Library
[18]. Two parts of experiments were performed. In the first part
of experiments, we have tested and compared our algorithm on
some small MKP instances. In this part of experiments, we have
first tested the MHPSO algorithm on some MKP instances from
the literature, the used instances are named: HP, SENTO,
WEING and WEISH instances. On the other hand, we have
compared the MHPSO algorithm with the best known solution
(the exact solution) and the obtained solution by the standard
PSO with penalty function technique (denoted as PSO-P) [16]
[6] on MKP instances taken from 7 benchmarks named mknap1.
In the second part of experiments, we have tested the MHPSO
algorithm on some big size MKP instances taken from
benchmarks named mknapcb1 and mknapcb4. We have used 5
tests of the benchmarks mknapcb1 (5.100) which have 5
constraints and 100 items, and we have used 5 tests of the
benchmarks mknapcb4 (10.100) which have 10 constraints and
100 items.

1. Choose a step p

Crossover Algorithm

Input : Tow particles x1 and x2
Output : One particle xi

2. Choose two random positions c1 and c2 from x1
and x2 : c1, c2∈{1 , . . . , D-p}

3. Swap elements of x1 from c1 to c1+p with those of
x2 from c2 to c2+p

4. Swap elements of x1 from c2 to c2+p with those of
x2 from c1 to c1+p

5. Calculate the fitness of new particles and select the
best one.

Initialization of S, xid, pbestid

Calculate pbestid and gbestd

Update pbestid and gbestd

Calculate xid using equation (10)

Stop and print gbestd

Termination
criterion is met

Apply PRA or CRO on each infeasible
solution and calculate the fitness particles

Apply PRA on each infeasible solution
and calculate the fitness particles

Yes No

Begin

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.2, November 2011

15

Table1 shows the experimental results of our MHPSO algorithm
with some instances taken from the literature. The first column
indicates the instance name, the second and third columns
indicate the problem size i.e. number of objects and number of
knapsack dimensions respectively. The fourth column indicates
the best known solution from OR-Library. Column 5 record the
best results obtained by the MHPSO. Table1 shows that the
proposed algorithm is able to find the best known result of all
instances.

Table2 shows experimental results of our MHPSO algorithm
and the PSO-P algorithm with 7 benchmarks taken from mknap1
instances. The first column indicates the problem index, the
second and third columns indicate the problem size i.e. number
of objects and number of knapsack dimensions respectively. The
fourth column indicates the best known solution from OR-
Library. Column 5 and 6 record the best and average (AVG)
results obtained by the MHPSO and PSO-P during 30
independent runs for each instance.

Table2 shows that our algorithm is able to found the best
solution of all the mknap1 instances. Compared with PSO-P
algorithm which utilized penalty function technique to deal with
the constrained problems, the MHPSO algorithm gives better
averages (AVG) in most cases. The found results are very
encouraging. They prove the efficiency of the proposed
algorithm.

Table 1. Experimental results with some instances from the
literature.

Instance n m best
known MHPSO

HP1 28 4 3418 3418
HP2 35 4 3186 3186
PB5 20 10 2139 2139
PB6 40 30 776 776
PB7 37 30 1035 1035

SENTO1 60 30 7772 7772
SENTO2 60 30 8722 8722
WEING1 28 2 141278 141278
WEING2 28 2 130883 130883
WEING3 28 2 95677 95677
WEING4 28 2 119337 119337
WEING7 105 2 1095445 1095445
WEISH01 30 5 4554 4554
WEISH06 40 5 5557 5557
WEISH10 50 5 6339 6339
WEISH15 60 5 7486 7486
WEISH18 70 5 9580 9580
WEISH22 80 5 8947 8947

Finally, Table 3 shows the experimental results of our MHPSO
with some hard instances of mknapcb1 and mknapcb4. Column
1 shows the benchmark name. Column 2 indicates the problem
size and columns 3 and 4 indicate the best known and the
MHPSO solutions respectively. Obtained results in table 4 allow
saying that MHPSO algorithm gives good results. However, the
performances of MHPSO can be increased by the introduction
of other specified knapsack heuristic operators utilizing
problem-specific knowledge.

Table 2. Results and Comparison of MHPSO with PSO-P
for mknap1 instances.

Table 3. Experimental Results of MKP with mknapcb1 and
mknapcb4 instances

Benchmark
Name

Problem
size

Best
known MHPSO

mknapcb1

5.100.00 24381 24329

5.100.01 24274 24149

5.100.02 23551 23494

5.100.03 23534 23370

5.100.04 23991 23889

mknapcb4

10.100.00 23064 22983

10.100.01 22801 22657

10.100.02 22131 21853

10.100.03 22772 22511

10.100.04 22751 22614

7. CONCLUSION
In this paper, we have proposed a new hybrid particle swarm
optimization algorithm that we have called MHPSO. In the
MHPSO, we have combined some principle of the particle
swarm optimization and the crossover operation of the genetic
algorithm. In opposite to the original PSO algorithm that is
designed for solving continuous optimization problems, the
main feature of the proposed algorithm is that is can be applied
to solve all type of optimization problems (continuous, discrete
and discrete binary optimization problems) by the appropriate
choose of the population type. In the aim to verify and prove the
performance of our new algorithm, we have tested it on some
MKP benchmarks taken from OR-Library. Experimental results
show a good and encouraging solution quality obtained by our
proposed algorithm. Based on this promising result, our
fundamental perspective is to use the proposed algorithm to
solve other NP-hard and combinatorial optimization problems.

