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ABSTRACT 
The local binary pattern (LBP) provides a simple and efficient 
approach to gray-scale and rotation invariant texture 
classification. However, the LBP operator thresholds P 
neighbors at the value of the center pixel in a local 
neighborhood and employs a P-bit binary pattern to encode only 
the signs of the differences between the gray values. Thus, the 
LBP operator discards some important texture information. In 
this paper, we have proposed the compound local binary pattern 
(CLBP), an extension of the LBP texture operator for rotation 
invariant texture classification. The CLBP operator exploits 2P 
bits to encode the information of a local neighborhood of P 
neighbors, where the extra P bits are used to express the 
magnitude information of the differences between the center and 
the neighbor gray values. A feature representation method based 
on CLBP codes is presented. Experimental results show that, the 
classification rate of the proposed method is appreciable. 
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Keywords 
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1. INTRODUCTION 
Texture classification is an active research topic that has been 
widely studied due to its potential applicability in fabric 
inspection, remote sensing, and medical image analysis [1]. 
However, classification in uncontrolled environment is a major 
challenge as textures in the real world tend to be non-uniform 
due to variations in illumination, orientation, scale, or other 
visual appearances [2]. Early methods for texture classification 
were mostly based on statistical analysis of the texture images to 
characterize the stochastic properties of the spatial distributions 
of gray levels [3]. Some of the common methods include the 
gray tone co-occurrence matrix and filtering based approaches 
which provide good classification results with sample texture 
images of identical or similar orientations [1]. However, in 
practice performance of statistical methods decreases 
significantly in presence of orientation variations in textures [1], 
suggesting the need for rotation invariant texture classification 
methods. 

The first few approaches for achieving rotation invariance in 
texture description include generalized co-occurrence matrices 
[4], anisotropy features [5] and circular autoregressive model [6] 
based methods. Later, texture classification based on hidden 

Markov model [7], Gaussian Markov random field [8] and auto 
correlation methods [9] were introduced that provide invariance 
to texture orientations. Many feature based methods that exploit 
Gabor wavelets or other basis functions were also introduced for 
rotation invariant texture classification [10], [11], [12], where 
rotation invariance was attained by either computing rotation 
invariant features or converting rotation variant features into 
rotation invariant ones [2]. Recently, Ojala et al. [2] has 
proposed a gray-scale and rotation invariant texture 
classification method based on local binary pattern (LBP). The 
LBP method extracts rotation invariant texture features from a 
local region by thresholding the gray values of the P-
neighborhood pixels relative to the corresponding value of the 
central pixel, which is computationally efficient and robust to 
monotonic illumination variation. Although LBP provides a 
theoretically simple, yet efficient approach to texture 
classification, it has some limitations. Firstly, it shows poor 
performance in the presence of random noise [13]. Secondly, 
LBP method only considers the sign of the difference between 
two gray values and thus discards the magnitude of the 
difference which is very important texture information. Hafiane 
et al. [14] has proposed median binary pattern (MBP) that 
provides robustness against noise as texture primitives are 
obtained by thresholding a 3×3 neighborhood against the local 
median. On the other hand, local ternary pattern (LTP) 
introduced by Tan and Triggs [15] employs an extra 
discrimination level than LBP in order to provide robustness in 
smooth regions. This method has been successfully applied in 
face recognition. A similar method has been proposed by He and 
Cercone [16] for content-based image retrieval. Zhou et al. [13] 
has proposed an extended LBP that classifies and combines the 
non-uniform local patterns based on their structure and 
occurrence probability in order to compensate the texture 
information discarded by the original LBP operator. More 
recently, Guo et al. [1] has proposed LBP variance (LBPV) to 
characterize the local contrast information into the one-
dimensional LBP histogram. 

In this paper, we have proposed the compound local binary 
pattern (CLBP), an extension of the LBP operator for rotation 
invariant texture classification. Unlike the original LBP operator 
that uses P bits to encode only the signs of the differences 
between the center pixel and P neighbor gray values, the 
proposed method employs 2P bits, where the additional P bits 
are used to encode the magnitude information of the differences 
between the center and the neighbor gray values in a local 
neighborhood using a threshold. The motivation behind the 
proposed encoding scheme is to increase the robustness of the 
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texture feature representation by incorporating additional 
information that is discarded by the original LBP operator. We 
empirically study the effectiveness of our proposed method in 
representing texture information. The performance of the CLBP 
feature representation is evaluated in terms of classification rate 
using support vector machine. Experiments with a widely-used 
texture image database, namely the Brodatz texture album [17], 
demonstrate that, the proposed CLBP operator is more robust in 
extracting texture information and provides higher classification 
rate compared to some existing feature representation 
techniques. 

2. LOCAL BINARY PATTERN (LBP) 
LBP is a gray-scale and rotation invariant texture primitive that 
describes the spatial structure of the local texture of an image. 
The LBP operator selects a local neighborhood around each 
pixel of an image, thresholds the P neighbor gray values with 
respect to the center pixel and concatenates the result 
binomially. The resulting binary value is then assigned to the 
center pixel. Formally, LBP operator takes the following form: 
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Here, ic is the gray value of the center pixel (xc , yc), ip is the gray 
value of its neighbors, P is the number of neighbors and R is the 
radius of the neighborhood. The basic LBP encoding process is 
illustrated in Figure 1. 

 

 
Figure 1: Illustration of the basic LBP operator. Here, the 

LBP code is 11110000. 

 

To remove the effect of rotation, each binary pattern generated 
by the LBP operator is converted into a rotation invariant pattern 
using (3). 

{ ( ) 0,1, 2, ..., 1}ri
P,R P,RLBP = min ROR LBP ,i | i = P −             (3) 

Here, ROR(x, i) performs a circular bitwise right shift on a P-bit 
binary number x for i times. In practice, the LBP operator 
considers the signs of the differences of the gray values of P 
equally spaced neighbors with respect to the central pixel, which 
is then represented using a P-bit binary number. If any neighbor 
does not fall exactly on a pixel position, then the value of that 
neighbor is estimated using bilinear interpolation. The histogram 

of the encoded image block obtained by applying the LBP 
operator is then used as a texture descriptor for that block. 

One extension to the original LBP operator, known as the 
uniform LBP (ULBP), exploits certain LBP patterns, which 
appear more frequently in a significant area of the image. These 
patterns are known as the uniform patterns as they contain very 
few bitwise transitions from 0 to 1 or vice versa in a circular 
sequence of bits. One example of a uniform pattern is 00011111. 
It has only one transition from 0 to 1. Ojala et al. [2] observed 
that, uniform LBP patterns are the fundamental properties of 
texture, which provide a vast majority of all the 3×3 patterns 
present in any texture image. Therefore, uniform patterns are 
able to describe significant local texture information, such as 
bright spot, flat area or dark spot, and edges of varying positive 
and negative curvature [2]. 

3. COMPOUND LOCAL BINARY 
PATTERN (CLBP) 
The original LBP operator discards the magnitude information 
of the difference between the center and the neighbor gray 
values in a local neighborhood. As a result, this method tends to 
produce inconsistent codes. One example is shown in Figure 2. 
Here, the 8-bit uniform LBP code (11111111) corresponds to a 
flat area or a dark spot at the center pixel [16], which is not 
correct in this case.  

 

 
Figure 2: Generation of inconsistent binary pattern in LBP 

encoding process. 

 

As LBP operator considers only the sign of the difference 
between two gray values, it often fails to generate appropriate 
binary code. Being motivated by this, we propose CLBP, an 
extension of the original LBP operator that assigns a 2P-bit code 
to the center pixel based on the gray values of a local 
neighborhood comprising P neighbors. Unlike the LBP that 
employs one bit for each neighbor to express only the sign of the 
difference between the center and the corresponding neighbor 
gray values, the proposed method uses two bits for each 
neighbor in order to represent the sign as well as the magnitude 
information of the difference between the center and the 
neighbor gray values. Here, the first bit represents the sign of the 
difference between the center and the corresponding neighbor 
gray values like the basic LBP pattern and the other bit is used 
to encode the magnitude of the difference with respect to a 
threshold value, the average magnitude (Mavg) of the difference 
between the center and the neighbor gray values in the local 
neighborhood of interest. The CLBP operator sets this bit to 1 if 
the magnitude of the difference between the center and the 
corresponding neighbor is greater than the threshold Mavg. 
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Otherwise, it is set to 0. Thus, the indicator s(x) of (2) is 
replaced by the following function: 
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Here, ic is the gray value of the center pixel, ip is the gray value 
of a neighbor p, and Mavg is the average magnitude of the 
difference between ip and ic in the local neighborhood. The 
CLBP operator is illustrated in Figure 3. 

 

 
Figure 3: Illustration of the basic CLBP operator. Here, the 

generated CLBP code is 1011111110101010. 

 

It can be observed that, the proposed method discriminates the 
neighbors in the north-east, east, and south-east directions as 
they have higher gray values than the other neighbors and thus 
produces a consistent local pattern. 

4. SUB-CLBP CODE GENERATION 
In a 3×3 neighborhood, the proposed CLBP method encodes an 
image by operating on the 8 neighbors around the central pixel 
and assigning a 16-bit code to that pixel. As 16-bit codes are 
used to label the pixels, the number of possible binary patterns is 
216. To reduce the number of features, He and Cercone [16] have 
proposed to consider less number of neighbors while forming 
the binary patterns. Thus, this method discards some 
neighborhood information in order to reduce the length of the 
feature vector. Here, we have proposed a different approach 
where all the CLBP binary patterns are further split into two 
sub-CLBP patterns. Each sub-CLBP pattern is obtained by 
concatenating the bit values corresponding to P/2 neighbors, 
where P is the number of neighbors. Formally, in a local 
neighborhood, the two sub-CLBP patterns are formed by 
concatenating the corresponding values of the bit sequence (1, 2, 
5, 6, …, 2P−3, 2P−2) and (3, 4, 7, 8, …, 2P−1, 2P), respectively 
of the 2P-bit original CLBP code. 

In other words, a 16-bit CLBP pattern is split into two 8-bit sub-
CLBP patterns, where the first one is obtained by concatenating 
the bit values corresponding to the neighbors in the north, east, 
south, and west directions, respectively and the second sub-
CLBP pattern is obtained by concatenating the bit values 
corresponding to the neighbors in the north-east, south-east, 
south-west, and north-west directions, respectively. Thus, this 
method reduces the number of possible patterns significantly, 
which results in a total of 28 distinct sub-CLBP patterns. The 

process is illustrated in Figure 4. The two sub-CLBP patterns are 
treated as separate binary codes and combined during the feature 
vector generation. 

 

 
Figure 4: Generation of the sub-CLBP patterns from the 

original CLBP code. 

 

5. FEATURE REPRESENTATION 
After applying the CLBP operator on all the pixels of an image 
and splitting all the 16-bit CLBP patterns into the corresponding 
sub-CLBP patterns, we get two 8-bit binary codes for each pixel. 
In order to remove the effect of rotation, circular bitwise right 
shift is performed on each sub-pattern for (P−1) times where P 
is the number of bits in the pattern and the minimum binary 
valued code is then selected from the results. Thus, all the sub-
CLBP binary codes are converted into rotation invariant patterns 
using (5). 

{ ( ) 0,1, 2, ..., 1}risCLBP = min ROR sCLBP,i | i = P  −           (5) 

Here, sCLBP is the P-bit sub-CLBP pattern obtained by splitting 
the original CLBP code, sCLBPri is the rotation invariant code, 
and ROR(x, i) performs a circular bitwise right shift on x for i 
times. Thus, two encoded image representations are obtained for 
the two sub-CLBP patterns. Two separate histograms are then 
calculated on the two encoded images, where each of the 
histograms comprises 28 bins. In order to obtain the feature 
vector, the two histograms are concatenated to obtain a spatially 
combined histogram. This combined histogram is used as the 
feature vector that represents the texture information of the 
image. Each feature vector contains 2×28 features, where some 
of the feature values may be 0. The overall process is shown in 
Figure 5. 

 

 

 

 

 

 

 

 

Figure 5: Proposed feature vector generation process using 
the CLBP operator. 
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Figure 6: (a) is a sample texture image, (b) is the histogram 
of image (a), (c) and (d) are the encoded sub-CLBP images of 
(a), (e) and (f) are the histograms of image (c) and (d), (g) is 
the spatially combined histogram obtained by concatenating 

(e) and (f). 

6. CLASSIFICATION USING SUPPORT 
VECTOR MACHINE (SVM) 
Support vector machine (SVM) is a state-of-the-art machine 
learning approach based on modern statistical learning theory. It 
has been successfully applied in different classification 
problems. SVM performs classification by constructing a hyper 
plane in such a way that the separating margin between positive 
and negative examples is optimal. This separating hyper plane 
then works as the decision surface. 

Given a set of labeled training samples T = {(xi, li), i = 1, 2, …, 
L}, where xi∈RP and li ∈{-1, 1}, a new test data x is classified 
by 

1
( ) sign( ( , ) )

L

i i ii
f l K bα

=
∑= +x x x                                        (6) 

Here, αi are Lagrange multipliers of dual optimization problem, 
b is a threshold parameter, and K is a kernel function. The hyper 
plane maximizes the separating margin with respect to the 
training samples with αi > 0, which are called the support 
vectors. SVM makes binary decisions. To achieve multi-class 
classification, using one-against-rest classification or several 
two-class problems are the commonly used approaches. In our 
study, we used the one-against-rest approach. Radial basis 
function (RBF) kernel was used for the classification problem. 
The function K can be defined as 

2( , ) exp( || || ),   0i iK γ γ= − − >x x x x                              (7) 

2|| || ( ) ( )t
i i i− = − −x x x x x x                                           (8) 

Here, γ is a kernel parameter. A grid-search was carried out for 
selecting appropriate parameter value, as suggested in [18]. 

7. EXPERIMENTAL RESULTS 
The proposed CLBP-based feature description method has been 
evaluated against a benchmark texture image database, namely 
the Brodatz album [17]. The experimental dataset included a 
total of 1050 gray-scale images with resolution of 256×256, 8 
bits/pixel. The images are from 15 different texture classes, 
namely bark, brick, bubbles, grass, leather, pigskin, raffia, sand, 
straw, water, weave, wood, wool, canvas, and reptile. The 
source images were rotated to obtain 7 different rotation angles 
of 0°, 30°, 60°, 90°, 120°, 150°, and 200°. The dataset included 
10 images for each rotation angle of a texture class. 

 

 

 

 

 

 

 

 

Figure 7: Sample images of a texture class digitized at 
different rotation angles. 

In our experiment, half of the images in each class were used to 
train the classifier and the remaining images were used as the 
testing sets. Therefore, both the training and the testing dataset 
included 525 texture images of different rotation angles. We 
have compared the proposed method in terms of classification 
rate with some widely-used local texture operators, namely local 
binary pattern (LBP) [2], median binary pattern (MBP) [14], and 
local ternary pattern (LTP) [15]. Support vector machine was 
used for the classification task. Results obtained from the 
experiments are shown in Table 1. In all cases, the generated 
binary codes were converted to rotation invariant patterns using 
the method discussed in Section 5, which is indicated by the 
superscript ri. 
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Figure 8: Sample images of 15 texture classes used for experiment.

Table 1. Classification rate of different texture operator 
using the Brodatz dataset 

 

Local texture 
operator 

No. of correctly 
classified images 

Classification rate 
(%) 

MBPri  415 79.04 

8,1LBPri  430 81.90 

16,2LBPri  438 83.43 

8,1ULBPri  448 85.33 

LTPri  459 87.43 

8,1CLBPri  480 91.42 

16,2CLBPri  478 91.05 

 
The classification rate of LBP and CLBP feature description 
methods can be influenced by adjusting two parameters: the 
number of selected neighbors P and the radius R of the local 
neighborhood. Therefore, we have evaluated the performance of 
LBP and CLBP method for different parameter values in order 
to find the optimal parameter setting. It can be observed that, 
CLBP provides the highest classification rate of 91.42% for the 
parameter setting (P, R) = (8, 1). The highest classification rate 
obtained for different texture operators using the optimal 
parameter settings is shown in Figure 9. 

 
 
 
 
 
 
 
 
 

 
 
 

Figure 9: The highest classification rate (%) achieved for 
different local texture operators using optimal parameter 

setting. 
From the experimental results, it is evident that, texture feature 
representation based on compound local binary pattern is more 
robust and this method provides higher classification rate than 
some existing methods for texture feature representation. The 
superiority of the CLBP encoding is due to the utilization of the 
magnitude of the difference between the center and the neighbor 
gray values by combining it with the basic LBP pattern, which 
acts as a compensation for the texture information discarded by 
the LBP operator. Thus, this method provides an effective and 
efficient approach to rotation invariant texture classification that 
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is more discriminative than the original LBP operator and 
outperforms several existing texture description methods. 

8. CONCLUSION 
This paper describes the CLBP, an extension of the original LBP 
operator and a feature representation method based on CLBP 
codes for rotation invariant texture classification. The proposed 
method utilizes an encoding scheme that combines the 
magnitude information of the difference between two gray 
values with the original LBP pattern and thus provides increased 
robustness in many situations where LBP fails to generate 
consistent codes. Experimental results show that, the CLBP 
operator provides an effective and efficient approach for 
representing texture information with high discriminative 
ability, which is computationally efficient and robust against 
rotation effects. 
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