
International Journal of Computer Applications (0975 – 8887)
Volume 33– No.2, November 2011

48

Online Music Library using RDF based Inference
Engines

Kumar Abhishek,

Dept.of CSE
 NIT Patna-80005

India

Gopinath.V
 Dept. of CSE ,
 MIT Manipal-

576104
India

cation and
Research,

Mangalore SEZ , ys
logies, India

Archana P. Kumar
Dept. of CSE,

MIT Manipal-576104,
India

ABSTRACT
The paper describes the method of how to develop “Intelligent
agents” for web searching and replacing the existing “User
agents” with the “Intelligent agents”. This process is
described by developing a website (viz.Music Library)
which runs on an inferencing engine which suggests the
users the kind of music they like based upon its reasoning.
The database for such an engine has been moved away from
the traditional RDBMS format and more easy-to-use XML
files have been used in place. These XML files are in fact
RDF/XML files, which allow inferencing process to be
achieved in a smooth fashion.

Keywords
Intelligent agents, Inferencing, RDF/XML format.

1. INTRODUCTION
There has been a constant effort from the W3C community to
develop the World Wide Web in a direction that makes
surfing as simple, efficient and intelligent as
possible.”Simple” by moving most of the work loads from the
users to the machines “Efficient”, in a sense making search
results more meaningful and machine understandable
“Intelligent”, in the sense of making machines work and
understand the content of the web without any human
intervention. This process also involves machines interacting
with each other all by themselves and giving meaningful
results. This process would bring around some level of
artificial intelligence in computers.

1.1 Intelligent Agents
Intelligent agents are “user” like agents with “intelligence”
embedded into them. Making intelligent means making them
understand the web of data as understood by humans.

2. RESOURCE DESCRIPTION
FRAMEWORK

Resource Description Framework was originally developed as
a metadata model, the first specification of RDF came in the
year 1999 authored by Ora Lassila and Ralph Swick [2].

RDF is based on XML and is defined as a language used for
representing information about resources in the World Wide
Web that is adding metadata to the web resource [2].

The basic idea of RDF is to identify things (resource) using
Web Identifiers. This web identifiers are known as Uniform
Resource Indicator (URI). RDF also describes resources in
terms of properties and properties value [2].

RDF is also known as TRIPLES where triple is a magic
number that is three piece of information needed to fully
define a single bit of knowledge. The three pieces of
information are subject, property type and property value. For
example I (subject) have a name (property), which is Kumar
Abhishek (property value) [3].

In English grammar rule a complete sentence (or statement)
contains two things a subject and a predicate: the subject is
the who or what of the sentence and the predicate provides
information about the subject [3]. For example

The title of the article is "Pranab Roy."

In the above example subject is the article, and the predicate is
title, with a matching value of "Pranab Roy" [3].

If the above English statement is translated to an RDF triple,
the subject is the thing being described—in RDF terms, a
resource identified by a URI and the predicate is a property
type of the resource, such as an attribute, a relationship, or a
characteristic [3].

Apart from subject and predicate the specification also
introduces a third component, the object [3].

In RDF, the object is equivalent to the value of the resource
property type for the specific subject [3].

RDF core committee decided to represent the data model in
RDF using directed label graph [3].

The RDF directed graph consists of a set of nodes connected
by arcs, forming a pattern of node-arc-node. The nodes come
in three varieties: uriref, blank nodes, and literals [3].

The uriref consists of a Uniform Resource Identifier (URI)
reference that provides a specific identifier unique to the node.
Blank nodes are nodes that don't have a URI. The literals
consist of three parts—a character string and an optional
language tag and data type. Literal values represent RDF
objects only, never subjects or predicates. In RDF literals are
represented by drawing rectangles around them [3].

2.1 RDF Data Model
The representation of data in RDF is done via graph. In RDF
as we know it comprises of three things subject-object and
predicate, in RDF statement the term subject is either a
Uniform Resource Identifier (URI) or a blank node, which
denote resources [3].

Resources which are represented by blank nodes are termed as
anonymous resources. These resources are not directly
identified from RDF statement.

Vipin Kumar.N
Eucation and Research,
Mangalore SEZ , Infosys

technologies, India

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.2, November 2011

49

The term predicate is also an URI which indicates a resource,
representing a relationship.

The object is a URI, blank node or a Unicode string literal [3].

hhhhhh

Figure 1- RDF Statement [7]

Figure 1 depicts a graph representation of RDF
statements [7].

In the figure above, the object is a string: "Uche Ogbuji".
Then the object is termed as literal in RDF, but an object
could also be a resource [7].

Figure 2: A small RDF model [5]

Figure 2 depicts combination of several RDF statement into a
single diagram. The expansion of RDF is done on this basis.

