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Unsteady MHD flow and Heat Transfer past a Porous Flat 
Plate in a Rotating System 

 
 

 
ABSTRACT 
An analysis is made on the unsteady MHD flow and heat transfer 
of a viscous incompressible electrically conducting viscous fluid 
bounded by an infinite porous flat plate. The plate is oscillating in 

its own plane with a velocity 0 costu e tβ ω
∗

, ω  being the 
frequency of the oscillations. A uniform magnetic field of strength 

0B  is imposed perpendicular to the plate. The governing 
equations along with the boundary conditions are solved 
analytically. It is found that with an increase in either magnetic 
parameter or suction parameter the primary velocity and the 
magnitude of secondary velocity decrease. The primary velocity 
and the magnitude of the secondary velocity increase with an 
increase in either accelerated parameter or frequency parameter or 
time. It is found that the solution also exists for the blowing at the 
plate. The temperature distribution is obtained on taking viscous 
and joule dissipation into account. The mean wall temperature as 
well as the rate of heat transfer are also obtained. It is found that 
with an increase of magnetic field intensity, the mean temperature 
increases. 
 

Keywords: MHD flow, heat transfer, magnetic parameter, 
rotation parameter, Prandtl number and frequency parameter.  

 
1.  INTRODUCTION 
Investigations on MHD flow and heat transfer of an 
incompressible viscous fluid over a porous plate find many 
important applications in modern metallurgical, metal-working 
processes and manufacturing processes. The heat treatment of 
materials travelling between a feed roll and a wind-up roll or on 
conveyor belts, the lamination, hot rolling, wire drawing, crystal 
growing, purification of molten metals from non-metallic 
inclusions and melt-spinning processes in the extraction of 
polymers possess the characteristics of moving plates/surfaces. 
MHD also finds applications in ion propulsion, controlled fusion 
research, plasma jets and chemical synthesis, etc. The 
hydromagnetic viscous incompressible fluid flow due to harmonic 
oscillations of a plane studied by Kakutani [1, 2] and exact 
solution are obtained for the cases of perfectly conducting and 
non-conducting planes. Hide and Roberts [3] studied the 
hydromagnetic flow due to an oscillating plane. The unsteady 
hydromagnetic flow in a rotating fluid was investigated by 
Soundalgekar and Pop [4]. Debnath [5] made an analysis on 
unsteady magnetohydrodynamic boundary layers in a rotating 
flow. The hydromagnetic Ekman layer near an accelerated plate  
was described by Datta and Mazumdar [6]. The flow of an 
incompressible viscous fluid near a porous oscillating infinite 
plate subject to suction or blowing was studied by Bühler and 
Zierep [7]. Turbatu et al.[8] investigated the flow of an 
incompressible viscous fluid on an infinite porous plate oscillating 
with increasing or decreasing velocity amplitude of oscillation.  

Attia [9] analyzed the transient Hartmann flow with heat transfer 
considering the ion slip. Flow in the Ekman layer on an oscillating 
porous plate was investigated by Gupta et al. [10]. Gupta et al. 
[11] studied the effects of suction or blowing on the velocity and 
temperature distribution in the flow past a porous flat plate of a 
power-law fluid. Mohyuddin et al. [13] investigated the unsteady 
magneto-fluid-dynamics fluid and heat flow with section. The 
MHD flow and heat transfer driving by a power-law shear over a 
semi-infinite flat plate was described by Akl [14]. 
 
In this paper, we study the unsteady MHD flow and heat transfer 
of an incompressible electrically conducting viscous fluid past an 
infinite heated porous flat plate. The plate is oscillating in its own 

plane with the velocity 0 costu e tβ ω
∗

, ω  being the frequency of 
the oscillations. A uniform magnetic field of strength 0B  is 
imposed perpendicular to the plate. It is found that with an 
increase in either magnetic parameter 2M  or suction parameter 
S  the primary velocity 1u  and the magnitude of secondary 
velocity 1w  of fluid decrease at a particular point in flow filed. 
The primary velocity 1u  and the magnitude of secondary velocity 

1w  increase with an increase in either accelerated parameter β  or 
frequency parameter n  or time τ . The mean wall temperature 

0 ( )θ η  as well as the rate of heat transfer (0)'θ  is also obtained. It 
is found that with an increase of magnetic field intensity the mean 
temperature 0 ( )θ η  increases at a particular point in flow filed. 
Further, it is found that the magnitude of tangent of the phase 
angle of the rate of heat transfer oscillations tanψ  decreases with 
an increase in either rotation parameter 2K  or Prandtl number 
Pr  while it increases with an increase in frequency parameter n  
for fixed values of 2K . 

 
2. MATHEMATICAL FORMULATION AND 
ITS SOLUTION 
 

Consider the unsteady flow of a viscous incompressible 
electrically conducting fluid past an infinite porous flat plate with 
uniform suction or blowing at the plate. The plate oscillates in its 

own plane with the velocity 0 costu e tβ ω
∗

 in a given direction. 
The amplitude of the oscillations decreases for acceleration 
( )> 0β ∗  and the amplitude of the oscillations increases for 

deceleration ( )< 0β ∗ . We choose the x - axis along the plate, y

- axis perpendicular to the plate and z - axis normal to the x y - 
plane. The plate and the fluid are in a state of rigid body rotation 
with uniform angular velocity Ω  about the y -axis. An external 
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uniform magnetic field of strength 0B  is imposed perpendicular 
to the plate [See Figure 1] and the plate is taken electrically non-
conducting. The velocity components are ( , , )u v w  relative to a 
frame of reference rotating with the fluid. Since the plate 
occupying the plane = 0y  is of infinite extent, all the physical 
quantities will be the function of y  and t  only. The equation of 

continuity = 0q∇ ⋅
  gives = 0v

y
∂
∂

 which on integration yields 

0= (constant)v v− , where ( , , )q u v w≡
 . The constant 0v  which 

denotes the normal velocity at the plate is positive for suction and 
negative for blowing. We assume that the magnetic Reynolds 
number for the flow is small so that the induced magnetic field 
can be neglected. This assumption is justified since the magnetic 
Reynolds number is generally very small for partially ionized 
gases. The solenoidal relation = 0B∇ ⋅


 for the magnetic field 

gives 0= =yB B  constant everywhere in the fluid where 

( ), ,x y zB B B B≡


. 

  

   
 
   Figure 1 : Geometry of the problem 
 

The momentum equations along x , y  and z - directions are 
given by  

2 2
0

0 22 = ,u u u Bv w u
t y y

σν
ρ

∂ ∂ ∂
− − Ω −

∂ ∂ ∂
                         (1) 

10 = ,p
yρ
∂

−
∂

                                                                (2) 

2 2
0

0 22 = ,w w w Bv u w
t y y

σν
ρ

∂ ∂ ∂
− + Ω −

∂ ∂ ∂
                        (3) 

 where eµ , ρ , ν  and p  are respectively the magnetic 
permeability, the density of the fluid, the kinematic coefficient of 
viscosity, the fluid pressure. 
The boundary conditions of the problem are  

0= cos , = 0 at = 0tu u e t w yβ ω
∗

, 
0, 0 asu w y→ → →∞ ,                                          (4) 

 where  0u  is a constant and β ∗  is the accelerating index. 
Introducing the non-dimensional variables  

               
2

0 0
1 1 2

0 0 0

= , = , = , = , = ,u y u w u tu w n
u u u

νωη τ
ν ν

       (5) 

 equations (1) and (3) become  

2
2 21 1 1

1 122 = ,u u uS K w M u
τ η η

∂ ∂ ∂
− − −

∂ ∂ ∂
                         (6) 

2
2 21 1 1

1 122 = ,w w wS K u M w
τ η η

∂ ∂ ∂
− + −

∂ ∂ ∂
                        (7) 

 where 2
2
0

2=K
u
ων  is the rotation parameter, 0

0

= vS
u

, the suction 

parameter and 
2

2 0
2
0

= BM
u

σ ν
ρ

, the magnetic parameter. 

On the use of (5), the boundary conditions (4) become  
1 1= cos , = 0 at = 0,u e n wβ τ τ η  

1 10, 0 asu w η→ → →∞                                       (8) 

 where 2
0

=
u
β νβ

∗

 is the accelerated parameter. 

