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ABSTRACT 
This paper deals with the behavior of unsteady MHD 

Micropolar flow and Mass transfer past a vertical plate with 

variable suction. The resultant equations are solved 

analytically using Perturbation method. The analytical 

expressions for the velocity profiles, temperature profiles and 

concentration profiles of the fluid have been obtained with 

the help of the material parameters such as Grashof number 

G, Modified Grashof number Gm, Prandtl number Pr and 

Schmidt number Sc. Numerical computations involved in the 

solution have been shown on graphs using MAtlab soft ware.  

Results show that the velocity increases with an increase in 

Grashof and modified Grashof numbers, chemical reaction 

parameter and viscosity ratio respectively and decreases as a 

result of an increasing Magnetic number and time. The 

concentration profile decreases with an increasing chemical 

reaction parameter and Schmidt number. The temperature 

field increases with increasing time and decreases with an 

increasing Prandtl number, while the angular velocity 

decreases with an increase in Grashof and Modified Grashof 

numbers, time and epsilon respectively.  

  

Keywords:  Micropolar fluid, MHD, Mass transfer, 

Variable suction, Vertical permeable plate. 

 

1. INTRODUCTION 

The problems of fluid flow and mass transfer continue to 

attract the attention of engineering science and applied 

mathematics researches owing to extensive importance and 

application in geophysics, metallurgy and aerodynamic 

extrusion of plastic sheets and other engineering, composite 

or ceramic engineering and heat exchanges. Soundalgekar 

and Takher (1977) have studied the effect of MHD forced 

and free convective flow past a semi-infinite plate. Raptis 

and Kafousias (1982) studied the influence of a magnetic 

field upon the steady free convection flow through a porous 

medium bounded by an infinite vertical plate with a constant 

suction velocity and when the plate temperature is also 

constant. Kim (2001) investigated unsteady MHD micropolar 

flow and heat transfer over a vertical porous moving plate 

with variable suction. Azzam (2002) presented radiation 

effect on the MHD mixed free-fixed convective flow past a 

semi-infinite moving vertical plate for high temperature 

differences. Cookey et al. (2003) investigated the influenceof 

viscous dissipation and radiation on unsteady MHD free 

convection flow past an infinite heated vertical plate in a 

porous media with time dependent suction. Singh (2003) 

studied MHD free convection and mass transfer flow with 

Hall current, viscous dissipation, joule heating and thermal 

diffusion.  Makinde and Mhone (2005) have studied heat 

transfer to MHD oscillatory flow in a channel filled with 

porous medium. Siddheshwar and Mahabaleshwar (2005) 

studied MHD flow and heat transfer in a visco elastic liquid 

over a stretching sheet in the presence of radiation.  Mostafa 

(2009) studied thermal radiation effect on unsteady MHD 

free convection flow past a vertical plate with temperature 

dependent viscosity. Okedeye and Lamidi (2009) 

investigated analytical solution of unsteady free convection 

and mass transfer flow past an accelerated infinite vertical 

porous plate with suction, heat generation and chemical 

species when the plate accelerated in it is own plate. Beg and 

Gosh (2010) investigated the analytical study of MHD 

radiation-convection with surface temperature oscillation and 

secondary flow effects.   

2. GOVERNING EQUATIONS 
Consider the region of unsteady MHD flow of a viscous, 

incompressible, electrically-conducting fluid occupying a 

semi-infinite region of space bounded by an infinite vertical 

plate moving with constant velocity, U, in the presence of a 

transverse magnetic field. The surface temperature of the 

plate oscillates with small amplitude about a non-uniform 

mean temperature. The x-axis is taken along the plate and the 

y-axis is normal to the plate. Anwar et al (2009). The 

governing equations are: Continuity, Linear momentum, 

Energy and Diffusion equations respectively are:  
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And the boundary conditions 
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where 
*x and 