RDF describes a Web-based resource by defining a directed
graph of statements.

In the above figure, the object which is a literal "Uche
Ogbuji" is replaced by a URI indicating this person, which in
turn is the subject of several more statements. This type of
collection of RDF statements is termed as model in RDF [7].

Uniform Resource Locator are used to point to Web
Documents that describe the exact meaning (semantics) of
each edge type.

3. INFERENCE ENGINE
Inference engine or a semantic reasoner is a software tool
which is used to derive new knowledge from already existing
knowledge by using rules, called as inference rules. The
inference rules control all the steps for inference which is
developed by the inference engine [8].

 Semantic web makes use of inference engine to process the
knowledge available. Let us take for instance

Grandfather (Tony, Mac) |: Father (Tony, John) &
Father (John, Mac)
There are two related to the above consideration:

(a) Tony is father of John
(b) John is father of Mac

The rule devised here is ---“when we find a new relationship
where Tony is a father of John and then for second
consideration, that John there is a Mac for which Jack is the
father of Mac, then new knowledge is Tony is a grandfather of
Mac [8].
Ontology language is used to specify inference rule. While
writing inference many semantic reasoner makes use of first-
order predicates and based on this there two basic types of
inferencing

i. Backward Chaining

ii. Forward Chaining

Figure 3 – Inference Machinery [9]

The Backward Chaining method tries to achieve the goal by
working backward that is it tries to prove a goal by finding out
the truth of its condition [8].

Let us take an example of rule “if A and B then C”, the
backward inference will prove C by first proving C and then
proving B [8].

The Forward Chaining method is also known as data-directed
inference, i.e. data gets itself in working memory. When the
data is put in the working memory this will trigger rules
whose condition should match new data. The rules will
perform actions which may result in adding new data in
memory which will trigger more [10].

Many of the inference engine makes use of forward chaining,
some of the most common inference engine used for semantic
web application are – F-OWL, JENA, RACER etc [8].

4. METHODOLOGY
The website constructed is Music Library portal. Unlike the
contemporary libraries where the user just clicks on his type
of music and the songs related to that genre, this portal is

http://uche.ogbuji.
net/thisarticle

“Uche Ogbuji”

authord by

http://uche.ogbuji.
net/thisarticle

http://uche.ogbuj
i.net

authored by

“Uche Ogbuji” “Nigerian”

name Nationality

Reasoner
Registry

Ont/Model API

InfGraph

Reasoner

ModelFactory

Graph – ontology
definitions

Graph- base
assertions

find

create

bind

bindSchema
(optionql)

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.2, November 2011

50

more of a suggesting nature. Based on the genre of music the
user likes it gives its opinion on what other type of music the
user might be interested in.The following tools are used in the
process of creation of the portal:
Protégé: A tool developed by Stanford University for creation
of RDF/XML files in a simple fashion.
Jena :A Java API for creating models for the inferencing
process.The API also has methods to access the RDF files,for
accessing the inference engine and putting out the results in a
required format(here HTML format).
Eclipse :An IDE for the writing the required code for the Jena
applications,and methods of how the user end and the
database end connect.

 Results/Suggestions Genre

 Figure 4- User selection
The user in Figure 4 is allowed to choose a genre of his
choice.The program running at the server displays the result
and also gives a suggestion based on the genre.

 REST/SOAP Result

Figure 5- Backend database access

The browser at the client end accesses the web server. The
server has a program running namely Main.java .This file has
the capability of accessing the repository at the backend. The
backend here is a database of XML files.

Important aspects of Main.java file:

• Creating a Jena model
• Copying the required RDF file into the model (The

Jena creates a graph structure of the rdf data).
• Initializing the reasoner using the imported

packages.

• Switching/Calling to/the required query.
• Putting the result of the query into the required

format.
• Sending the result back to the browser to display.

4.1 JENA Model
This step is used for creating a default model to be used by
Jena.This model will be used for the processing of the RDF
files.

import com.hp.hpl.jena.rdf.model.Model; Model
model=ModelFactory.createDefaultModel();

4.2 Copying RDF file
InputStream in=null;
in=new FileInputStream(new File(“<filename>”);
model.read(in,null);
This snippet is used to copy the required RDF file from the
database into the empty Jena model created, for the processing
of queries.

4.3 Initializing the Reasoner
Reasoner
reasoned=RDFSRuleReasonerFactory.theInstance().create(nul
l);

 InfModel inf =ModelFactory.createInfModel(reasoner,

rdfsExample);

This snippet initializes the RDF reasoned present in the Jena
API and also initializes an Inference model.This Inference
model is used to hold results generated by the reasoner.

