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ABSTRACT 
Texture is an important spatial feature, useful for identifying 
objects or regions of interest in an image.  One of the most 
popular statistical methods used to measure the textural 
information of images is the grey-level co-occurrence matrix 
(GLCM). The other statistical approach to texture analysis is the 
texture spectrum approach. The present paper combines the 
fuzzy texture unit and GLCM approach to derive a Left Right 
Texture Unit Matrix (LRTM). The LRTM approach considers 
the two sets of four connected texture elements on a 3×3 grid for 
evaluating the TU instead of non-connected or corner texture 
elements as in the case of Cross Diagonal Texture Unit Matrix 
(CDTM).  The co-occurrence features extracted from the LRTM 
provide complete texture information about an image, which is 
useful for classification. The performance of these features for 
classification/discrimination of the texture images has been 
evaluated. The LRTM texture features are compared with 
original texture spectrum features in 
discriminating/classification of some of the VisTex natural 
texture images. The proposed LRTM reduces the size of the 
matrix from 6561 to 79 as in the case of original texture 
spectrum and 2020 to 79 as in the case of fuzzy texture spectrum 
approach. Thus it reduces the overall complexity. The 
experimental results indicate the efficacy of the proposed 
method.   
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1.  INTRODUCTION 
Texture Analysis plays an important role in the interpretation 
and understanding of terrain, biomedical or microscopic images. 
The main aim of texture analysis is an important cue to the 
recognition of objects. It requires proper identification of 
attributes or features that differentiate the textures for 
classification, segmentation and recognition. There are several 
methods for defining the textural features. Each method has its 
own way to define the features that are used in the classification 
problem. In practice, structural and statistical approaches [1] are 
the two major methods for extracting textural features. 
Structural approaches, where texture is considered to be a 
repetition of some basic primitive patterns with a certain rule of 
placement [2, 3], the problems appear when trying to identify 
the primitives and the placement rules in natural images. 
Statistical approaches yield characterizations of textures as 
smooth, coarse, grainy, and so on, by means stochastic 
properties of the spatial distribution of gray level in an image. 

The most common features used in practice are the measures 
derived from the spatial grey tone co-occurrence matrix [4-7], 
that is, Haralick features [6], or Conner’s features [7], for which 
the correct classification rate of 60% to 70% was only reported 
in the literature. Sometimes second-order grey-level co-
occurrence matrix (GLCM) produces unsatisfactory results. 
Some reasons for this are as follows. First, the matrix depends 
not only on the spatial relationships of grey levels but also on 
the regional intensity background variation within the image. 
Secondly, the co-occurrence matrix reveals textural information 
of the image in a given displacement vector V = (∆x, ∆y) so that 
the choice of this vector is somewhat problematic. Textural 
features also extracted from texture spectrum (TS) have been 
used in texture description and discrimination [9, 10]. 

He and Wang have proposed the texture spectrum (TS) approach 
for texture analysis [8,9,11,12]. The TS methodology [11, 12, 
13, 14] has been applied to texture characterization and texture 
classification showing its promising discrimination performance. 
But a major inconvenient of this descriptor is the large range of 
its possible values (there are 6561) at the same time that these 
values are not correlated. Moreover, as images of the same 
underlying texture can vary significantly, textural features must 
be invariant to (large) image variations, and at the same time 
sensitive to intrinsic spatial structures that define textures. To 
alleviate the above drawbacks of TU recently a Fuzzy Texture 
Spectrum (FTS) was proposed in [15]. This will dramatically 
reduce the total number of texture units to 2020. However, the 
high dimension of 2020 is a computational burden. One way to 
simplify this is to combine the fuzzy texture unit and GLCM 
approach to derive a new method named as LRTM. The 
proposed LRTM reduces the number of texture units and also 
reduces the computational complexity of the texture 
classification problem. 

The paper is organized as follows. The concepts of texture unit, 
texture spectrum and fuzzy texture spectrum are given in section 
II. The proposed methodology is given in section III. Section IV 
contains experimental results and conclusions are given in 
section V. 

2.   TEXTURE SPECTRUM  
In a square raster digital image, each pixel is surrounded by 
eight neighboring pixels. The local texture information for a 
pixel can be extracted from a neighborhood of 3x3 pixels, which 
represents the smallest complete unit. A texture image can be 
decomposed into a set of essential small units called texture 
units (TU), which characterize the local texture information for a 
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given pixel and its neighborhood. The occurrence distribution of 
texture units is called the texture spectrum (TS).  

Given a neighborhood of 3x3 pixels, which will be denoted by a 
set containing nine elements:  V= {V0,V1,...,V8}, where V0 
represents the intensity value of the central pixel and   Vi 
{i=1,2,….,8}, is the intensity value of the neighboring pixel i as 
shown in Fig.1 and the corresponding texture unit (TU) by a set 
containing eight elements, TU = {E1, E2,…..,E8}, where Ei 
(i=1,2,….8) is determined by the following Equation 1. 

Ei = �
0
1
2
�
if Vi < V0
if Vi = V0 for i = 1,2,3, … ,8 (1)
if Vi > V0

 

and each element E i occupies the same position as the pixel i. 

V1 V2 V3  E1 E2 E3 
V8  V4  E8  E4 
V7 V6 V5  E7 E6 E5 

Fig 1: Representation of Texture Elements 

As each element of TU has one of the three possible values {0, 
1, 2}, the combination of all the eight elements results in 38 = 
6561 possible texture units in total. There is no unique way to 
label and order the 6561 texture units. These texture units are 
labeled by using the following Equation 2. 

NTU =  �Ei

8

i=1

3i−1, NTU ∈ {0,1,2, … (N8−1)} (2) 

where NTU represents the texture unit number and Ei is the ith 
element of texture unit set TU = {E1, E2,….., E8}. 
The TS is able to reveal texture information in digital images 
and has promising discriminating performance for different 
textures. In addition, when compared with the other statistical 
methods, texture unit method extracts the local texture 
information for a given pixel from a neighborhood of 3x3 pixels, 
i.e., in all the eight directions from the centre pixel instead of 
only computing one displacement vector as in the GLCM.  One 
of the major inconveniences of this descriptor is the large range 
of its possible values (there are 6561 possible TU) at the same 
time that these values are not correlated.  

After exploring the concept of TU and trying to alleviate its 
drawbacks and problems a new texture spectrum method called 
Fuzzy Texture Spectrum (FTS) was proposed in [15] which 
retain TS discriminatory power considering entire spectrum. 
Moreover, in natural images, due to the presence of noise and 
the different processes of caption and digitization, even if the 
human eye perceives two neighboring pixels as equal, they 
rarely have exactly the same intensity value. However, the 
desirable situation would be that TU of homogeneous images, 
contain more number of one’s because that is what the human 
eye perceives. Therefore, if there is a lack of ones, the TU will 
take only values of  0 and 2, which means that the real number 
of possible textures is 28, that is 256 out of the of 6561, as 
proposed in [16], and the spectrum will be never totally covered, 
which misuses the power of the TS method. To avoid this 
imprecision and be able to represent the vagueness within the 
TS, the proposed method improves the use of the entire 
spectrum, by using a fuzzy logic.  

2.1   Fuzzy Texture Spectrum (FTS) 
For preserving the discriminatory power of the TS and 
incrementing its robustness it will be necessary to give some 
kind of mathematical formalization to the concepts ‘exactly 
equal’, ‘exactly greater’ and ‘exactly smaller’ accordingly to 
human eye perception.  

As in the case of the TS method, the aim of the Fuzzy Texture 
Unit (FTU) is the extraction of local texture information from 
the pixels for characterizing the textural aspect of a digital 
image. To reduce the number of texture units two more 
membership functions (Greater, Lesser quantities) were 
introduced in FTU. The texture unit is reduced to 2020, so that 
the computation time is very less when compared to previous 
approach of TU. Greater or lesser quantities are further 
quantized using fuzzy logic approach as follows. Here two more 
levels of comparison are introduced.  A texture unit is 
represented by eight elements, each of which has only five 
possible values {0, 1, 2, 3 and 4} obtained from a neighborhood 
of 3x3 image region. The elements are ordered clockwise around 
the centre pixel as shown in Fig.1. The fuzzy texture 
membership function is represented as shown in Fig.2. In Base5, 
the following Equation 3 is used to determine the elements, Ei of 
texture unit. 

 

 

 

 

Fig 2: Fuzzy Texture Number (base-5) Representation 

Ei =

⎩
⎪
⎨

⎪
⎧

0 if Vi < V0 and Vi < x
1 if  Vi < V0 and Vi < Vx

2
3
4

if  Vi = V0
if  Vi > V0
if  Vi > V0

and Vi > 𝑦𝑦
Vi < 𝑦𝑦 ⎭

⎪
⎬

⎪
⎫

for  i = 1,2, … ,8 (3) 

where x, y are user-specified values. 

The FTU number (FTUn) is computed in base5 as given in 
Equation 4. 

FTUn5 =  �Ei

8

i=1

5(i−1 2)⁄ (4) 

The total texture numbers range from 0 to 2020. 
For example 

90 130 145  0 1 3 

160 140 200  4  4 

100 140 250  0 2 4 

FTU= {0, 1, 3, 4, 4, 2, 0, 4}, FTUn5 = 1292 

Fig 3: Transformation of a 3×3 neighborhood to a FTU 

Fuzzy Texture Spectrum (FTS) is termed as the frequency of 
distribution of all fuzzy texture units, with the abscissa 
indicating the texture unit number and the ordinate representing 
its occurrence frequency. FTS is the extraction of local texture 
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information from the pixels for describing the textural aspect of 
a digital image; it should be good to detect the classes having 
highest relevance for deciding the existence of a concrete 
textural feature within an image. 

3. PROPOSED METHOD: LEFT RIGHT 
TEXTURE UNIT MATRIX (LRTM) 
The texture spectrum method of texture analysis gives the 
texture information using the eight neighbouring pixels around 
the central pixel. The level of this information depends on the 
ordering of the neighbouring pixels. The GLCM method gives 
reasonable texture information of an image that can be obtained 
between two pixels. Further a little work has been reported in 
the literature to produce strong texture information of an image 
by separating the neighbouring pixels into groups and form a 
relationship between them. In the cross diagonal approach [17] 
texture information of the image is evaluated by separating the 
neighbourhood pixels into diagonal and corner pixels. The 
corner pixels are not connected pixels. The cross diagonal 
approach is evaluated on the normal texture unit but not on the 
fuzzy texture unit information. To overcome these, a new 
method of texture analysis called Left Right Texture Unit Matrix 
(LRTM) is proposed on fuzzy texture unit (FTU). The proposed 
method divides the fuzzy texture information of an image by 
separating the neighbouring pixels into two well connected 
equal groups of four pixels named as Left Texture Unit (LTU) 
and Right Texture Unit (RTU).  This method further reduces the 
FTU from 2020 to 79 i.e., LTU and RTU values range from 0 to 
78. This reduction is useful for formation of a GLCM, by which 
a good classification can be obtained by reducing computational 
complexity. 
The texture information can be obtained from the mathematical 
model representing two groups of 4-connected texture elements 
as shown in Fig.4. The LTU and RTU are named based on the 
position of top most left texture element E1 and bottom most 
right texture element E5. That is the texture unit that contains E1 
and E5 are called as LTU and RTU respectively. A 3x3 grid can 
have four such patterns of LTU’s and RTU’s as shown in Fig.4. 

 

Fig 4: (a) Representation of 4-patterns of LTU 

 

Fig 4: (b) Representation of 4-patterns of RTU 

Each fuzzy texture element in the two groups has one of five 
possible values (0, 1, 2, 3 and 4) as given in the Eqn.5 and 
Equation 6. Both the LTU and RTU are labeled by using the 
following Equations 5&6. 

