
International Journal of Computer Applications (0975 – 8887)
Volume 33– No.5, November 2011

14

 Cluster based Performance Evaluation of Run-length
Image Compression

 Ankit Arora Amit Chhabra Harwinder Singh Sohal
 M.Tech(IT) M.Tech (IT) M.Tech(CSE)
 Guru Nanak Dev University Asr. Guru nanak Dev University Asr. LLRIET , Moga
 Asst. Prof. at LLRIET, Moga Asst. Prof. at GNDU Cam. Asr Asst. Prof at LLRIET, Moga

ABSTRACT
Modern data processing tasks involving high computation with
huge data intensive work are not providing any usual response
as they run over a conventional computing architecture, where
the synergism capabilities of such machines are limited to single
central processing unit. Improvement over such single
processing architecture is not the big issue as many earlier
efforts in this era has been performed, which involves
overlapped pipelined architectures. Later the technology extends
to involve multiple processing elements under the control of a
common clock. A current trend involves multiple central
processing units. Despite of such efforts, another way of
achieving parallel effect is to make effective utilization of multi-
computer hardware in the form of massively parallel clustering
over a local area network. Further the experiment lead to the
analysis of Run-length image compression over a network
cluster-involving client – server model of computation
consisting software modules implemented via TCP/IP sockets
for the requirement of increased speedup as well as throughput.
Finally, the conclusion containing comparisons over clustered
environment will be discussed.

General Terms
Multi-Computer Cluster, Client Server TCP/IP Sockets,
Compression.

Keywords
Parallel Clustering, Multi-Computers, Run-length Image
Compression.

1. INTRODUCTION
Executing jobs with exhaustive computation and huge data
processing over a single processor machines sometimes not
accepted by real applications or scenarios where computation
speedup as well as throughput will be considered as high priority
attributes. Earlier research articles are related with simulated
analysis having space sharing scheduling policies [2]. The
Recent trend involves cluster based performance measurements
where many people are devoting their efforts in cluster-based
operation because of the easy availability of multi-computers
and network infrastructures. In this research, the parallel cluster
behaves like client-server architectural model, where one front-
end machine act as a load distributor or a controller and rest of
the nodes act as a processing units, also known as Asymmetric

Multi-computer communication. Other benefits involves
topological flexibility, Scheduling flexibility, fault tolerance,
architectural-scaling flexibility etc [4]. provides transparencies
in modern experimental approaches and frameworks. Cluster
based parallel environment provides increased speedup and
response time as compared to conventional machine architecture
by running computation intensive jobs incorporating parallel
behavior with workload partitioning and distribution [1]. The
rest of the paper is organized under various sections. Section II
describes the literature review. Section III indicates the
topological software structure employed over the LAN. Section
IV describes the socket semantics and connection establishment.
Section V describes the programming paradigm used to
implement parallel cluster. Section VI and VII describes the
server side module interface and performance measurements
based upon the collection of sampling results from the cluster
environment respectively. Section VIII covers the performance
metrics used in this experiment. Finally, section IX specifies
conclusions and future directions.

2. LITERATURE REVIEW
Previous Literatures shows simulated multiprocessor scheduling
environments having no. of virtual processors and job list. The
environments are modeled as time-sharing or space-sharing
policies where scheduler either distributes multiple jobs to
multiple processors or allocates multiple processors to single
job. The environment assumes virtual job lists arrived via
poison distribution theory. Each job has its own total CPU burst
time and a demand specifies the no. of processor required for
achieving parallelism. Other experimentations involve clustered
based operation over matrix multiplication. A large sized matrix
typically 128X128, 256X256, 512X512 are considered for
experimentation studies. Analysis results show that allocating
extra computational resources without increasing job size leads
to the performance degradation. Job Size must be increased to
take benefits from such computational resources leading towards
scaled speedup. Our work is similar but analyzes run length
encoding scheme for high resolution (Twips Unit) image. In
general the run length-encoding scheme is a lossyless
compression technique covering each and every aspects of an
image.

3. TOPOLOGICAL STRUCTURE

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.5, November 2011

15

The cluster interconnection involves client-server model of
communication containing nine independent machines with
underlying homogeneous architecture equipped with Pentium
3.4 GHZ processors, 1 GB of RAM and windows XP SP2
operating system. One machine acts as a server containing
server side software module having entire distribution logic,
shared memory and controlling power. The rest of the eight
independent nodes act as a client processing units cooperated to
perform intended processing assigned by the server machine [1].
Each of the clients consists of client side software module
cloning implemented to establish single instruction multiple data
model (Flynn’s taxonomy) [7] over different parts of the image.
This parallel cluster having client-server architecture, where one
front-end machine act as a load distributor and rest of the nodes
act as a processing units is known as asymmetric structure of
multi-computers. Other types of parallel computer architectures
may be implemented via network cluster like overlapped

pipelining, binary tree, hyper cube architectures, 2-D mesh etc
[5]. Logical Image Data comprises of scan lines ranges for
which a particular client performs their compression algorithm.

4. SOCKET SEMANTICS
Programming methodology consists of server side software
program and client side software program. The server side
software program consists of server socket containing listeners,
initially running in listening mode for accepting client’s
connection requests. Each of the client machines consists of
client socket containing request originators handled by a
separate listener on the server side with unique port
identification assigned to the both client and server application.

Shared Memory for image workload
 & Compression Results

 Client working status results

 Fig 1: Describes Topological Structure

At server side corresponding listener’s running in listening mode
is waked up and establishes the connection. Unique port
numbers will recognize server side listeners and client mapping

[1][3]. All of the machines connected via network switch like a
start topology and logically programmed to behave like a
distributed parallel cluster.

Client
6

Client
8

Client
7

Client
5

Client
4

Client
3

Shared

Memory

Server

Server side Software module

Image Partitioning Logic
Merging client’s Results

&
Decompression Distributing Logical Image

Data

Message Passing communication

Cloned Client Server compression Software
Module

Client
1

Client
2

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.5, November 2011

16

The Final part of the paradigm is necessary and also is very
computation intensive and takes more time if the large no. of

cluster machines involved. Not only merging but also the
partitioning time is more.

 Up to

 Client-1 Client-2 Client-3 Client-8

 Fig 2: Describes Socket Semantics and Connection Establishment

5. PROGRAMMING PARADIGM
Run-length encoding implemented parallely by means of divide
and conquer paradigm with coarse-grained workload
partitioning and distribution. The Functionality of clients and
server with respect to parallel divide and conquer paradigm [8]
is as follows –

1. Server machine partitioned the image logically depending
upon the number of specified clients using σ/P. Where σ
stands for the total no. of scan lines available in the image
and P specifies no. of clients involved in the computation.
Server then distributes logical image partitioning information
to designated clients via message passing Interface.

2. Each of the allocated clients then performs Run-length
compression scheme over different parts of the image, sends
compression result back to the shared memory structure and
working status via message passing communication to server
for ensuring the completion of the task.

3. Upon getting completion status, the server merges all of the
individual clients results into one to make final solution.

6. SERVER SIDE MODULE INTERFACE
Cluster connected server side parallel interface is developed by
using Microsoft Visual Basic 6.0 language [6]. The interface has
three sections. The first section labeled parallel execution
specifies the information regarding no. of child’s/cluster
computers, pending child’s, time duration in milliseconds, status
of the job and speed up over single processor machine. Second
section represents the sequential Run-length compression
algorithm containing information regarding sequential time
duration. Third section represents the testing stage, where the
image can be regenerated from compression results. The Image
used for compression has the resolution (4095 X 1935) in twips
units, which is both computations intensive as well as data
intensive. Client side module interface is just the Run-length
compression algorithm implemented to perform SIMD
computation over different parts of the image. In the further
sections computation results as well as performance metrics
used in this experiment will be described. The sockets
communication is performed via micro-soft Winsock activex
control (Mswinsck.ocx) 6.0 version. The control has sendData
method through which the message passing communication will
be performed. Connect method is used to perform connection

 Up To

Server Machine

Network Switch

Socket
Listener – 1
Port No.

Socket
Listener – 2
Port No.

Socket
Listener – 3
Port No.

Socket
Listener – 4
Port No.

Socket
Listener – 8
Port No.

NIC

Port No, IP Add

Client Socket

NIC

Port No, IP Add

Client Socket

NIC

Port No, IP Add

Client Socket

Network Interface Unit

NIC

Port No, IP Add

Client Socket

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.5, November 2011

17

establishment. The same work can also be performed via java
socket classes and threads, where each thread acts as a listener
for specific clients.

 Fig 3: Server Side Module Interface

7. PERFORMANCE MEASUREMENTS
 The experiment takes place by testing Run-length compression
over the cluster of eight independent computing machines. Such
variations are described in Milliseconds inclusive of both
partitioning and merging time. So the time represented in Table
1 represents the total time from job partitioning to till its final
completion after merging. This experiment, partition size are
calculated by considering total image scan lines by no. of cluster
machines as –

 Psize =
P

 σ

.σ refers to the total no. of image scan lines and P refers to the
no. of cluster machine used for computation

 Fig 4: Run-length Compression Timing Variations

 Table 1: Run-length Timing Variations

The above Timing variations of Run-length encoding over the
parallel cluster is from the task submission to up to the time of
solution merging i.e. the final outcome of all of the participating
cluster machines. The image considered for this experiment is
very high resolution and is not in pixel format but in twips
format. In general parallel computing concepts are invented for
high computation and data intensive work having large
computational time over uni-processor architectures.
Considering the following table 2 and fig 5 for speedup
computations, further the efficiency and parallel overhead will
be discussed.

Cluster Clients Time (Ms) Time(Sec)

1 129723.44 130

2 66684.123 67

3 44013.556 44

4 35680.083 36

5 27830.64 28

6 25162.77 25

7 25944.34 26

8 28572.52 29

Ti
m

e
(S

ec
)

No. of Cluster Machines

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.5, November 2011

18

 Table 2: Run-length Speedup Variations

 Fig 5: Run-length Speedup Variations

Following Table 3 describes the efficiency results of cluster
computers when executing Run-length compression over the
parallel cluster.

 Table 3 Efficiency Per Cluster Machine

Efficiency results shown as the cluster clients are increased to
6,7 or 8, the efficiency is decreased. This is because the size of
the image is fixed and the computation resources are more than
computation requirements, so partitioning and merging overhead
is more than computation overhead.

 Fig 6: Run-Length Efficiency Variations

Consider other performance measurements generally described
as parallel overhead. Parallel overhead is the overhead, which
specifies the time spent in parallel computation managing the
computation rather than computing results. Here β specifies the
time consumed by parallel cluster having p machines and α
refers to the time consumed by single machine for the same task.
The overhead is calculated, as by multiplying no. of machines
with the time consumed by no. of processor collectively and
subtracting sequential time from it.

 Table 4: Parallel Overhead (Sec)

No. of Cluster
Clients Time (Sec)

1 0

2 1.94

3 2.96

4 3.61

5 4.64

6 5.20

7 5.00

8 4.48

No. of Cluster
Clients

Time (Sec)

1 0

2 0.97

3 0.99

4 0.9

5 0.93

6 0.87

7 0.71

8 0.56

No. of Cluster
Clients P * β P * β – α

1 130 0

2 134 4

3 132 2

4 144 14

5 140 10

6 150 20

7 182 52

8 232 102

Ti
m

e
(S

ec
)

No. of Cluster Machines

Ti
m

e
(S

ec
)

No. of Cluster Machines

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.5, November 2011

19

 Fig 7: Parallel Overhead Per cluster Machine

8. PERFORMANCE METRICS USED
Following are the general-purpose performance metrics of
parallel computation, which are used to evaluate Run-length
image compression results.

Speedup is calculated by dividing single computer timing results
with multi-computer timing results as –

 Speedup (S) = β
α

Where α stands for time consumed by single processor machine
and β stands for the time consumed by multi-computer cluster of
P machines. Table 2 and Fig 5 describes the timing results as
speedup variations after executing Run-length compression over
single machine as well cluster of P machines.

Efficiency is another major performance evaluation attribute
related to the processor’s throughput. Efficiency estimates that
how well utilized the processors or machines in solving current
problem. Efficiency also defined as average contribution per
processor in computation speedup. Table 3 and Fig 6 describe
the efficiency per machine.

 Efficiency (E) = P
SSpeedUp)(

 Efficiency (E) = P*

β
α

 Where α and β refers to the time consumed by one
cluster machine and time consumed by cluster of P machines
respectively.