8. REFERENCES
[1] A. Gherboudj, S. Chikhi. BPSO Algorithms for Knapsack

Problem. A. Özcan, J. Zizka, and D. Nagamalai (Eds.):
WiMo/CoNeCo 2011, CCIS 162, pp. 217–227, 2011.
Springer (2011)

N° n M best
known

MHPSO PSO-P
Best AVG Best AVG

1 6 10 3800 3800 3800 3800 3800

2 10 10 8706,1 8706,1 8706,1 8706,1 8570.7

3 15 10 4015 4015 4015 4015 4014.7

4 20 10 6120 6120 6120 6120 6118

5 28 10 12400 12400 12386 12400 12394

6 39 5 10618 10618 10566 10618 10572

7 50 5 16537 16537 16460 16537 16389

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 34– No.2, November 2011

16

[2] J. Olamaei, T. Niknam, G. Gharehpetian. Application of
particle swarm optimization for distribution feeder
reconfiguration considering distributed generators. Appl.
Math. Comput., 201(1-2):575-586. (2008)

[3] Carlos Cotta, Jose Ma Troya: A Hybrid Genetic Algorithm
for the 0-1 Multiple Knapsack Problem. Artificial Neural
Nets and Genetic Algorithms 3, New York (1998) 250-254

[4] J. Kennedy, R.C. Eberhart. Particle Swarm Optimization.
In: Proc. IEEE Int. Conf. On Neural Networks, WA,
Australia, pp. 1942–1948 (1995)

[5] Shi. Y, R. Eberhart. Parameter Selection in Particle Swarm
Optimization. Proceedings of the 7th Annual Conference on
Evolutionary Programming, pp. 591-600, LNCS 1447,
Springer (1998)

[6] J. Kennedy, R.C. Eberhart. A discrete binary version of the
particle swarm algorithm. Proceedings of the World
Multiconference on Systemics, Cybernetics and
Informatics, pp. 4104-4109, NJ: Piscatawary (1997)

[7] Khanesar. M-A, Teshnehlab. M and Shoorehdeli. M-A. A
Novel Binary Particle Swarm Optimization. In proceedings
of the 15th Mediterranean Conference on Control &
Automation, July 27 – 29, 2007, Athens – Greece.

[8] Pisinger, D.: Where are the hard knapsack problems?
Computers and Operations Research, Vol.32, N°. 9, pp.
2271-2284, 2005.

[9] Y. Zhou, Z. Kuang, J. Wang. A Chaotic Neural Network
Combined Heuristic Strategy for Multidimensional
Knapsack Problem. In: Proc. L. Kang et al. (Eds.): ISICA
2008, LNCS 5370, pp. 715–722, 2008. Springer (2008)

[10] P.C. Chu, J.E. Beasley. A Genetic Algorithm for the
Multidimensional Knapsack Problem. Journal of
Heuristics, 4: 63–86 (1998).

[11] C-L. Alonso,F. Caro, J-L. Montana. An Evolutionary
Strategy for the Multidimensional 0-1 Knapsack Problem
Based on Genetic Computation of Surrogate Multipliers.
In: Proc. J. Mira and J.R. Alvarez (Eds.): IWINAC 2005,
LNCS 3562, pp. 63–73, 2005.Springer (2005)

[12] Drexl A. A simulated annealing approach to the
multiconstraint zero–one knapsack problem. Computing
1988; 40:1–8.

[13] Stefka Fidanova. Ant Colony Optimization for Multiple
Knapsack Problem and Model Bias Z. Li et al. (Eds.): NAA
2004, LNCS 3401, pp. 280–287, Springer (2005).

[14] H. Li, Y-C.Jiao, L. Zhang, Z-W. Gu. Genetic Algorithm
Based on the Orthogonal Design for Multidimensional
Knapsack Problems. In: Proc. L. Jiao et al. (Eds.): ICNC
2006, Part I, LNCS 4221, pp. 696–705, 2006.Springer
(2006)

[15] E. Angelelli, R. Mansini, M.G. Speranza. Kernel search: A
general heuristic for the multi-dimensional knapsack
problem. Computers & Operations Research 37 (2010)
2017–2026. Elsevier (2010).

[16] M. Kong, P. Tian. Apply the Particle Swarm Optimization
to the Multidimensional Knapsack Problem. In: Proc. L.
Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, pp.
1140–1149, 2006. Springer (2006)

[17] J H. Holland. Adaptation in natural and artificial system.
Ann Arbor, The university of Michigan Press, (1975).

[18] OR-Library, J.E. Beasley, http: // www.
people.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html

http://www.ijcaonline.org/�
http://portal.acm.org/author_page.cfm?id=81406594355&coll=DL&dl=ACM&trk=0&cfid=26512204&cftoken=91882714�

