
International Journal of Computer Applications (0975 – 8887) 
Volume 34– No.2, November 2011 

 

11 

A Modified Hybrid Particle Swarm Optimization Algorithm 
for Multidimensional Knapsack Problem

Said Labed 
Computer Science Department, 

MISC Laboratory, 
Mentouri University,  
Constantine-Algeria 

 
 

Amira Gherboudj 
Computer Science Department, 

MISC Laboratory, 
Mentouri University, 
Constantine-Algeria 

 
 

Salim Chikhi 
Computer Science Department, 

MISC Laboratory, 
Mentouri University, 
Constantine-Algeria 

ABSTRACT 
In this paper, a modified hybrid Particle Swarm Optimization 
(MHPSO) algorithm that combines some principles of Particle 
Swarm Optimization (PSO) and Crossover operation of the 
Genetic Algorithm (GA) is presented. Our contribution has a 
twofold aim: first, is to propose a new hybrid PSO algorithm. 
Second is to prove the effectiveness of the proposed algorithm in 
dealing with NP-hard and combinatorial optimization problems. 
In order to test and validate our algorithm, we have used it for 
solving the Multidimensional Knapsack Problem (MKP) which 
is a NP-hard combinatorial optimization problem. The 
experimental results based on some benchmarks from            
OR-Library, show a good and promise solution quality obtained 
by the proposed algorithm. 
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1. INTRODUCTION 
Optimization problems can be classed into two main classes: 
continuous optimization problems and discrete optimization 
problems. In continuous optimization problems, the solution is 
represented by a set of real numbers. However, in discrete 
optimization problems, the solution is represented by a set of 
integer numbers. Furthermore, discrete binary optimization 
problems are a sub class of the discrete optimization problems 
class in which a solution is represented by a set of bits.   

Several metaheuristics such as genetic algorithm (GA), 
simulated annealing (SA) and tabu search (TS)… have been 
proposed in the literature and utilized to solve various 
optimization problems (continuous or discrete problems). 
However, most of them are very greedy in terms of computation 
time required to reach the optimal solution.  

Particle Swarm Optimization (PSO) is an evolutionary 
metaheuristic that mimics the collective behavior of animals 
living in groups such as bird flocking and fish schooling. The 
original PSO version operates in continuous search spaces and it 
has proved its simplicity of implementation, its effectiveness 
and its very fast convergence [1]. However, the selection and 
adaptation of the large number of PSO parameters such as: 
swarm size, inertia coefficient, acceleration coefficients ... play a 
crucial role for good and efficient operation of PSO. On the 
other hand, PSO may be easily trapped into local optima if the 
global best and local best positions are equal to the position of 
particle over a number of iterations [2].  

The main purpose of this paper is to propose a modified hybrid 
Particle Swarm Optimization algorithm that we have called 
MHPSO, in which we combine some principles of Particle 
Swarm Optimization and the Crossover operation of the Genetic 
Algorithm. The aim of this work is twofold: first, is to benefit 
from PSO advantages (simplicity, efficiency and rapidity) and 
propose a new hybrid algorithm which can be used to solve 
different optimization problems in continuous or discrete areas. 
Second, is to prove that the proposed algorithm (MHPSO) is 
effective in dealing with NP-hard combinatorial optimization 
problems. The feature of our approach is that it requires few 
parameters to be set compared with PSO or GA. On the other 
hand, this hybridization has allowed a good balance between 
exploration and exploitation of the search space.  

To validate and prove the performance and the effectiveness of 
our algorithm, we have tested it on some multidimensional 
knapsack problem instances. Moreover, we have used the 
particle repair algorithm that we have proposed and a check and 
repair operator [3] to transform infeasible solutions to feasible 
solutions with small and big size instances respectively. 
Experimental results show the effectiveness of the proposed 
algorithm and its ability to achieve good quality solutions. 

The remainder of this paper is organized as follows. Section 2 
presents PSO principle. An overview of the Binary Particle 
Swarm Optimization (BPSO) is presented in section 3. Section 
4, presents the Multidimensional Knapsack Problem principle 
and formulation. In section 5, the proposed algorithm is 
described. Experimental results are discussed in section 6, and a 
conclusion is provided in the seven section of this paper. 

2. PSO PRINCIPLE  
Particle Swarm Optimization (PSO) is an evolutionary 
metaheuristic. It was created in 1995 by Kennedy and Eberhart 
[4] for solving optimization problems. It mimics the collective 
behavior of animals living in groups such as bird flocking and 
fish schooling. The PSO method involves a set of agents for 
solving a given problem. This set is called swarm, each swarm is 
composed of a set of members, they are called particles. Each 
particle is characterized by position xid= (xi1, xi2,…, xid,…, xiD) 
and velocity vid= (vi1, vi2,…, vid,…, viD) in a search space of    
D-dimension. During the search procedure, the particle tends to 
move towards the best position (solution) found. At each 
iteration of the search procedure, the particle moves and updates 
its velocity and its position in the swarm based on experience 
and the results found by the particle itself, its neighbors and the 
swarm. It therefore combines three components: its own current 
velocity, its best position pbestid= (pbesti1, pbesti2,…, pbestid,…, 
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pbestiD) and the best position obtained by its informants. Thus the 
equations for updating the velocity and position of particles are 
presented below [5]: 
 vid(t)= ω vid (t-1) + c1 r1 (pbestid (t-1) - xid (t-1)) + c2 r2 (gbestd (t-1) 
- xid (t-1))                                                                                  (1)                                                                             
 
xid (t)= xid (t-1) + vid (t)                                                             (2)                                                                                                                                                                                                   

ω is an inertia coefficient. (xid (t), xid (t-1)), (vid (t), vid (t-1)): 
Position and Velocity of particle i in dimension d at times t and 
t-1, respectively. pbestid (t-1), gbestd(t-1) : the best position 
obtained by the particle i and the best position obtained by the 
swarm in dimension d at time t-1, respectively. c1, c2: two 
constants representing the acceleration coefficients. r1, r2: 
random numbers drawn from the interval [0,1[. vid (t-1), c1 r1 
(pbestid (t-1) - xid (t-1)), c2 r2 (gbestd(t-1) - xid (t-1)): the three 
components mentioned above, respectively.  

The PSO algorithm begins by initializing the size of the swarm 
and the various parameters. Assign randomly to each particle an 
initial position and velocity. Initialize pbestid, then calculate the 
fitness f(xid) of particles in order to calculate the best position 
found by the swarm (gbestd). At each iteration, particles are 
moved using equations (1) and (2). Their objective functions are 
calculated and pbestid, gbestd are updated. The process is repeated 
until the satisfaction of stopping criterion. A pseudo PSO 
algorithm is presented in our previous work in [1]. 

3.  BINARY PARTICLE SWARM 
OPTIMIZATION (BPSO) ALGORITHM 
The first version of the Binary Particle Swarm Optimization 
(BPSO) algorithm (The Standard BPSO algorithm) was 
proposed in 1997 by Kennedy and Eberhart [6]. In the BPSO 
algorithm, the position of particle i is represented by a set of bit. 
The velocity vid of the particle i is calculated from equation (1). 
vid is a set of real numbers that must be transformed into a set of 
probabilities, using the sigmoid function as follows: 

   
)exp(1

1)(
id

id
v

vsig
−+

=                                             (3)                                               

Where sig (vid) represents the probability of bit xid takes the 
value 1. 
To avoid the problem of the divergence of the swarm, the 
velocity vid is generally limited by a maximum value Vmax and a 
minimum value -Vmax, i.e. vid  ∈ [-Vmax, Vmax]. The position xid 
of particle i is updated as follows: 

            1 if   r < Sig (vid) 

    xid=       0   Otherwise                                                           (4)     

Where r is a random number taken from the interval [0, 1[.   
Two main parameter problems with BPSO are discussed in [7]. 
First, the effect of velocity clamping in the continuous PSO is 
opposite of that in the binary PSO (BPSO). In fact, in the 
continuous PSO the maximum velocity of the particle encourage 
the exploration, but it limits the exploration in the binary PSO 
[7]. The second problem is the difficulties with choosing proper 
values for inertia weight. In fact, w < 1 prevents convergence 
[7].             

                                                

4.  MULTIDIMENSIONAL KNAPSACK 
PROBLEM 
The knapsack problem (KP) is one of the easier NP-hard 
problems [8]. It can be defined as follows: Assuming that we 
have a knapsack with maximum capacity C and a set of n 
objects. Each object i has a profit pi and a weight wi. The 
problem consists to select a subset of objects that maximize the 
knapsack profit without exceeding the maximum capacity of the 
knapsack. KP can be formulated as: 

   
∑
=

n

i
ii xp

1
 Maximize

                                                
 
                                
(5)       

 

    
Cxw ii ≤∑

=

n

1i
Subject 

                                                      
 

                      { }1,0∈ix  

 (6) 

Many variants of the knapsack problem were proposed in the 
literature including the Multidimensional Knapsack Problem 
(MKP). MKP is an important issue in the class of knapsack 
problem. It is a combinatorial optimization problem [9] and it is 
also a NP-hard problem [9, 10]. In the MKP, each item xi has a 
profit pi like in the simple knapsack problem. However, instead 
of having a single knapsack to fill, we have a number m of 
knapsack of capacity Cj (j = 1 ... m). Each xi has a weight wij 
that depends of the knapsack j (example: an object can have a 
weight 3 in knapsack 1, 5 in knapsack 2, etc.). A selected object 
must be in all knapsacks. The objective in MKP is to find a 
subset of objects that maximize the total profit without 
exceeding the capacity of all dimensions of the knapsack. MKP 
can be stated as follows: 

    
∑
=

n

i
ii xp

1
 Maximize

   
 

                                                       
(7) 

 

    
mjCxw jiij ...1   Subject 

n

1i
=≤∑

=

 

                    { }1,0∈ix  

 
                                            
(8) 

The MKP can be used to formulate many industrial problems 
such as capital budgeting problem, allocating processors and 
databases in a distributed computer system, cutting stock, 
project selection and cargo loading problems [10]. Due to its 
importance and its NP-Hardness, MKP has received the 
attention of many researches. It was treated by several methods 
for examples, Chu and Beasley [10] proposed a genetic 
algorithm for the MKP, Alonso et al [11] suggested an 
evolutionary strategy for MKP based on genetic computation of 
surrogate multipliers, Drexl [12] proposed a simulated annealing 
approach for the MKP, Stefka Fidanova [13] applied the ant 
colony optimization to solve the MKP, Li et al [14] suggested a 
genetic algorithm based on the orthogonal design for MKP, 
Zhou et al [9] suggested a chaotic neural network combined 
heuristic strategy for MKP, Angelelli et al [15] proposed Kernel 
search: A general heuristic for MKP, Kong and Tian [16] 
proposed a particle swarm optimization to solve the MKP and so 
one. 
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5.  THE PROPOSED ALGORITHM 
(MHPSO) 
In this section, we present the proposed algorithm called 
MHPSO which combines some principles of Particle Swarm 
Optimization and Crossover operation of the Genetic Algorithm 
in the aim to get benefit from the good exploration of the search 
space offered by the crossover operation and the good 
exploitation of the PSO algorithm and its fast convergence. The 
proposed algorithm is explained in more detail in the follow:  
5.1  Representation  
Since the MKP is a 0-1 optimization problem and it requires a 
binary solution, it is an obvious choice to represent and initialize 
the population with a binary representation. In this aim, we have 
utilized binary vectors of size D to represent different particles. 
The representation of particle i is as follows: 

               xid = [xi1, xi2,…, xid,..., xiD] 