External reasoners can be accessed through HTTP by using
the following snippet:

ReasonerManager reasonerManager =
ReasonerManager.getInstance();

 ProtegeOWLReasoner reasoner =
reasonerManager.getReasoner(model);

 if (reasoner.isConnected()) {

 DIGReasonerIdentity reasonerIdentity =
reasoner.getIdentity();

 System.out.println("Connected to " +
reasonerIdentity.getName());

}

4.4 Calling the query
String a=null;

a="PREFIX
lib:<http://www.music.com/ontologies/music.owl#>"+

"PREFIX foaf:<http://www.w3.org/2000/01/rdf-schema#>"+

 "SELECT ?a "+

 "WHERE {"+

" ?a foaf:subClassOf lib:JazzAndMetal" +

" }";

Calling the required query(here the subclasses of class Jazz
And Metal).

4.5 Output and format setter

 Music
Library Portal

Music Library
Portal

 Main.java

 ……………….

 .xml .xml

 User

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.2, November 2011

51

Query query = QueryFactory.create(a); QueryExecution qe =
QueryExecutionFactory.create(a, model); ResultSet results
= qe.execSelect(); ResultSetFormatter.out(System.out,
results, query); OutputStream o=new
FileOutputStream("C:/Protege/c.html"); byte b[];
b=ResultSetFormatter.asXMLString(results). getBytes();

The query execution class has methods which can execute the
given SELECT query. The method execSelect() does this.The
rest of the snippet is used to format the result as preferred by
the user.

5. EXPERIMENTAL RESULTS
The RDF file had no subclasses for the Jazz and Metal class.
It is up to the reasoner to classify the class based on the type
of instrument and to the interest of the user. Intially if the user
chooses a genre say, Black metal, the reasoner uses its rules to
classify and reasons out that if a user likes black metal then a
user might like the instruments “Drums” and if a user likes
drums then he might like another genre which has heavy
usage of drums in it(in this case its Cool Jazz).So instead of
just giving Black Metal as the result the server is going to
suggest the user with Cool Jazz.In this way the machine can
interpret data based on First Order Logics and without any
human intervention.

Drums Piano

Figure 6 – Classification of Jazz genre

The above figure describes two genres of the Jazz class. The
class Cool Jazz has “Drums” as its vital instruments and Mo
Jazz as “Piano”.

 Drums Guitar

Figure 7 – Classification of metal genre

 YES

YES

Figure 8 – Classification by reasoner

6. CONCLUSION
The RDF model described above can be helpful in creating
machines which can communicate with each other and take
decisions on their own. The traditional RDBMS methods are a
bit structured and difficult to maintain. The RDF models can
give solutions to such problems as they are semi-structured
and flexible. Since RDF models have the XML structure, a
level of intelligence, ease if coding that intelligence into
machines and maintaining these files is much easier than the
traditional tables of relational database.

7. FUTURE WORK
It is fast and efficient results which are the key to any search
engine’s success. Implementation of such reasoners into RDF
models can be the stepping stone to the world of AI.

Work involving better storage mechanisms for XML files and
for providing secure mechanisms for extracting and delivering
them.

Improvement in the field of rule based inference engines can
also help in movement of the Web from 2.0 into 3.0.

8. REFERENCES
[1] W3C Semantic Web Frequently Asked Questions".

W3C. http://www.w3.org/2001/sw/SW-FAQ. Retrieved
March 13, 2008.

[2] W3C http://www.w3.org/TR/rdf-primer

[3] Shelley Powers: Pratical RDF, O’Reilly,2003

[4] Michael Grobe : RDF, Jena, SparQL and the “Semantic
Web”

[5] Eclipse: http://www.eclipse.org/downloads/

[6] Jena and ARQ(a SPARQL implementation) are
representative for various API’s for RDF processing.

[7] IBMhttp://www.ibm.com/developerworks/library/w-rdf

[8] Gizem Olgo “Inference Engines-Semantic Web Cross Up
Project”, July 2004

[9] Jena 2 Inference support, available at
http://jena.sourceforge.net/inference/

[10] Jocelyn Ireson –Paine
“http://www.jpaine.org/students/lectures/lect3/node10.ht
ml”

 Jazz

 Cool Jazz
 Mo Jazz

 Metal

 Bl.Metal Go.Metal

 JazzAndMetal

 Bl.Metal
 Cool Jazz

Drums?

http://www.ijcaonline.org/�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdownloads%2F&sa=D&sntz=1&usg=AFQjCNElYfONLde5UE2mEj5Olm10Piwkag�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�
http://www.google.com/url?q=http%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Flibrary%2Fw-rdf%2F%3Fdwzone%3Dxml&sa=D&sntz=1&usg=AFQjCNHYOJyGcfqcwXAmdAzP1H8QLxYiTA�

