
International Journal of Computer Applications (0975 – 8887) 
Volume 33– No.9, November 2011 

6 

Nonlinear Control of a Chemical Plant Employing a 
Combination of Fuzzy Logic and Particle Swarm 

Optimization Techniques 
 

Saeed Vaneshani                                                                   
Department of Instrumentation and Automation 

Engineering 
Ahwaz Faculty of Petroleum Engineering 

Petroleum University of Technology 
 
 

Hooshang Jazayeri-Rad 
Department of Instrumentation and Automation 

Engineering 
Ahwaz Faculty of Petroleum Engineering 

Petroleum University of Technology 
 

 

ABSTRACT 

Fuzzy logic control (FLC) systems have been tested in 
numerous practical and industrial applications as an important 
modeling tool that can cope with the uncertainties and 
nonlinearities of current control systems. The key shortcoming 
of the FLC approaches in the industrial environment is the 
number of tuning parameters to be chosen.  
In this paper a technique has been offered for optimizing the 
membership functions of a fuzzy scheme using particle swarm 
optimization (PSO) algorithm. A mixture of fuzzy logic and 
PSO technique is employed to design a controller for a nonlinear 
chemical plant. To establish its efficiency, the proposed 
technique was employed to enhance the Gaussian membership 
functions of the fuzzy model of a nonlinear continuous stirred 
tank heater (CSTH); results show that the optimized 
membership functions (MFs) offered better performance than a 
fuzzy model for the same system when the MFs were 
heuristically described. 

Keywords 
Fuzzy logic control (FLC), Membership function (MF), Particle 
swarm optimization (PSO), Continuous stirred tank heater 
(CSTH). 

1. INTRODUCTION 
Using novel techniques for handling uncertain information is of 
fundamental significance. The broad framework of fuzzy 
reasoning allows handling much of this uncertainty, which 
characterizes uncertainty using numbers in the range [0, 1]. 
FLCs are established to employ human expert knowledge in 
designing control systems, particularly those imprecise and 
nonlinear systems. 
Fuzzy systems are employed commonly, particularly on fuzzy 
control problems [5]. The goal of the fuzzy controllers in a 
CSTH is to drive the temperature to the anticipated set point 
using changes in the steam valve in the shortest time possible 
and to preserve the system at the required set point. To achieve 
this goal, the corresponding parameters of the MF of the FLC 
were optimized using PSO. 
The PSO optimization method is a stochastic search through an 
n-dimensional problem space targeting the minimization (or 
maximization) of the objective function of the problem [2]. The 
PSO was constructed through the try to graphically mimic the 
choreography of a group of birds flying to resources. Later, 

searching for theoretical basics, studies were performed about 
the way individuals in groups interact, exchanging information 
and   refining their adaptation to the situation. PSO produces 
faster convergence when compared to Genetic Algorithm, 
because of the balance between exploration and exploitation in 
the search space [13]. 
In this paper, we demonstrate a technique for constructing 
membership functions. The projected technique modifies 
membership function automatically based on Particle Swarm 
Optimization. The parameter values to be optimized are the 
mean value and standard deviation of each foot membership 
function. After particles attain the optimal result, the parameter 
value will be optimized by PSO and will be used to construct the 
whole new fuzzy membership functions.  

2. PARTICLE SWARM OPTIMIZATION 
A population-based optimization technique that discovers the 
optimal solution using a population of particles [1] is PSO. 
Every swarm of PSO is a solution in the solution space. PSO is 
basically developed through simulation of bird flocking. The 
PSO definition is presented as follows:  
• Each distinct particle i has the following properties: A current 
position in search space, xid, a current velocity, pid, and a 
personal best position in search space, pid.  
• The personal best position, pid, corresponds to the point in 
search space where particle i offers the smallest error as 
determined by the objective function f, assuming a minimization 
task.  
• The global best position marked by represents the position 
producing the lowest error amongst all the pgd.  
During the iteration every particle in the swarm is updated using 
the following two equations:  

id id 1 1 id id 2 2 gd idV (t+1)=w V (t)+c r (p -X (t))+c r (p -X (t))∗ ∗ ∗ ∗ ∗     (1) 

id id idx  ( t + 1) = x (t) + v (t+1)                                                   (2) 
Where Vid (t+1) and Vid (t)   are the updated and current 
particles velocities, respectively,  Xid ( t + 1) and  Xid ( t)  are the 
updated and current particles positions, respectively, c1 and c2 
are two positive constants and r1 and r2 are normalized unit 
random numbers within the range [0,l]), and w is the inertia 
weight. The algorithm is illustrated in Figure 1. 
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Fig 1: Flow chart depicting the general PSO algorithm. 

3.  OPTIMAL FLC DESIGN AND MODEL 
FORMULATIONS  
FLCs are designed using expert knowledge that is in the form of 
rule-based behavior. In general the FLC rules are expressed in 
the form: 
if input 1 is A and input 2 is B then output is C. 
where antecedents A and B are declared by MFs [4].  A typical 
set of MFs are depicted in Figure 2. 

 

 

 

 

 

 

  Fig 2: A typical set of MFs in an FLC. 

There are two types of expressions for consequent C[7]. In 
Tagaki-Sugeno (TS)-type FLCs, the C is expressed as a linear 
combination of all inputs. On the other hand, if a Mamdani-type 
of FLC is used, C is expressed by a set of MFs. The process that 
is used to calculate the overall control action in FLC is 
determined by different type of defuzzification process. In 
general, a Centre of Area (CoA) method is commonly used, 
where the output u* is calculated as[8]: 

*
( )

( )
o

o

um u du
u

m u du
= ∫
∫

                                                             

(3) 

The approach of using a PSO for MF tuning in FLC is shown in 
Figure 3. In the proposed PSO process, each particle is shaped to 
represent the MF parameters of the FLC’s inputs and outputs. 
As the aim of the PSO is to minimize the control error of the 
FLC, the objective function of PSO is defined as: 

  2

0
( ( ))

ft

t
f x k ε

=

=∑
                                                      

(4) 

Where tf is the total running time of the FLC, ε is the Control 
error.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig 3: The PSO- FLC method. 
 

The model consists of multi-input single-output (MISO) system 
with n number of inputs. The number of fuzzy sets for the inputs 
are m1 , m2 ,.., mn. 
There are some assumptions in the model formulation. These 
assumptions must be defined and available in advance as a basic 
integration of this hybrid algorithm. The assumptions are listed 
as below:  
(i) Gaussian membership functions were used for input and 
output variables. 
(ii) Complete rule-base was considered. A rule-base is 
considered complete when all possible combinations of input 
membership functions of all the input variables participate in 
fuzzy rule-base formation.  
The integration between optimization algorithm and fuzzy logic 
problem is as follow:  
(i) The parameters are the mean value and standard deviation of 
each  fuzzy membership function.  
(ii) These parameters act as particles and looking for the global 
best fitness.  
(iii)  It starts with an initial set of parameters.  
(iv)After the parameters had been adjusted using optimization 
method, this parameter will be used to check the performance of 
the fuzzy logic.  
(v) This process is repeated until the goal is achieved.  
The optimization method as shown in Figure 4 starts with the 
initial set of parameters and employs the fitness function to 
obtain new values for the parameters of the membership 
function. These new values will be used in the case study 
considered in this paper. 
These particle dimensions represent fuzzy membership function 
parameter values. The first column shows the input and output 
variables. All input and output MFs become different depending 
on their new position. The particle size for representing the 
Gaussian membership functions of input and output variables for 
a model is given by (5) and (6). 
Particles dimension for input variables are: 

  
1

(2 )
n

i
i

m
=
∑

                      
                                                      

(5) 

where, n number of input variables and m number of fuzzy sets.  
Particles dimension for output variable are: 

  
1

(2 )
n

i
t

=
∑

                                                                                

(6) 

 

Local Max 
0 

MF 

Local Mean 

1 

a b c 

+ -

 

 

Reference 
Input 

Contro
l error 

PSO 

FLC Plant 

 Dark Gray Bright 

  Initialize Swarm 

Evaluate Fitness 

pbest Replacement 

gbest Replacement 

Update Velocity 

Update Position 

Mutate Swarm 

gbest = Best solution 

http://www.ijcaonline.org/�


International Journal of Computer Applications (0975 – 8887) 
Volume 33– No.9, November 2011 

8 

 
TC 

FT 

FT 

LC 

hot water 

hot water 

flow SP 

steam 

TT 

FC 

LT 

where, n  number of output variables and t  number of fuzzy 
sets.  The particle dimensions required for encoding the fuzzy 
model can be obtained in table 1. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4: Flowchart of PSO to adjust fuzzy MFs. 

 
Table 1. Particle dimension for representing fuzzy model. 

 c σ  c σ  … … c σ   

Input 
var #1 X11 X11 X12 X12  … X1m X1m 2m1 

Input 
var #2 X21 X21 X22 X22 … … X2m X2m 2m2 

… … … … … … … … … … 

… … … … … … … … … … 

Input 
var #n Xn1 Xn1 Xn2 Xn2 … … Xnm Xnm 2mn 

          
Output 
variable Y1 Y1 Y2 Y2 … … Yt Yt 2t 

4. PROCESS DESCRIPTION MODEL 
To demonstrate the effectiveness of the proposed PSO-MF 
tuning method, a nonlinear system is used in simulation. In 
particular, the case considered in this paper is the Non‒Linear  
CSTH benchmark model, reported in [9]. is shown in Figure 5. 

 

 
Fig 5:The schematic of CSTH. 

The stirred tank heater model presented in this article is a hybrid 
simulation which uses measured data captured from a process to 
drive a first principles model. The noise and disturbances signals 
therefore have more complex and more realistic characteristics 
than if they were created by a random number generator. There 
are also experimentally measured data available for the purposes 
of identification. 
The pilot plant in the Department of Chemical and Materials 
Engineering at the University of Alberta is a stirred tank 
experimental rig in which hot and cold water are mixed, heated 
further using steam through a heating coil and drained from the 
tank through a long pipe. The configuration is shown in Figure 
5. The CSTH is well mixed and therefore the temperature in the 
tank is assumed the same as the outflow temperature. The tank 
has a circular cross section with a volume of 8l and height of 50 
cm. 
The cold and hot water (CW and HW) in the building are 
pressurized with a pump to 60 - 80  psi, and the hot water boiler 
is heated by the university campus steam supply. The steam to 
the plant comes from the same central campus source. Control 
valves in the CSTH plant have pneumatic actuators using 3 - 15 
psi compressed air supply, the seat and stem sets being chosen to 
suit the range of control. Flow instruments are orifice plates with 
differential pressure transmitters giving a nominal 4-20 mA 
output. The level instrument is also a differential pressure 
measurement. Finally, the temperature instrument is a type J 
metal sheathed thermocouple inserted into the outflow pipe with 
a Swage lock T‒fitting. 

4.1 Volumetric and Heat Balance 
The dynamic  volumetric and heat   balances  are  shown  in  the 
following equation: 

( ) ( )cw hw out

dV x
f f f x

dt
= + −

         

                               (7) 

( )st hw hw hw cw cw cw out out out
dH W h f h f h f x
dt

ρ ρ ρ= + + −
  

 (8) 

Where x  is the level; V the volume of water; fhw the hot water 
flow into the tank; fcw the cold water flow into the tank; fout the 
outflow from tank; H the total enthalpy in the tank; hhw the 
specific enthalpy of hot water feed; hcw the specific enthalpy of 
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cold water feed; hout the specific enthalpy of water leaving the 
tank; ρcw the density of incoming cold water; ρhw the density of 
incoming hot water; ρout the density of water leaving the tank; 
and Wst the heat inflow from steam.  
The temperatures of the hot and cold water feeds were set to 50 
°C and 24 °C respectively in the base case simulation. The 
inputs to the CSTH are electronic signals in the range 4-20 mA 
that go to the steam and cold water valves. 

Table 2.Relationship between heat transfer rate and steam valve  
Valve/mA T/C  ̊ Hout /kgm-1 ρout /kgm-3 Wst/kjs-1 

4 24 100.6 997.1 0 
7.5 30 125.7 995.2 2.24 
9 31 129.9 994.8 2.61 

11 36.5 152.8 992.9 4.65 
14 48 200.9 988.7 8.89 
17 61 255.3 982.3 13.60 
20 65 272.0 980.2 15.04 

 

4.2 The simulink Platform 
For numerical solution of the CSTH model equations its needed to an 
equation‒based simulator and in this thesis the simulation was carried 
out in simulink. Figure 6 represents the CSTH simulated model 
implemented in MATLAB simulink environment. 
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Fig 6: Simulink blocks diagram that represents the CSTH 

simulated model. 