                     1  If the object is selected 
Where    xid= 

                     0  Otherwise 

5.2  Particle Repair Algorithm (PRA)   
In the MKP, the solution must verify the m constrained of the 
knapsack to be accepted as a feasible solution. If a solution x 
exceed the capacity of any dimension of the knapsack, it is 
considered as infeasible solution and it is not accepted. To repair 
a solution x, we have proposed Particle Repair algorithm (PRA) 
which allows conversion of an infeasible solution to feasible 
solution. A pseudo Particle Repair algorithm is presented below. 

 

5.3  Check and Repair Operator (CRO) 
Although PRA guarantees feasible and good quality solution 
with small size instances, it does not work well with big size 
instances. Consequently, we have used a Check and Repair 
Operator (CRO) [3] as alternative to the PRA in order to deal 
with the big size instances. As described in [3 and 14], CRO is 
based on two phases that are defined in Algorithm 1 and 
Algorithm 2 respectively. These two phases used the profit 
density of every item in every knapsack which is calculated as 
follows:     

ijijij wpC .=δ                                                                (9) 

In the first phase the infeasible solution is transformed into 
feasible solution by the Algorithm 1 [14]. Then the obtained 
feasible solution is improved in the second phase by the 
Algorithm 2 [14]. 

 

1. Calculate the profit density 

Algorithm 1 

ijijij wpC .=δ  for every 

item in every knapsack. 
2. Compute the lowest value of the profit density 

{ }ijjji wpC .min=δ   for every item. 

3. Sort and relabel items according to the ascending order of δi. 
4. Remove the corresponding item with lowest values of δi 
from the item set. (i.e. change corresponding gene 1 into gene 
0). 
5. Repeat Step 4 until a feasible solution is achieved. 

 

 

1. Calculate the profit density 
Algorithm 2 

ijijij wpC .=δ  of every 

item out of the knapsack. 
2. Compute the lowest value of the profit density 

{ }ijjji wpC .min=δ  for every item. 

3. Sort and relabel items according to the descending order of 
δi. 
4. Add the corresponding item with highest values of δi into 
the item set (i.e. change corresponding gene 0 into gene 1). 
5. If one of knapsack constraints is not satisfied, then stop, and 
output the resulting chromosome. Otherwise, return to Step 4. 

 

5.4  Crossover Operation 
Crossover operation is one of the Genetic Algorithm (GA) 
operations which has introduced by John Holland in 1960 [17]. 
The main role of the crossover operation is to produce a new 
population (individual). It consists in combining the 
characteristics of two individuals (parents) to produce one or 
two new individuals (childs). In the proposed algorithm and in 
the aim to produce a new population, we have used the 
crossover operation between the best position pbestid of particle i 
and its current position xid and between the best position 
obtained by the swarm gbestd and the current position xid of the 
particle i. In all cases, if we assume that we have 2 particles x1 
and x2 and we want to cross them, we begin by initializing the 
step p, and 2 random positions c1 and c2, then we follow steps 
presented in Algorithm 2. Where Algorithm 2 represents a 
pseudo Crossover Algorithm. The proposed Crossover 
Algorithm, gives birth to two new child. To choose which one 
will represent the new particle, we calculate the fitness f(xi) of 
each child and we select the best one. 

Input : solution vector x 

Particle Repair Algorithm (PRA) 

Output : repaired solution vector x 

Calculate i

n

i
ji xwR j ∑

=

=
1

,   j=1,…, m; 

For (j=1,…, m) { 
     While  Rj > Cj{   
         Select randomly  i∈{1 , . . . , n} 
         If xi =1   
         {              xi  = 0; 

                        Calculate ∑
=

=
n

i
ijij xwR

1

,   j=1,…, m 

         }  
      } 
} 
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5.5  Outlines of the proposed algorithm 
Now, we explain how the proposed algorithm MHPSO can 
found a solution of an optimization problem (continuous or 
discrete problem). As any algorithm, the first step in the 
MHPSO algorithm is to initialize some necessary parameters for 
good and efficient operation of the algorithm. The main 
characteristic of the MHPSO algorithm is its simplicity. In fact, 
comparing with other population metaheuristic such as PSO and 
GA, there are few parameters to be set. Steps of the MHPSO 
algorithm are presented below. 

Step 1: Initialize a swarm size S and random position of each 
particle. For each particle, let pbestid = xid 

Step 2: Apply PRA on each infeasible solution and evaluate the 
fitness of particles  
Step 3: Calculate the gbestd 
Step 4: Calculate the new xid of each particle using the following 
equation: 

 xid = Max [(pbestidxid), (gbestdxid)]                                      (10)                                        

Where the «» operator is the crossover operation of the 
Genetic Algorithm. A pseudo code of the proposed crossover 
operation is presented in Crossover Algorithm 

Step 5: Apply PRA or CRO on each infeasible solution and 
evaluate the fitness of particles  
Step 6: update pbestid and gbestd as follows: 
                       If (f (xid) > f(pbestid))   pbestid = xid;  
                       If (f (pbestid) >f (gbestd))   gbestd = pbestid; 
Step 7: Stop iterations if stop condition is verified. Return to 
Step 4, otherwise. 

The solution of the problem is the last gbestd. Fig 1 shows the 
flowchart of the proposed algorithm. 

 

 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

Fig1: Flowchart of the proposed algorithm (MHPSO) 

6.  EXPERIMENTAL RESULTS 
The proposed MHPSO algorithm was implemented in Matlab 7. 
To assess the efficiency and performance of our MHPSO 
algorithm, we have tested it on some instances from OR-Library 
[18]. Two parts of experiments were performed. In the first part 
of experiments, we have tested and compared our algorithm on 
some small MKP instances. In this part of experiments, we have 
first tested the MHPSO algorithm on some MKP instances from 
the literature, the used instances are named: HP, SENTO, 
WEING and WEISH instances. On the other hand, we have 
compared the MHPSO algorithm with the best known solution 
(the exact solution) and the obtained solution by the standard 
PSO with penalty function technique (denoted as PSO-P) [16] 
[6] on MKP instances taken from 7 benchmarks named mknap1. 
In the second part of experiments, we have tested the MHPSO 
algorithm on some big size MKP instances taken from 
benchmarks named mknapcb1 and mknapcb4. We have used 5 
tests of the benchmarks mknapcb1 (5.100) which have 5 
constraints and 100 items, and we have used 5 tests of the 
benchmarks mknapcb4 (10.100) which have 10 constraints and 
100 items.  

1. Choose a step p                      

Crossover Algorithm 

Input : Tow particles x1 and x2   
Output : One particle xi 

2. Choose two random positions c1 and c2  from x1 
and  x2 : c1, c2∈{1 , . . . , D-p} 

3. Swap elements of x1 from c1 to c1+p with those of 
x2 from c2 to  c2+p  

4. Swap elements of x1 from c2 to c2+p with those of 
x2 from c1 to  c1+p  

5. Calculate the fitness of new particles and select the 
best one. 

Initialization of S, xid, pbestid 

Calculate pbestid and gbestd 

 

Update pbestid and gbestd 

Calculate xid  using equation (10) 

Stop and print gbestd 

Termination 
criterion is met 

Apply PRA or CRO on each infeasible 
solution and calculate the fitness particles 
 

Apply PRA on each infeasible solution 
and calculate the fitness particles  
 

 

Yes No 

Begin 
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Table1 shows the experimental results of our MHPSO algorithm 
with some instances taken from the literature. The first column 
indicates the instance name, the second and third columns 
indicate the problem size i.e. number of objects and number of 
knapsack dimensions respectively. The fourth column indicates 
the best known solution from OR-Library. Column 5 record the 
best results obtained by the MHPSO. Table1 shows that the 
proposed algorithm is able to find the best known result of all 
instances.  

Table2 shows experimental results of our MHPSO algorithm 
and the PSO-P algorithm with 7 benchmarks taken from mknap1 
instances. The first column indicates the problem index, the 
second and third columns indicate the problem size i.e. number 
of objects and number of knapsack dimensions respectively. The 
fourth column indicates the best known solution from OR-
Library. Column 5 and 6 record the best and average (AVG) 
results obtained by the MHPSO and PSO-P during 30 
independent runs for each instance. 

Table2 shows that our algorithm is able to found the best 
solution of all the mknap1 instances. Compared with PSO-P 
algorithm which utilized penalty function technique to deal with 
the constrained problems, the MHPSO algorithm gives better 
averages (AVG) in most cases. The found results are very 
encouraging. They prove the efficiency of the proposed 
algorithm. 

Table 1. Experimental results with some instances from the 
literature. 

Instance n m best  
known MHPSO 

HP1 28 4 3418 3418 
HP2 35 4 3186 3186 
PB5 20 10 2139 2139 
PB6 40 30 776 776 
PB7 37 30 1035 1035 

SENTO1 60 30 7772 7772 
SENTO2 60 30 8722 8722 
WEING1 28 2 141278 141278 
WEING2 28 2 130883 130883 
WEING3 28 2 95677 95677 
WEING4 28 2 119337 119337 
WEING7 105 2 1095445 1095445 
WEISH01 30 5 4554 4554 
WEISH06 40 5 5557 5557 
WEISH10 50 5 6339 6339 
WEISH15 60 5 7486 7486 
WEISH18 70 5 9580 9580 
WEISH22 80 5 8947 8947 

 

Finally, Table 3 shows the experimental results of our MHPSO 
with some hard instances of mknapcb1 and mknapcb4. Column 
1 shows the benchmark name. Column 2 indicates the problem 
size and columns 3 and 4 indicate the best known and the 
MHPSO solutions respectively. Obtained results in table 4 allow 
saying that MHPSO algorithm gives good results. However, the 
performances of MHPSO can be increased by the introduction 
of other specified knapsack heuristic operators utilizing 
problem-specific knowledge. 

 

Table 2. Results and Comparison of MHPSO with PSO-P 
for mknap1 instances. 

 

Table 3. Experimental Results of MKP with mknapcb1 and 
mknapcb4 instances 

Benchmark 
Name 

Problem 
size 

Best 
known MHPSO 

mknapcb1 

5.100.00 24381 24329 

5.100.01 24274 24149 

5.100.02 23551 23494 

5.100.03 23534 23370 

5.100.04 23991 23889 

mknapcb4 

10.100.00 23064 22983 

10.100.01 22801 22657 

10.100.02 22131 21853 

10.100.03 22772 22511 

10.100.04 22751 22614 
 

7.  CONCLUSION 
In this paper, we have proposed a new hybrid particle swarm 
optimization algorithm that we have called MHPSO. In the 
MHPSO, we have combined some principle of the particle 
swarm optimization and the crossover operation of the genetic 
algorithm. In opposite to the original PSO algorithm that is 
designed for solving continuous optimization problems, the 
main feature of the proposed algorithm is that is can be applied 
to solve all type of optimization problems (continuous, discrete 
and discrete binary optimization problems) by the appropriate 
choose of the population type. In the aim to verify and prove the 
performance of our new algorithm, we have tested it on some 
MKP benchmarks taken from OR-Library. Experimental results 
show a good and encouraging solution quality obtained by our 
proposed algorithm. Based on this promising result, our 
fundamental perspective is to use the proposed algorithm to 
solve other NP-hard and combinatorial optimization problems. 
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