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ABSTRACT  

The mathematical model of immobilized enzyme system in 

porous spherical particle is presented.  The model is based on 

non-stationary diffusion equation containing a nonlinear term 

related to Michaelis-Menten kinetics of the enzymatic 

reaction. A general and closed form of an analytical 

expression pertaining to the substrate concentration profile 

and effectiveness factor are reported for all possible values of 

dimensionless modules   and  . Moreover, herein we have 

employed “Homotopy Perturbation Method” (HPM) to solve 

the non-linear reaction/diffusion equation in immobilized 

enzymes system. These analytical results were found to be in 

good agreement with simulation result. 

Keywords: Diffusion-Reaction, Immobilised Enzymes, 
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1. INTRODUCTION 

Immobilization of enzymes helps in their economic reuse and 

in the development of continuous bioprocesses. Enzymes can 

be immobilized either using the isolated enzymes or the whole 

cells. Immobilization often stabilizes structure of the 

enzymes, thereby allowing their applications even under harsh 

environmental conditions of pH, temperature and organic 

solvents, and thus enables their uses at high temperatures in 

nonaqueous enzymology, and in the fabrication of biosensor 

probes. In the future, development of techniques for the 

immobilization of multienzymes along with cofactor 

regeneration and retention system can be gainfully exploited 

in developing biochemical processes involving complex 

chemical conversions.  

   The internal diffusional effects can be quantitatively 

expressed by the effectiveness factor η. The effectiveness 

factor is defined as the ratio of the actual reaction rate inside 

the particle to the rate in the absence of diffusional limitations 

[1]. The analytical solution for first-order kinetics, which 

provides the effectiveness factor value as a hyperbolic 

function of the Thiele modulus, is well known. For simple 

Michaelis-Menten kineties, a two-parameter model providing 

generalized plots of the effectiveness factor as a function of 

the dimensionless moduli [2, 3].  Immobilized enzyme system 

are also analysed for more complex kinetics: reversible 

reactions [4], competitive Michaelis-Menten kinetics [5] or 

two-substrate enzymatic reactions [6].  

Rony [7] obtained the analytical expression of concentrations 

and effectiveness factor only for the limiting cases. 

Effectiveness factor for immobilized enzyme reaction are 

obtained using various numerical techniques [8-15]. But, 

since the calculus complexity increases as the reaction 

mechanism becomes more complex. When reversible or 

product competitive inhibition mechanisms have been 

considered, only external diffusional limitations [16] have 

been evaluated, otherwise unsatisfactory results were obtained 

[17-19]. 

    Most theoretical models developed for estimating the 

effectiveness factor for heterogeneous enzymatic systems are 

based on the following assumptions: The catalytic particle is a 

porous sphere with a radius R . The enzyme is uniformly 

distributed throughout the whole catalytic particle. Diffusion 

reaction takes place at a constant temperature and under 

steady-state conditions. The substrate and product diffusion 

inside the catalytic particle can be modeled by Fick’s first law 

and effective diffusivity is the same throughout the particle. 

The enzymatic reaction is monosubstrate and yields only one 

product. 

    The first model has been effectively applied in the devise of 

heterogeneous enzymatic reactors: fixed bed reactors [20], 

continuous tank reactors [21] and fluidized bed reactors [22]. 

Recently the methodology used in these papers has been 

applied to the simulation of a packed bed immobilized 

enzyme reactor [23, 24].  

    However, approximate analytical solutions have been 

obtained only in a limited range of the parameters [25-27]. 

Several numerical methods have been used to solve the 

boundary value problems outlined in Eq. (1) and (2). The 

most frequently used are finite differences [28] and 

orthogonal collocation [29], which transforms the problem 

into a system of algebraic equations. Recently, a two-

dimensional flow model, incorporating mass transport has 

been developed to simulate a microchannel enzyme reactor 

with a porous wall using finite volume method [30, 31]. 

However, to the best of our knowledge, there was no rigorous 

solution for the substrate concentration has been reported. The 

purpose of this communication is to derive simple analytical 

expression for concentration and effectiveness factor for all 

possible values of reaction/diffusion parameters    and  . 
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2. MATHEMATICAL FORMULATION 

OF THE PROBLEM AND ANALYSIS 

The mathematical models for estimating the effectiveness 

factor in heterogeneous enzymatic systems are based on the 

following assumptions: (i) The catalytic particle is spherical 

and its radius is R . (ii) The enzyme is uniformly distributed 

throughout the whole catalytic particle. (iii) The system is in a 

steady-state and isothermal. Under these above assumptions, 

the differential mass balance equation for substrate and 

product in spherical co-ordinates are as follows [32]: 
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where SC  and PC  denote the dimensional substrate and 

product concentration, r is the radial co-ordinate and R  is the 

radius of the particle. SD  and PD  are the effective 

substrate and product diffusivity inside the particle. SRC  and 

PRC  local substrate and product concentration at the particle 

surface. SV  is the local reaction rate per unit of catalytic 

particle volume and mV  is the maximum reaction rate per 

unit of catalytic particle volume. eqK  is the equilibrium 

constant. MK  and PK  are the Michaelis constant and 

competitive product inhibition constant. The form of SV  

determines the mathematical method to solve the above 

equations and its complexity. Most of the already published 

articles on enzymatic solution were dealt with non-reversible 

Michaelis-Menten kinetics. The present model is an 

improvement based on the previously formulated three 

parameter model [33], since only two parameters are 

necessary to reach the solution. Adding Eqs. (1) and (2) and 

using the boundary conditions the following relationship can 

be established: 
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where SEC  and PEC  are the equilibrium substrate and 

product concentration. We make the non-linear differential 

equations outlined in equations (1) and (2) dimensionless by 

introducing the following dimensionless parameters: 
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   The mass balance differential equation for substrate in 

spherical co-ordinates for two parameter model is [32]: 
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where S  is the substrate concentration and   is the 

dimensionless particle radial coordinate and   and   are 

the dimensionless modules. The boundary conditions are 

represented as follows: 

0
d

dS
 when 0                                        (11) 

1S  when 1                                              (12) 
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The effectiveness factor can be evaluated as [32]:   
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3. GENERAL RESULT FOR 

CONCENTRATION S  AND 

EFFECTIVENESS FACTOR   

    The Homotopy perturbation method [34-40] is used to give 

the approximate analytical solution of non-linear 

reaction/diffusion Eq. (10). Using this method (see Appendix 

–A and B) we can obtain the concentration of substrate as 

follows: 
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The Eq. (14) satisfies the boundary conditions (11) and (12). 

This equation represents the analytical expression of 

concentration provided 
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where 

   66 2A                                 (16) 

Eq. (15) represents the new approximate analytical expression 

for the effectiveness factor for all possible values of 

parameters   and   provided 0A  and 
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4. NUMERICAL SIMULATION 

The non-linear differential equation (10) is solved by 

numerical methods. The function pdex4 in SCILAB software 

which is a function of solving the boundary value problems 

for ordinary differential equation is used to solve this 

equation. Its numerical solution is compared with Homotopy 

perturbation method in figures and it gives a satisfactory 

result when 10 .  

 

5. DISCUSSION 

   5.1 Effect of Thiele modulus   in 

concentration of substrate 

The Thiele modulus   can be varied by changing either the 

particle radius or the amount of concentration of substrate. 

This parameter describes the relative importance of diffusion 

and reaction in the particle radius. When   is small, the 

kinetics are the determining factor; the overall uptake of 

substrate in the enzyme matrix is kinetically controlled. Under 

these conditions, the substrate concentration profile across the 

membrane is essentially uniform. In contrast, when the Thiele 

modulus is large, diffusion limitations are the principal 

determining factor.           

Figs. (1) - (2) show the dimensionless steady-state substrate 

concentration for the different values of   calculated using 

Eq. (14). From these figures, we can see that the value of the 

concentration increases when   decreases. The concentration 

of substrate S increases slowly and rises abruptly when 

4.0  and all values of  . When 1  and 5 , 

the concentration of substrate 1S (steady-state value). The 

simulation result is compared with our simple closed 

analytical expression Eq. (14), in Tables 1. The average 

relative difference between our Eq. (14) and the simulation 

result is less than 0.5 % when .2   

5.2 Effect of dimensionless module   in 

concentration 

The dimensionless module   is parameter quantifying the 

degree of unsaturation/saturation of  the catalytic kinetics 

since it describes the ratio of the substrate concentration 

within the film to Michaelis –Menten constant. When 

1 , and so the kinetics are unsaturated (first order with 

respect to substrate concentration S ). Alternatively, when 

1 , and the catalytic kinetics are saturated (zero order 

with respect to substrate concentration S ). Figs. (3) to (4) 

show the dimensionless steady-state substrate concentration 

for the different values of  . From these figures, we can see 

that the value of the concentration increases when   

increases for all values of   .  

5.3 Effectiveness factor   

Effectiveness is an important concept in immobilized enzyme 

system. Fig. 5 represents the effectiveness factor   versus 

dimensionless module   for different values of 

dimensionless module  . From this figure, it is inferred that, 

a constant value of dimensionless module  , the 

effectiveness factor   decreases quite rapidly as 

dimensionless module    increases, approaching zero at high 

  values, which corresponds to internal diffusion controlled 

processes. Moreover, it is also well known that, a constant 

value of   dimensionless module   , the effectiveness factor 

  increases with increasing values of  .  



International Journal of Computer Applications (0975 – 8887) 

Volume 33– No.3, November 2011 

49 

Fig. 1.  Influence of dimensionless module   on the 

concentration profile of substrate S  obtained from our 

approximate solution presented in this work (Eq. (14), 

solid line) and from the simulation result (plus line). The 

plot was constructed for 2 . 

 

Fig. 2.  Influence of dimensionless module   on the 

concentration profile of substrate S  obtained from our 

approximate solution presented in this work (Eq. (14), 

solid line) and from the simulation result (plus line). The 

plot was constructed for 5 .   

 
 

Fig. 3. Influence of dimensionless module   on the 

concentration profile of substrate S  obtained from our 

approximate solution presented in this work (Eq. (14), 

solid line) and from the simulation result (plus line). The 

plot was constructed  for 2 . 

                                                                       

Fig. 4. Influence of dimensionless module   on the 

concentration profile of substrate S  obtained from our 

approximate solution presented in this work (Eq. (14), 

solid line) and from the simulation result (plus line). The 

plot was constructed for 5 . 

 
Fig.  5. Influence of dimensionless module   on 

effectiveness factor   obtained from our approximate 

solution presented in this work (Eq. (15), solid line) and 

from the simulation result (dotted line).      

 

6. CONCLUSIONS 

The time independent non-linear reaction/diffusion equation 

in immobilized enzyme system has been formulated and 

solved analytically. An approximate analytical expression for 

the concentration and effectiveness factor under steady state 

conditions are obtained by using the Homotopy perturbation 

method. The primary results of our work were simple 

approximate calculation of concentration and effectiveness 

factor for all values of parameters   and . This method 

can be applied to find the solution of all other non-linear 

reaction diffusion equations in immobilized enzymes for 

various complex boundary conditions. 
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APPENDIX A.   

 

Solution of the equation (10) using Homotopy 

perturbation method. 

    In this appendix, we indicate how Eq.  (14)  in this paper is 

derived.  To find the solution of Eq. (10), we first construct a 

Homotopy as follows: 
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 and the initial approximations are as follows:

 

 

0  ;0 0   ddS
                                    (A2)          

1  ;1 0  S                                                    (A3)    

0  ;0   ddSi
                                     (A4) 

1  ;1  iS            ...... ,2  ,1   i         (A5) 

and 

 .......3

3

2

2

10  SpSppSSS    (A6)  

Substituting Eq. (A6) into Eq. (A1) and arranging the like 

coefficients of powers p , we can obtain the following 

differential equations 
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Solving equations (A7) to (A9) using reduction of order (see 

Appendix-B) for solving the Eq. (A8), and using the boundary 

conditions (A4) to (A5), we can find the following results 
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According to the HPM, we can conclude that 

.......)(lim)( 210
1

SSSSS
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  (A13) 

After putting Eqs. (A10), (A11) and (A12) into Eq. (A13). 

The final results can be described in Eq. (14) in the text. The 

remaining components of )(xun  and )(xvn  
be completely 

determined such that each term is determined by the previous 

term.  

APPENDIX B 

In this appendix, we derive the solution of equation (A8) by 

using the reduction of order. The equation (A8) can be written 

in the form:  
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where 
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Let the solution of Eq. (B1) be  

)()(1  vcu                                                   (B3) 

Substituting Eq. (B3) in (B1), we get 
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Now to remove the first derivative, we can choose the 

coefficient of the first derivative in Eq. (B4) is zero 

( )01 P . We have   

0
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Solving Eq. (B6), we can obtain c as follows: 
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Now the given equation (B4) reduces to 
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Substituting the value of 1Q  and 1R  in Eq. (B8) we obtain,  
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Solving the above equation (B9), we get 
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 Substituting (B7) and (B10) in (B3), we have 
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Using the boundary conditions (Eqs. (A4) and (A5)), we can 

obtain the value of the constants A and B. Substituting the 

value of the constants A and B in the equation (B11) we obtain 

the equation (A11). Similarly we can solve the other 

differential Eq. (A9), using the reduction of order method.    

 

NOMENCLATURE 

 

  Symbol Meaning Usual dimension 

            PC                                    Product concentration inside the spherical particle 
Mole/cm

3
 

            PEC  Equilibrium product concentration 
Mole/cm

3
 

            PRC  local product concentration at particle surface 
Mole/cm

3
 

               SC  Substrate concentration inside the spherical particle 
Mole/cm

3
 

             SEC  Equilibrium substrate concentration 
Mole/cm

3
 

              SRC  local substrate concentration at particle surface 
Mole/cm

3
 

              PD  Effective product diffusivity inside the particle 
Cm

2
sec

1
 

              SD  Effective substrate diffusivity inside the particle 
Cm

2
sec

1
 

             eqK  equilibrium constant none 

              MK  Michaelis constant 
Mole/cm

3
 

               PK  Competitive product inhibition constant none 

               r  radial coordinate of the particle Cm 

              R  radius of the particle Cm 

              S  dimensionless substrate concentration, defined as SRS CC  for 

the two-parameters model 

Mole/cm
3

 

              mV  maximum reaction rate per unit of catalytic particle volume 
Mole/cm

3
sec 

              SV  local reaction rate per unit of catalytic particle volume 
Mole/cm

3
sec 

Greek symbols 

 

                dimensionless module for two parameter model none 

                dimensionless module for two parameter model none 

                effectiveness factor none 

               dimensionless particle radial coordinate none 
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Table 1: Comparison of concentration profile of substrate S  for various values of   using equations (14) and 

simulation result when dimensionless module ( 2 ). 

 

 

  

Concentration of  S  

S   (when  = 0.1) S   (when  = 5) S   (when  = 20) 

Simulation This 

work 

Eq. (14) 

%  of 

deviation 

Simulation This 

work 

Eq. (14) 

%  of 

deviation 

Simulation This 

work 

Eq. (14) 

%  of 

deviation 

   0 0.9900 0.9917 0.1714 0.6452 0.6441 

 

0.0912 
0.3051 0.3056 0.1636 

0.2 0.9915 0.9920 0.0504 0.6570 0.6576 

 

0.0912 
0.3173 0.3176 0.0945 

0.4 0.9935 0.9950 0.1508 0.6980 0.6986 

 

0.0859 
0.3600 0.3621 0.5799 

0.6 0.9955 0.9958 0.0301 0.7679 0.7688 

 

0.1171 
0.4561 0.4568 0.1532 

0.8 0.9968 0.9970 

 

0.0201 
0.8641 0.8647 

 

0.0694 
0.6514 0.6646 1.9862 

1 1.0000 1.0000 

 

0.0000 
1.0000 1.0000 

 

0.0000 
1.0000 1.0000 0.0000 

 Average 

 

0.0705 

 Average 

0.0758 

 Average 

0.4962 

 

 

    