When the stirred tank heater operates with both hot and cold water feed 
the steady state valve positions and instrument conditions in the 
operating point shown in Table 3.  

Table 3. Operating points for benchmark system. 
Variable Operating Point 
Level/mA 12.00 
Level/cm 20.48 

CW flow/mA 7.33 
CW flow/m3s-1 3.823*10-5 
CW vave/mA 7.704 

Temperature/mA 10.50 
Temperature/C ̊ 45.52 
Steam valve/mA 6.053 

HWvave/mA 5.5 

HW flow/m3s-1 5.512*10-5 

Fig 7 shows the feedback control system that was used to 
construct the control system. Here y(k) is the output signal of the 
plant, g(k)  is the set point signal, and e(k) is the error. It was 
implemented in MATLAB where the controllers were designed 
independently to follow the input as closely as possible.  

 

 

 

 

 

 

Fig 7:  Block diagram of the fuzzy control systems. 

In this case, as is shown in Figure 7, uncertainty is added to the 
system’s output where it is simulated introducing random noise 
with normal distribution. The reference input is stable and noisy 
free but the feedback at the summing junction is noisy since we 
introduced deliberately noise for simulating the overall existing 
uncertainty in the system. In consequence, the controller’s inputs 
e (error) contains uncertain data. 

5. SIMULATION RESULTS 
FLC output is the  voltage change required to operate the valve 
change required to achieve desired concentration. In this section, 
two Fuzzy controllers (Conventional FLC, PSO tuned FLC) will 
be compared. For numerical solution of the CSTR model 
equations it’s needed to an equation‒based simulator and in this 
thesis the simulation was carried out in simulink.  
In this case, the value of each process variable should be scaled 
properly to fit the specific interval. Furthermore, Gaussian 
shapes are considered for the membership functions. for input 
and output Seven such functions are used with the locations of 
their centers is as shown in Figure 8. Gaussian shape is selected 
because it is continuous function and can be easily coded in a 
digital computer. The number of fuzzy sets is chosen arbitrary, 
however increasing it will increase the number of control rules 
which has little benefit. The relative location of their center will 
be adjusted automatically using our proposed tuning method as 
discussed before. 

5.1 Conventional FLC  
The initial MFs for the  inputs are shown in Figure 8. For the 
input of this FLC, seven fuzzy Gaussian MFs were defined: NB, 
NM, NS, ZE, PS, PM, and PB. The universe of discourse for 
these MFs is in the range[-3,3] and their initial mean is -3,-2,-
1,0,1,1,and 3 respectively. The initial standard deviation for all 
MFs is 0.42. Figure 8 shows the input membership functions for 
the  FLC  and Fuzzy controllers have been designed and tested 
based on sugeno inference mechanism. 
For the output of the FLC, centroids of  FSs for consequent MFs 
were considered. There are seven consequent MFs, named, 
close_fast, close_smooth, close_slow, no_change, open_slow, 
open_smooth, and open_fast. They are on the interval [4,20] and 
their supports are 4,7,10,12,14,17,and 20 respectively. 
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Fig 8: MFs for conventional FLC. 

Using the fuzzy linguistic labels and their semantics described 
earlier, seven fuzzy rules have been considered to construct the 
fuzzy rule base. These rules are as follows: 

1. If (e is NB) then (Steam valve is close_fast) 
2. If (e is NM) then (Steam valve is close_smooth) 
3. If (e is NS) then (Steam valve is close_slow) 
4. If (e is ZE) then (Steam valve is no_change) 
5. If (e is PS) then (Steam valve is open_slow) 
6. If (e is PM) then (Steam valve is open_smooth) 
7. If (e is PB) then (Steam valve is open_fast) 

For FLC, the minimum operator is used as the t‒norm, and 
centroid method for defuzzification. 
 
To evaluate the merit of each fuzzy controller, Sum of Squared 
Error (SSE) that is given by Eq.(9) is used as performance 
criteria. 

( ) 2

1

N

j
F e j

=

 =  ∑
                                                        

        (9) 

Where e the difference between the set point and the 
actual,which is output at the jth sampling, and, N is the number 
of sampling instants.  
Fig 9 represents the schematic of the CSTH simulated model 
implemented in the MATLAB/Simulink environment.  
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Fig 9:CSTH simulated model in Simulink with pso- FLC. 

5.2 PSO tuned FLC   
 Gaussian forms are used in this FLC for all MFs. The 
parameters that define the MFs are the mean c and the deviation 
σ of each MF. The membership function is defined as: 

2 2( ) (2 )( ) x c
mff x e σ− −=                                             (10)

                                                          Figure 10, show the optimized MFs of FLC respectively. This 
criterion is used by PSO to evaluate the fitness of each candidate 
solution. Since there are 7 input MFs, there are a total of 
14 parameters that need to be tuned. Therefore, in the 

PSO, each particle must have 14 dimensions. This is a set which 
has 40 particles in the swarm and the total searching iterations 
are set to be equal to 250. The inertia factor w was set to be 
equal to 0.6 and weighting factors c1 and c2 were set to be 1.5 
and 0.9, respectively. The objective function that evaluates the 
fitness of each particle was defined as (9). The PSO parameters 
were set as in Table 5.1.Therefore, after the proper tuning of the 
MFs, the FLC will have a minimized control error. Table 4 
shows the MF parameters before and after the PSO tuning 
process.  

Table 4 PSO Parameter for CSTH problem 
Parameter Value 

C1 1.5 
C2 0.9 

Inertia w factor 0.6 
Number of particle 40 
Searching iterations 250 

Fitness SSE 

Table 5. MF Parameters before and after the PSO 
MF 

input 
Before PSO 

Mean(c)    STD( ) 
After PSO 

Mean(c)    STD( ) 
NB 
NM 
NS 
ZE 
PS 
PM 
PB 

 -3                 0.42  
 -2                 0.42  
 -1                 0.42  
  0                 0.42  
  1                 0.42  
  2                 0.42  
  3                 0.42  

-2.91             0.44 
-1.29             0.53  
-0.29             0.21  
-0.02             0.03          
0.26              0.21  
1.68              0.53   
2.98              0.44  
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Fig 10: Optimized MFs for PSO-FLC. 

Step response curves of the two FLCs are shown in Figure 11 
and 12. Best SSE values for these two fuzzy controllers are 
summarized in table 6.  
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Fig 11: Step response for FLC. 

 
Fig 12: Step response for PSO-FLC. 

 
Fig 13: Relationship between generation and sum of squared 

error (SSE). 

Table6.Comparison of the two FLC. 

Control Structure SSE 

conventional FLC 56.25 

tuned FLC (PSO-FLC) 51.71 

 
Comparison between the control results obtained from FLC and 
PSO-FLC (in Figure 11 and 12 respectively) clearly shows that 
PSO-FLC gives more accurate and acceptable results rather than 
conventional FLC. Therefore, it is clear that the PSO-FLC 

control call achieve the desired output better than conventional 
FLC. 
The superior of PSO-FLC over than FLC also can be seen in 
Table 6 and Figure 13 where the sum of square error (SSE) of 
PSO-FLC is less than conventional FLC. 

6. CONCLUSIONS 
Today, using fuzzy controllers is prevalent in controlling 
chemical plants. But the mere fuzzy controller has some 
disadvantages. The major disadvantage is lacking analytical 
design technique (the determination of parameters of MFs,..). In 
this paper, for resolving this problem, PSO is used. PSO 
determines the optimum fuzzy membership function which 
results in a high control performance. The new control strategy 
is applied on a model of CSTR, which have the inherent 
nonlinear characteristics.  

The results show clearly that the optimized FLC has better 
performance in compare with a conventional controller in the 
presence of additive random noise. The concentration of a CSTR 
is controlled by means of two different fuzzy controllers. 
According to the results of the computer simulation, the FLC 
with PSO algorithm acts better than the conventional FLC 
without PSO algorithm.  
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