Combining (6) and (7), we get  
2

2 2
22 = ,f f fS i K f M f

τ η η
∂ ∂ ∂

− + −
∂ ∂ ∂

                        (9) 

 where  

1 1( , ) = ( , ) ( , ), = 1.f u i w iη τ η τ η τ+ −                   (10) 
 
The boundary conditions (8) now become  

( ) ( )1(0) = and ( ) = 0.
2

i n i nf e e fβ τ β τ+ − + ∞             (11) 

To solve equation (9) subject to the boundary conditions (11), we 
assume the solution in the following form  
                ( ) ( )

1 2( , ) = ( ) ( ) .i n i nf f e f eβ τ β τη τ η η+ −+                      (12) 
Substituting (12) in equation (9) we find that 1( )f η  and 2 ( )f η  
satisfy the following equations  
               ( )2 2

1 1 1( ) ( ) 2 ( ) = 0 ,'' 'f S f in M iK fη η β η+ − + + +     (13) 

              ( )2 2
2 2 2( ) ( ) 2 ( ) = 0 ,'' 'f S f in M i K fη η β η+ − − + +     (14) 

where prime denote the differentiation with respect to η . The 
corresponding boundary conditions for 1( )f η  and 2 ( )f η  are  

1 2 1 2
1 1(0) = , (0) = , ( ) = 0, ( ) = 0.
2 2

f f f f∞ ∞          (15) 

The solution of the equations (13) and (14) subject to the 
boundary conditions (15) are  

          1 1 2 22 2
1 2

1 1( ) = , ( ) = ,
2 2

S Si i
f e f e

α β η α β η
η η

   − + + − + ±   
              (16) 

 where  

            
( )

1
1 2

2 22 22 2

1 1
2

2

2
1 4, =
2

4

S M K n

S M

β
α β

β

 
    + + + +   
    

 
  ± + +    

  

       
( )

1
1 2

2 22 22 2

2 2
2

2

2
1 4, = ,
2

4

S M K n

S M

β
α β

β

 
    + + + −   
    

 
  ± + +    

     (17) 

and the upper sign is for 2< 2n K  and lower sign for 2> 2n K . 
Hence, using (16), equation (12) yields  
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1 12
2

2 22

1 12
2

22

1 for 2
2

( , ) =

1 for = 2
2

S i in

S i in

S i in

S in

e
e n K

e
f

e
n K

e

α β η τ

β τ

α β η τ

α β η τ

α η τ

η τ

 − + + + 
 

 − + ± − 
 

 − + + + 
 

 ∗− + − 
 

  
  

≠  
  +  


 
 
 
  + 

       (18) 

where 

1
2 2

2
2 =

4
S Mα β∗  

+ + 
 

 and 1α  and 1β  are given by (17). 

On separating into real and imaginary parts, we have  

12
1 2

22
2

1

12
1 2

22

cos( )1 for 2
2

cos( )
( , ) =

cos( )1 for = 2
2

cos

S

S

S

S

e n
e n K

e n
u

e n
e n K

e n

α η

β τ

α η

α η

β τ

α η

τ βη

τ β η
η τ

τ βη

τ

 − + 
 

 − + 
 

 − + 
 

 ∗− + 
 

  
 − 

≠  
  + ±  


 
− 

 
  + 

       (19) 

12
1 2

22
2

1

12
1 2

22

sin( )1 for 2
2

sin( )
( , ) =

sin( )1 for = 2
2

sin

S

S

S

S

e n
e n K

e n
w

e n
e n K

e n

α η

β τ

α η

α η

β τ

α η

τ βη

τ β η
η τ

τ βη

τ

 − + 
 

 − + 
 

 − + 
 

 ∗− + 
 

  
 − 

≠  
  − ±  


 
− 

 
  − 

  (20) 

 
The above solutions are valid for both suction and blowing at the 
plate. If 2 = 0K , then the equation (19) is identical with the 
equations (12) of Mohyuddin et al. [13]. 

 
3.  RESULTS AND DISCUSSION 
 

It is seen from equations (19) and (20) that the velocity profile 
consists of two part, one parts oscillates with amplitude 

121
2

S

e
α η − + 

   and the other one with 221
2

S

e
α η − + 

  , where 1α  and 2α  

are given by (17). It is seen from (17) that the wave length 
2

2π
β

 is 

always greater than that of 
1

2π
β

 because 1β  is always greater than 

2β . The solution represents a flow in which the oscillations decay 
exponentially with the distance from the plate. The layer 
corresponding to the former part at distance η  from the plate 
oscillates with phase lag of 1βη  while the layer corresponding to 
the latter part oscillates with phase advance of 2β η  when 

2< 2n K  and a phase lag when 2> 2n K . It is interesting to note 
that the normal solution exists for = 0S  and 2= 2n K . This is 
due to the fact that 2 > 0β  when = 0S  and 2= 2n K . This result 
shows that the shear oscillations are also confined near the plate 
when = 0S  and 2= 2n K . Figure 2 shows that both the primary 
velocity 1u  and the magnitude of secondary velocity 1w  decrease 

with an increase in 2M . It clearly indicates that the transverse 
magnetic field opposes the transport phenomena. This is due to 
the fact that variation of the Hartmann number leads to the 

variation of the Lorentz force due to magnetic field and the 
Lorentz force produces more resistance to transport phenomena. It 
is observed from Figure 3 that the primary velocity 1u  decreases 
while the magnitude of secondary velocity 1w  first increases near 
the plate and it decreases away from the plate with an increase in 

2K . Figures 4-6 show that both the primary velocity 1u  and the 
magnitude of secondary velocity 1w  increase with an increase in 
either accelerated parameter β  or frequency parameter n  or time 
τ  . It is seen from Figures 7-8 that both the primary velocity 1u  
and the magnitude of secondary velocity 1w  decrease with an 
increase in either suction parameter S  or phase angle nτ . This 
means that the suction at the plate or the phase angle have a 
retarding influence on the flow field. 

 
Figure 2: Variations of 1u  and 1w  for  2M  when 2 = 4K , 

= 0.5S , = 2n , = 0.5β , = 0.5τ  and =
4

n π
τ .  

  
Figure 3: Variations of 1u  and 1w   for 2K  when 2 = 5M , 

= 0.5S , = 2n , = 0.5β , = 0.5τ  and =
4

n π
τ .  
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Figure 4: Velocity profiles for β  when 2 = 5M , 2 = 4K , 

= 0.5S , = 2n , = 0.5τ  and =
4

n π
τ .  

 
Figure 5: Variations of 1u  and 1w  for  n  when 2 = 5M , 

2 = 4K , = 0.5S , = 0.5β , = 0.5τ  and =
4

n π
τ . 

 
Figure 6: Variations of 1u  and 1w  for time τ  when 2 = 5M , 

2 = 4K , = 0.5S , = 0.5β , = 2n  and =
4

n π
τ .  

 
Figure 7: Variations of 1u  and 1w   for  nτ  when 2 = 5M , 

2 = 4K , = 0.5S , = 0.5β , = 0.5τ  and = 2n .  

 
Figure 8: Variations of 1u  and 1w  for S  when 2 = 5M , 

2 = 4K , = 2n , = 0.5β , = 0.5τ  and =
4

n π
τ .  

 
The non-dimensional shear stress at the plate = 0η  due to the 
primary flow is  

1
1 1

=0

1= = cos( ),
2x

u R n
η

τ τ θ
η

 ∂
− + ∂ 

                        (21) 

 where  

      ( )22 2 1 2
1 1 2 1 2 1

1 2

( )= ( ) , tan = ,
( )

R S
S
β βα α β β θ
α α

+ + +
+ +


   (22) 

 
Equation (22) shows that 10 < tan < 1θ . Hence from (21) and (17) 
we conclude that the shear stress due to the primary flow has a 

phase lead for 1 <
4
πθ  over the oscillations of the plate. 

The non-dimensional shear stress at the plate = 0η  due to the 
secondary flow is  

1
2 1

=0

1= = cos( ),
2y

w R n
η

τ τ θ
η

 ∂
− − ∂ 

                         (23) 

 where  
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2 2 2 1 2
2 1 2 1 2 2

1 2

( )= ( ) ( ) , tan =
( )

R α αβ β α α θ
β β
−

± + −
±

.      (24) 

It can be seen from (24) that 20 < tan < 1θ . Hence it follows from 
(23) and (17) that the shear stress due to the secondary flow has a 

phase lag for 2 <
4
πθ  over the oscillations of the plate. The 

variations of amplitudes of shear stresses 1R , 2R  and the tangent 
of the phase angles of shear stresses 1tanθ  and 2tanθ  due to 

primary and the secondary flows respectively against 2K  for 

different values of 2M , β  and n  with = 1S  and =
4

n πτ  are 

shown in Figures 9-14. It is observed from Figures 9 and 10 that 
both the amplitudes 1R  and 2R  decrease with an increase in either 

magnetic parameter 2M  or frequency parameter n . Fig.11 
reveals that the amplitude 1R  increases while the amplitude 2R  
decreases with an increase in accelerated parameter β . It is seen 
from Figs.12 and 13 that both the tangent of the phase angles, 

1tanθ  and 2tanθ  decrease with an increase in either magnetic 

parameter 2M  or accelerated parameter β . Figure 14 shows that 
both the tangent of the phase angles 1tanθ  and 2tanθ  increase 
with an increase in frequency parameter n . The kink in the 
curves of the Figures 12-14 indicates the tangent of the phase 
angles of the shear stresses in the critical case 2= 2n K . 

  

   
Figure 9: Variations of 1R  and 2R   for  2M  when = 0.5S , 

= 0.5β , = 0.5S  and =
4

n π
τ .  

  
Figure 10: Variations of 1R  and 2R  fo n  when 2 = 5M , 

= 0.5β , = 0.5S  and =
4

n π
τ .  

 
Figure 11: Variations of 1R  and 2R  for  β  when 2 = 5M , 

= 0.5S , = 0.5β , = 4n  and =
4

n π
τ .  
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Figure 12: Variations of 1tanθ  and 2tanθ  for  2M  when 

= 4n , = 0.5β , = 0.5S  and =
4

n π
τ .  

  
Figure 13: Variations of  1tanθ  and 2tanθ  for  β  when 

2 = 5M , = 4n , = 0.5S  and =
4

n π
τ .  

 

  
Figure 14: Variations of 1tanθ  and 2tanθ  for  n  when 

2 = 5M , = 0.5β , = 0.5S  and =
4

n π
τ .  

 
4.  HEAT TRANSFER 
We now discuss the temperature distribution in oscillating flow 
past a porous flat plate subject to uniform suction at the plate in 
the presence of a uniform magnetic field perpendicular to the flow 
field. The equation of energy for the temperature distribution is  

2 22

0 2=p
T T T u wC v k
t y y y y

ρ µ
      ∂ ∂ ∂ ∂ ∂
 − + +     ∂ ∂ ∂ ∂ ∂       

  

                               ( )2 2 2
0B u wσ+ + ,                         (25) 

 where k , µ , pC  and σ  are respectively the thermal 
conductivity, coefficient of viscosity, specific heat of the fluid and 
electrical conductivity. The last two terms within parenthesis are 
due to the viscous dissipation and Joule heating respectively. 

The boundary conditions for temperature distribution are  
= at = 0 and as ,wT T y T T y∞→ →∞                 (26) 

 where T∞  is the constant ambient temperature of the surrounding 
fluid and >wT T∞ . 
 
Introducing the non-dimensional variable  

 =
w

T T
T T

θ ∞

∞

−
−

                                              (27) 

 and using (5), equation (25) is reduced to  
              

2 22
1 1

2

1= u wS Ec
t Pr
θ θ θ

η η η η

    ∂ ∂ ∂ ∂ ∂
− + +    ∂ ∂ ∂ ∂ ∂     

 

                   ( )2 2 2
1 1M u w+ + ,                                     (28) 

 where 
2
0=

( )p w

uEc
C T T∞−

 is the Eckert number and = pC
Pr

k
ρ ν

, 

the Prandtl number. 
 
The boundary conditions (26) become  

= 1 at = 0 and 0 as .θ η θ η→ →∞                      (29) 
Since the velocity field given by (19) and (20) has zero mean,we 
assume the temperature distribution as  
        2 2( ) 2( )

10 1( , ) = ( ) ( ) ( ) ,in ine e eβτ β τ β τθ η τ θ η θ η θ η+ −+ +           (30) 

 where 0 ( )θ η  represents the mean part and 1( )θ η  presents the 
complex conjugate of 1( )θ η . 
 
Substituting (30) in (28) and equating the harmonic coefficients to 
zero, we get  

 
2

( 2 ) ( 2 )0 0 1 2
1 22 = ,S Sd dS Pr EcPr Ae A e

d d
α η α ηθ θ

η η
− + − + + − +            (31) 

 
2

( )1 1 3 3
12 2( ) = ( ) ,i

r i
d dS Pr in Pr EcPr c ic e
d d

α β ηθ θ β θ
η η

− ++ − + − + (32) 

 
2

( )1 1 3 3
12 2( ) = ( ) ,i

r i
d dS Pr in Pr Ec Pr c ic e
d d

α β ηθ θ β θ
η η

− −+ − − − − (33) 

 where  
2

2 2
1 1 1

1= ,
4 2

SA Mα β
  + + +  
   

 

2
2 2

2 2 2
1=
4 2

SA Mα β
  + + +  
   

, 

2
1 2 1 2

1= ,
4 2 2r

S Sc Mα α β β   + + ± +      
               (34) 

1 2 2 1
1= ,
4 2 2i

S Sc β α β α    + +        
  

3 1 2 3 1 2= , = .Sα α α β β β+ +   
 where the upper sign is for 2< 2n K  and the lower sign is for 

2> 2n K . 
The boundary conditions for 0 ( )θ η , 1( )θ η  and 1( )θ η  become  

0 1 1= 1 , = 0 , = 0 at = 0,θ θ θ η  

0 1 10, 0, 0 asθ θ θ η→ → → →∞ .                          (35) 
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The solution of  (31)  subject to the conditions (35)  is  
                                            

( 2 )1
1

1 1

( 2 )2
2

2 2

1 2

1

( 2 )20 2

2 2

{ }
( 2 )( 2 )

{ }
( 2 )( 2 )

for 2 , 2

( ) = { }
( 2 )( 2 )

for

S SPr
SPr

S SPr

SPr SPr

S SPr

A e ee Pr Ec
S SPr S

A e e
S SPr S

S SPr S SPr
Ae Pr Ec e

SPr

A e e
S SPr S

S

α η η
η

α η η

η η

α η η

α α

α α

α α

η

θ η

α α

− + −
−

− + −

− −

− + −

 −
+ 

+ − −
−

+ 
+ − − 
+ ≠ + ≠

+ 
−

+ 
+ − − 

1 2

2

( 2 )1
1

1 1

1 2

2 = , 2

{ }
( 2 )( 2 )

for 2 , 2 =

SPr SPr

S SPr

SPr S SPr
Ae Pr Ec e

SPr

A e e
S SPr S

S SPr S SPr

η η

α η η

α α

η

α α

α α

− −

− + −
















 + + ≠
 + 
 −+  + − − 

+ ≠ +

          (36) 

 where 1α  and 2α  are given by equation (17). 
 
The solution of the equation (32) subject to boundary condition 
(35) is  

           ( )( ) 3 34 4
1

( )( ) = ,iir i

r i

EcPr c ic e e
d id

α β ηα β ηθ η − +− ++  − +
           (37) 

 where  

         ( )
( )

1/21
2 22 2 2 2

4
2 2

8 641= 2 ,
2 2

8

S Pr Pr Pr n
SPr

S Pr Pr

β
α

β

  
   + +   +  

  + +   

 

         ( )
( )

1/21
2 22 2 2 2

4
2 2

8 641= ,
2 2

8

S Pr Pr Pr n

S Pr Pr

β
β

β

 
  + +   
 − + 

            (38) 

         2 2
3 3 3= 2 , .rd SPr Prα α β β− − −  

         3 3 3= 2 2id SPr nPrα β β− − . 
 
Since the equation (33) is the complex conjugate of the equation 
(32) so the solution of the equation (33) is obtained on taking the 
complex conjugate of 1θ . 
It is seen from Figures 15-17 that the mean temperature 0 ( )θ η  

increases with an increase in either magnetic parameter 2M  or 
rotation parameter 2K  or frequency parameter n . Further, 
Figures 18-19 show that the mean temperature 0 ( )θ η  increases 
with an increase in either accelerated parameter β  or suction 
parameter S . It is seen from Figure 20 that the mean temperature 

0 ( )θ η  increases near the plate and it decreases away from the 
plate with an increase in Prandtl number Pr . The increase of 
Prandtl number Pr  means that the thermal diffusivity decreases. 
So the temperature decreases due to the decrease of thermal 
boundary layer. This characteristic indicates that the temperature 
dependent fluid viscosity plays a significant role in shifting the 
fluid away from the plate 

 
Figure 15: Variations of 0( )θ η  for  2M  when 2 = 2K , = 1S , 

= 0.5β , = 4n  and = 0.71Pr .  
              

 
Figure 16: Variations of 0( )θ η   for  2K  when 2 = 5M , = 1S , 

= 0.5β , = 4n  and = 0.71Pr .  
   

   
Figure 17: Variations of 0( )θ η  for  n  when 2 = 5M , 2 = 2K , 

= 1S , = 0.5β  and = 0.71Pr .  
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Figure 18: Variations of 0( )θ η  for  Pr  when 2 = 5M , 2 = 5K
, = 1S , = 0.5β  and = 4n .  