NLTU =  �ELi

4

i=1

5(i−1 2)⁄       (5) 

NRTU =  �ERi

4

i=1

5(i−1 2)⁄       (6) 

where NLTU the left-texture unit number, NRTU is the right-
texture unit number,  ELi and ERi are the ith element of left-
texture unit right-texture unit respectively. The entire process of 
transforming an image neighborhood into LTU and RTU is 
shown in Fig. 5. The elements in the LTU and RTU may be 
ordered differently. The first element of each texture unit may 
take four possible positions. In the same manner, the second, 
third and fourth element also may take four possible positions. 
The values of LTU and RTU vary depending on position of 
elements can be labeled by using equations 5 and 6.  
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 Fig 5: (a) The four possible patterns of LTU 
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  1x50.5 3x51 
 

    
    4x51.5 NRTU=66 

    
    4x50 

 
Fig 5: (b) The four possible patterns of RTU 

A LRTM is obtained with LTU values on X-axis and RTU 
values on the Y-axis as shown in Fig.6 (b). This LRTM has 
elements of relative frequencies in both LTU and RTU as in 
Fig.6 (a). Since the values of LTU and RTU ranges from 0 to 78, 
then the LRTM will have a fixed size of 79×79. From this 
LRTM, a set of Haralick features are extracted to give the 
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texture information about the image.  This new method 
combines the merits of both GLCM and TS methods of texture 
analysis and hence it gives the complete texture information 
about an image. The size of the GLCM depends on the gray 
level range of the image. The LRTM irrespective of the gray 
level range of the image it has a fixed size of 79×79. The 
proposed LRTM reduced the computational time complexity, 
because of the reduced size of the LRTM from 6561 to 79 as in 
the case of original texture spectrum [9] and 2020 to 79 as in the 
case of fuzzy texture spectrum [18]. 

NTu1 f1 
 

NTu2 f2 
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  Fig 6: (a) Frequency occurrence of Left Right Texture Unit 
(b) Left Right Texture Unit Matrix 

4.  EXPERIMENTAL RESULTS 
Experiments are conducted with two different datasets obtained 
from VisTex[19] and google [20] color images each of size 
512×512. Color images are converted into gray images by using 
simple MatLab command. For each texture group, 10 texture 
samples are used to design the classifier. Seven Haralick 
features i.e. entropy, energy, contrast, correlation, homogeneity, 
cluster shade and cluster prominence is evaluated on LRTM and 
General Texture Spectrum (GTS) using 0, 45, 90, 135 degrees of 
rotation. This leads to a total of 4x7=28 features for each texture 
sample. For classification, LOOM classifier is used to guarantee 
strict separation of test and training set with the maximization of 
the number of training images. Table 1 and Table 2 show the 
mean percentage classification rate for each group of textures by 
using the proposed LRTM and GTS method on VisTex and 
Google database images respectively. From these tables it is 
clearly evident that the proposed LRTM exhibits a high 
classification rate than the GTS method. The graphical analysis 
of the percentage mean classification rate for the proposed 
LRTM and GTS methods of two databases are shown in Fig.7. 
 
Table 1. VisTex Database: Mean % classification rate of 
each group of rotations of textures  
 

 
Table 2. Google Database: Mean % classification rate of 

each group of rotations of textures 

 

 

Fig 7. Comparative analysis of LRTM and GTS 

 

5.  CONCLUSIONS 
The proposed LRTM reduced the computational time 
complexity, because of the reduced size i.e. 6561 to 79 as in the 
case of original texture spectrum [9] and 2020 to 79 as in the 
case of fuzzy texture spectrum [18]. This reduction helps in 
evaluating GLCM features for classification purpose, which is 
not possible in the previous TS method. The proposed method is 
rotationally invariant because LRTM can be formed differently 
based on the position of LTU and RTU. The results and graph 
clearly indicates the efficacy of the proposed method when 
compared to other methods. 
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