*y
are the dimensional distances along and 

perpendicular to the plate respectively, 
* *,U V  are the 

components of dimensional velocities along 
*x and 

*y

respectively, 


is the fluid density, V is the fluid kinematic 

viscosity, rV
is the fluid kinematic rotational viscosity, g is 

the acceleration due to gravity, 
f

and c are the 

coefficients of volume expansions for temperature and 

concentration, 
*K is  the chemical reaction parameter, 

*j
 is 

the micro-inertia density,  is the electrical conductivity of 

the fluid, 0B
is the magnetic induction, 

*w is the component 

of the angular velocity, 


is the spin-gradient viscosity, T is 

the temperature, 
*C is the component of dimensional 

concentration,  is the fluid thermal diffusivity, D is the 

coefficient of mass diffusivity, n  is the dimensionless 

exponential index, 
pU

is a scale of plate moving velocity, 

0U
 is a scale of free stream velocity, A is a real positive 

constant of suction velocity parameter,  is the material 

parameter epsilon,  0V
 is a scale of suction velocity which 

has non-zero positive constant. The first term on the RHS of 

equation (2.2) is the pressure term, the second term is the 

viscous term, the third term is the buoyancy term which is as 

a result of temperature difference, the fourth term is the 

Darcy or porous term, the fifth term is the micropolar term 

while the last is the mass term.  

We now introduce the following dimensionless variables as  

Follows: 
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(2.7) 

Where γ is the spin-gradient viscosity,  is the 

dimensionless viscosity ratio, Hartman Magnetic number and 

 is the coefficient of gyro-viscosity or Vortex viscosity. 

In view of equation (2.7), the governing equations (2.2) – 

(2.6) reduced to the following non-dimensional form: 
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where
Vr

V
  ,  

*
j


, Pr is the Prandtl number, G  is 

the Grashof number due to temperature, Gm is the modified 

Grashof number due to concentration  and Sc is the 

Schmidt’s  number. 

The boundary conditions (2.6) are then given by the 

following dimensionless form:  
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3. METHOD OF SOLUTION 
In order to reduce the above system of partial differential 

equations to a system of ordinary differential equations in 

dimensionless form, we may represent the linear, angular 

velocities, temperature and mass as: 
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Substituting equations (2.13) - (2.16) into equations (2.8) - 

(2.12) and neglecting the coefficient of higher order terms 

reduce to the zeroth and first orders respectively: 
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The solutions of equations (2.17) - (2.20), (2.22) – (2.25) 

subject to the boundary conditions (2.21) and (2.26) are 

respectively: 
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By virtue of equations (2.13) - (2.16), we obtain the stream 

wise, angular velocities, temperature and mass transfer as 

follows: 
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4.  RESULTS AND DISCUSSIONS                                                                                                                                                        
The variation of velocity profile along y-axis are shown in 

figures 1, 2, 3, 4, 5,and 6 respectively for different varying 

values of Hartman Magnetic number (M=1, 2, 3, 4), 

chemical reaction parameter (K= 0.5, 0.7, 0.9, 1.0), Grashof 

number (Gr = 1, 2, 3, 4), modify Grashof  number (Gm = 1, 

2, 3, 4 ), time (t = 1, 2, 3,4), Viscosity ratio (  = 0.03, 0.06, 

0.09, 0.1). Results shows that an increase in the Magnetic 

parameter M and time t results to a decrease in the velocity 

main flow in figures 1and 5 respectively. In figures 2, 3, 4 & 

6 increasing the chemical reaction parameter K, Grashof 

number Gr, modify Grashof number Gm, and Viscosity ratio

  increases the velocity.  

   The variation of the mass concentration along y-axis is 

presented in figures 7 & 8 respectively for different varying 

values of chemical reaction parameter (K = 1, 2, 3, 4) and 

Schmidt’s number (Sc = 0.1, 0.2, 0.3, 0.4).It is found that for 

the increase of chemical reaction and Schmidt’s number, the 

concentration decreases in figures 7 and 8 respectively. 

   The variation of temperature field along the y – axis shown 

in figures 9 and 10 indicate the effects of Prandtl number (Pr 

= 0.71, 1.21, 1.71, 2.21) and time (t = 0, 15, 25, 35). It is 

observed that an  increase in the Prandtl number decreases 

the temperature in figure  9 while an increase in time has a 

significant influence in increasing the temperature as seen in 

figure 10. 

    The variation of the angular velocity profile along the y- 

axis are shown on figures 11, 12, 13 and 14 with different 

varying values of material parameters  Grashof number (G = 

1, 2, 3, 4), modify Grashof number (Gm = 1, 2, 3, 4), time (t 

= 5, 10, 15, 20) and material parameter epsilon (  = 0.01, 

0.05, 0.07, 0.09) respectively. Results shows that an increase 

in the material parameters Gr, Gm, t and  results to a 

decrease in the angular velocity.   

 

    The graphs are shown below:   

          

      

 

 
Fig. 1 Variation of  Velocity against  y for different values of  

Magnetic parameter, with, Gr = 2, Gm = 2, Pr = 0.71, Sc = 

0.65,  = 0.02, t = 1, A = 0.5, n = 0.1, N = 0.01,  = 0.03, 

  = 0.5  and  K = 0.5.      