Parallel Overhead a measurement unit of performance
evaluation, which specifies the time spent in parallel
computation managing the computation rather than computing
results. Table 4 and fig 7 describes the parallel overhead
occurred after execution of the Run-length encoding –

 Parallel Overhead (POVR) = αβ −*P

Consider Table 4 and fig 7 for understanding parallel overheads
over clustered environment.

9. CONCLUSION & FUTURE
 DIRECTIONS
The experiment produces effective and efficient results
incorporating cluster based Run-length compression covering
cost effective utilization of multi-computers in the form of
parallel cluster. As discussed, the experiment is based upon
client-server computing, logically programmed to implement
SIMD Flynn’s based computation [7]. The ultimate conclusion
describes that high computation as well as data intensive jobs
can be prepared to run over a parallel cluster facilitating the
needs of real world by achieving speedup benefits. Many
organizations have lot of computing infrastructures discarded
not because of their software/hardware errors due to aging but
because of their low performance as compare to modern
scientific activities, such industries can improve the efficiency
of their low performance computing machines in the form of
groupware as they collectively perform a single computational
task. Despite of these, other benefits with respect to network-
oriented environment includes flexibility for the programmer to
implement any types of logical parallel structure. Programmer
can schedule or reschedule any job to any network node as well
as load sharable environment over the cluster nodes etc.
Compression results computed after executing compression
algorithm over a cluster oriented environment exhibits high
quality speedup benefits as compare to single uni-processor
computing structures, as shown in the Table 1, the time
consumption calculatation is in the form of seconds including
both partitioning and merging time, i.e. the time from job
partitioning to the merging of final results. Note that the speedup
benefits decreased in comparison to previous achievement as
soon as the no. of nodes in the cluster increased, this is because
the job size is fixed but there is an increase in processing units.
So inference from this result is that allocating more and more
processing entities to a fixed sized job will degrade the
performance and wastage of computation resources as shown in
the Figure-4 when cluster size is increased to 7 or 8. The
Experiment says there must be the increase in input size if there
is a increase in cluster size only then scaled speedup will be
achieved. Future work will be the improvement over Run-length
compression by combining some lossy compression schemes to
make more advance compression benefits.

10. REFERENCES
[1] Amit chhabra, Gurwinder Singh 2010 Cluster Based Parallel

Computing framework for Performance evaluation of
Parallel Applications, Vol.2 April – 2, International Journal
of Computer Theory and Engineering.

No. of Cluster Machines

Ti
m

e
(S

ec
)

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.5, November 2011

20

[2] Amit chhabra, Gurwinder Singh 2009 Simulated
Performance Analysis of Multiprocessor Dynamic Space
Sharing Scheduling Policy, Vol.9 Feb – 2, International
Journal of Computer Theory and Engineering

[3] Hemal V. Shah, Calton Pu, Rajesh S. M. 2006 Network-
Based “Parallel Computing. Communication, Architecture,
and Applications” Vol.-1602, Springer Berlin / Heidelberg,
Dec 29.

[4] Chee Shin Yeo, Raj Kumar Buyya, Hossein Pourreza, Rasit
Eskicioglu, Peter Graham, Frank Sommers 2005 Cluster
“Computing: High-Performance, High-Availability, and
High-Throughput Processing on a Network of Computers”.

ICCS- 5th International Conference, Springer Verlag Berlin
Heidelberg.

[5] Daniel Schulze Zumkley Architectures of Parallel
computers, Westfälische Wilhelm’s Universitat Munster.

[6] Visual Basic 6 Client/Server Programming Gold Book
1998, The Coriolis Group, ISBN: 1576102823.

[7] M.J.Flynn, 1972 “Some computer organizations and their
effectiveness,” IEEE transactions on computers, 21(9):948-
960.

[8] Jonathan C. Hardwick 1997 "Practical Parallel Divide-and-
Conquer Algorithms", CMU-CS-97-197

http://www.ijcaonline.org/�

	INTRODUCTION
	LITERATURE REVIEW
	TOPOLOGICAL STRUCTURE
	SOCKET SEMANTICS
	PROGRAMMING PARADIGM
	SERVER SIDE MODULE INTERFACE
	PERFORMANCE MEASUREMENTS
	P * (– (
	P * (
	PERFORMANCE METRICS USED
	CONCLUSION & FUTURE
	DIRECTIONS
	REFERENCES