 
Figure 19: Variations of 0( )θ η  for β  when 2 = 5M , 2 = 2K , 

= 1S , = 4n  and = 0.71Pr .  

 
Figure 20:  Variations of 0( )θ η  for  n  when 2 = 5M , 2 = 2K , 

= 4n , = 0.5β  and = 0.71Pr .  
 
 

 
The rate of heat transfer (0)'θ  at the plate = 0η  is given by  

0 3(0) = (0) 2 cos(2 ),' ' EcPr R nθ θ τ ψ+ +                      (39) 
 where  

2 2= ,r iR d d+ 3 4 3 4= ( ) ( ),r iX d dα α β β− + −  
                3 4 3 4= ( ) ( ),r iY d dβ β α α− − −  

                                 
2 2

2
3 = , tan = .r i i r i r

r i

c X c Y c X c Y c X c YR
R R c X c Y

ψ− + +   +    −   
         (40) 

 
 and  

                1 2
0

1 2

(0) = ,
2 2

' A ASPr EcPr
S S

θ
α α

 
− + + 

+ + 
             (41) 

 whether 12S SPrα+ ≠  and 22S SPrα+ ≠  or 12 =S SPrα+  
and 22S SPrα+ ≠  or 12S SPrα+ ≠  and 22 =S SPrα+ . 
 
The variation of amplitude of the rate of heat transfer 3R  and 
tangent of the phase angle of the rate of heat transfer oscillations 
tanψ  are shown in Tables 1 and 2 against 2K  for different 
values of Pr  and n . It is seen from Table 1 that the amplitude 

3R  increases with an increase in either rotation parameter 2K  or 
Prandtl number Pr  while it decreases with an increase in 
frequency parameter n  for fixed values of 2K . Farther, it shows 
from Table 2 that the magnitude of tangent of the phase angle 
tanψ  decreases with an increase in either rotation parameter 2K  
or Prandtl number Pr  while it increases with an increase in 
frequency parameter n  for fixed values of 2K . 
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          Table 1: Amplitude of the rate of heat transfer oscillations  3
310 R−  at the plate = 0η  for 2 = 5M , =

4
n π
τ , = 0.5S ,  

           = 0.5β  and = 1Ec  .  
 

  
 
      Table 2: The magnitude of tangent of the phase angle of the rate of heat transfer oscillations tanψ  at the plate = 0η  

       for 2 = 5M , =
4

n π
τ , = 0.5S , = 0.5β  and = 1Ec .  

  
 Pr  with = 10n  n  with = 0.71Pr  

2K  5 7 9 11 2 3 4 5 

2 0.63530 0.54181 0.50338 0.48579 0.38746 0.67024 0.98702 1.29909 

4 0.36693 0.27152 0.23503 0.21896 0.12769 0.27384 0.47076 0.74449 

6 0.23659 0.12526 0.08797 0.07288 0.02516 0.09501 0.1816 0.30022 

8 0.20780 0.06192 0.02223 0.00807 0.01479 0.02450 0.06783 0.12187 

  
  

5.  CONCLUSION 
The unsteady MHD flow and heat transfer of an incompressible 
viscous fluid bounded by an infinite heated porous flat plate have 
been studied. It is found that with an increase in either magnetic 
parameter 2M  or suction parameter S  the primary velocity 1u  
and the magnitude of secondary velocity 1w  of fluid decrease at a 
particular point in flow filed. The primary velocity 1u  and the 
magnitude of secondary velocity 1w  increase with an increase in 
either accelerated parameter β  or frequency parameter n  or time 
τ . The mean wall temperature 0 ( )θ η  as well as the rate of heat 

transfer (0)'θ  is also obtained. It is found that with an increase of 
magnetic field intensity the mean temperature 0 ( )θ η  increases at 
a particular point in flow filed. Further, it is found that the 

magnitude of tangent of the phase angle of the rate of heat transfer 
oscillations tanψ  decreases with an increase in either rotation 
parameter 2K  or Prandtl number Pr  while it increases with an 
increase in frequency parameter n  for fixed values of 2K . The 
effect of transverse magnetic field on a viscous incompressible 
conducting fluid is to suppress the velocity field which in turn 
causes the enhancement of the temperature field. 
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