   
Fig. 2  Variation of Velocity against  y for different values of 

chemical reaction parameter K, with, Gr = 2, Gm = 2, Pr = 

0.71, Sc = 0.65,  = 0.02, M = 1.0, t = 1, n = 0.1, N = 0.01, 

 = 0.03,   = 0.5 and A = 0.5    
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Fig. 3  Variation of Velocity against y for different values of 

Grashof number G, with, Gm = 2, Pr = 0.71, Sc = 0.65,  = 

0.02, M = 1.0, t = 1, A = 0.5,  n = 0.1, N = 0.01,  = 0.03, 

  = 0.5 and  K = 0.5.    

 

 
Fig.4 Variation of  Velocity against y for different values of 

modified Grashof number Gm, with, Gr = 2,  Pr = 0.71, Sc = 

0.65,  = 0.02, M = 1.0, t = 1, A = 0.5,  n = 0.1, N = 0.01, 

 = 0.03,   = 0.5 and  K = 0.5.  

    

Fig. 5  Variation of Velocity against y for different values of 

time t, with, Gr = 2,Gm = 2,  Pr = 0.71, Sc =  0.65,  = 0.02, 

M = 1.0,  A = 0.5, n = 0.1, N = 0.01,  = 0.03,   = 0.5  and  

K = 0.5.         

 
 

Fig.6  Variation of Velocity against y for different values of 

Viscosity ratio , with, Gr = 2,Gm = 2,  Pr = 0.71, Sc = 0.2, 

 = 0.01, M = 1.0,  A = 0.5, n = 0.1, N = 0.01,   = 0.5  and  

K = 0.5.  

 

 
Fig. 7  Variation of Mass Concentration  against y for 

different values of chemical reaction parameter K, with, t = 

1, n = 0.1, Sc = 0.65 and  = 0.02. 

 
Fig. 8  Variation of Mass Comcentration against y for 

different values of Schmidts number Sc, with, t = 1, n = 0.1, 

K = 1.0 and  = 0.02. 
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Fig. 9  Variation of  Temperature against y for different 

values of Prandtl number Pr, with, t = 1, n = 0.1and  = 0.02.  

 
Fig. 10 Variation of Temperature against y for different 

values of time t, with, Pr = 0.71, 1, n = 0.1and  = 0.02. 

 
Fig. 11   Variation of  Angular velocity against  y for 

different values of Grashof number G, with, Gm = 2, Pr = 

0.71, Sc = 0.65,  = 0.02, t = 1, A = 0.5, n = 0.1, N = 0.01, 

 = 0.03,   = 0.5  and  K = 0.5.   

 
Fig. 12  Variation of  Angular velocity against  y for different 

values of modified Grashof number Gm, with, G = 2, Pr = 

0.71, Sc = 0.65,  = 0.02, t = 1, A = 0.5, n = 0.1, N = 0.01, 

 = 0.03,   = 0.5  and  K = 0.5. 

Fig. 13  Variation of  Angular velocity against  y for different 

values of time t, with, G = Gm = 4, Pr = 0.2, Sc = 0.65,  = 

0.02,  A = 0.5, n = 0.1, N = 0.01,  = 0.03,   = 0.5  and  K 

= 0.5. 

 
Fig. 14 Variation of  Angular velocity against  y for different 

values of epsilon ,  with, G = Gm = 4, Pr = 0.71, Sc = 0.65, 

 = 0.02,  A = 0.5, n = 0.1, N = 0.01,  = 0.03,   = 0.5  

and  K = 1.0. 
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 5. CONCLUSION  
The governing equations for unsteady MHD micropolar flow 

and mass transfer flow past a vertical permeable plate with 

variable suction has been studied. Analytical results are 

presented to illustrate the details of the flow and heat transfer 

characteristics and their dependence on the material 

parameters. It is observed that the streamwise velocity  U 

decreases with an increasing Hartman Magnetic number and 

time, while an increase in the Grashof number, Modified 

Grashof number, chemical reaction parameter and viscosity 

ratio, results to an increase in the streamwise velocity U. The 

concentration profile decreases with an increasing chemical 

reaction parameter and Schmidt number. The temperature 

field increases with an increasing time and decreases with an 

increasing Prandtl number. Lastly the angular velocity 

decreases with an increasing Grashof and Modified Grashof 

numbers, time and epsilon respectively.    
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