
International Journal of Computer Applications (0975 – 8887)

Volume 33– No.2, November 2011

6

Early Estimation of Back-End Software Development

Effort

Samaresh Mishra
School of Computer Engineering

KIIT University,
Bhubaneswar, India

Prasant Ku. Pattnaik
School of Computer Engineering,

KIIT University,
Bhubaneswar, India

Rajib Mall
Dept. of Computer Science &

Engineering,
Indian Institute of Technology,

Kharagpur, India

ABSTRACT
An appropriate cost metrics for estimating development effort of

the database part of an application at conceptual design stage

using ER model is an important consideration. We propose four

cost metrics based on the level of complexity of an ER diagram.

Our effort estimation technique is based on these metrics using

an empirical mathematical expression which is capable to

predict total database complexity efficiently. Again, its outcome

shows that the developmental effort is directly proportional to

the total entity complexity and its total database complexity.

General Terms
Software Cost Estimation, ER Model

Keywords
Entity Complexity, Relationship complexity, Constraints, Depth

of Inheritance, Effort estimation

1. INTRODUCTION
Software cost estimation is one of the key activities based on

which all other project management activities are planned and

carried out. Starting from the initial feasibility analysis stage, as

more information becomes available, it should be possible to

estimate the remaining development effort more accurately. The

development process of the database part of a software

application is usually carried out in the following phases: (1)

conceptual design phase, (2) logical design phase, and (3)

implementation phase. The success of the database design of

data centric software depends on the understanding of the exact

data requirements, their relationships as well as the constraints

on the database part of the software. The estimation of effort

would also depend on factors such as complexity of the

software, the size of the software, the level of expertise of the

development team and the tools used for development. Several

published works [1][4][5] considered the number of entities,

their attributes and the number of relationships among entities

for determining the size and complexity, but the identification of

different category of constraints at entity level, at attribute level,

at relationship level and the business constraints may be

considered for complete estimation. The prediction of these

factors not only reflects the level of complexity but also predict

the size in terms of number of tables required at the end as well

as the number of lines of codes required for implementation of

the business constraints [15].

This paper has been organized as follows: In section-2, we

review related work. We discuss our proposed cost metric, in

section-3. We present our model for estimation of effort, in

section-4. In section-5, we present the experimental results. In

section-6, we compare our work with related works. Finally, in

section-7, we conclude this paper.

2. REVIEW OF RELATED WORK
Many estimation techniques [1][2][4][5][10][11][12][20] have

been proposed and are being used extensively by industry on

projects based on the function-oriented software development

framework. Relatively, few works has been reported for object-

oriented software development. However, research results on

estimating efforts based on complexity of the development of

database part of the software has scarcely been reported in the

literature.

Constructive Cost Model (COCOMO-II) is at present being

widely used [6][20]. It estimates the software effort in terms of

size, which is based on lines of codes [8][17]. Later Mk-II

Function Point Analysis was used for effort estimation [10][16].

The Use case Points estimation methods introduced in 1993 by

Karner estimates effort in person hours based on use cases. This

use case point method classified actors and use cases into three

categories as simple, average and complex and assigned

different weight factors to actors based on their interaction with

the system, like using defined application user interface or

through protocols like TCP/IP or through GUI or a WebPages.

Similarly the weight factors assigned to use cases based on the

number of transactions. Then they calculate the unadjusted use

case point (UUCP) by adding unadjusted actor weights (UAW)

and unadjusted use case weights (UUW). After this they assign

values to the technical and environmental factors [0..5], multiply

by their weights [-1..2], and calculated the weighted sums

(TFactor and EFactor) for generating technical complexity

factor (TCF) and environmental factors (EF) for the final

estimation of adjusted use case points (UCP) by using formula

UCP = UUCP X TCF X EF . Finally the effort was estimated by

multiplying UCP with person-hours needed to implement each

use case point (PHperUCP) [13]. These approaches may not

specifically intend to estimate the database development cost.

The DC (Database Complexity) method [10] measures database

complexity based on the logical structure of physical database

used in information systems. The DC method is silent about

measuring database complexity at conceptual design phase.

While determining the complexity of the database part of data

centric software, it has been observed that the number of

entities, number of relationships, number of attributes [1][4][9]

identified at ER modeling stage are sufficient for estimating

database size and complexity. The path complexity [1] was also

been used for effort estimation. In addition to the entity sets,

International Journal of Computer Applications (0975 – 8887)

Volume 33– No.2, November 2011

7

relationship sets, and attribute sets, the business constraints were

included for database cost estimation, without considering the

features of object orientations of extended ER diagram [9]. The

worked on estimating development effort of database by

considering relational model artifacts also been undertaken and

experimented with specifically on logical design phase [15]

rather in conceptual design phase.

3. THE BEC (BACK-END COMPLEXITY)

METRIC
The ER model includes an ER Diagram (ERD) and the semantic

integrity constraints reflecting the business rules about data

[2][3][7]. The ER Diagram was initially used in top-down

approach for database domain modeling, but now it is also being

used in Object-Oriented Analysis [1] approach. Although UML

(Unified Modeling Language) has gained its popularity as

standard software modeling methodology, but ER model is still

widely accepted and used to model the data conceptually in the

requirement capture and analysis phase by the practitioners [1].

The information about the number of subsystems, use cases and

classes are required for estimating size of an object oriented

development project. Similarly for component-based projects,

the number of components, interfaces and classes are required

for estimating software size. In the same way for the web-based

projects, the number of web pages uses cases and scripts are

considered for computing software size. Knowledge of these

elements is vital for estimation of cost. In this manner, the

artifacts of ER (EER) model may be applicable for measuring

database cost based on its complexity and size.

3.1 Cost Metrics
The effort of development of the database part of data centric

software primarily depends on the complexity of data modeling.

The ER (and its extension, EER) diagrams are used for

modeling relational as well as object relational database

systems. Therefore, the estimation of effort of development of

database on account of its complexity at early phase of

development may correspond to estimating effort of database

based on the complexity of ER model (and its extension). Here

we have considered the Peter Chen’s notation on ER modeling

[12]. In ER (and its extension EER) modeling, not only one can

identify the number of entity sets, relationship sets, attributes of

entity sets and relationship sets, but also can identify the

mapping cardinality as well as the participation constraints

exists in the model. In addition to these, the depth of inheritance

from generalization and specialization concepts as well as the

aggregation can be considered in the process of estimating

complexity. The higher is the number of the above specified

factors may result with a higher in overall complexity of

modeling. Keeping this in view, the following factors may be

considered for computing the complexity of an ER model:

 Number of entities in an ER Diagram. [1]

 Number of relationships in an ER Diagram.[1]

 Number of attributes in an entity set in an ER

Diagram.

 Number of descriptive attributes in a relationship set.

 Number of multivalued attributes in an entity or

relationship set.

 Number of derived attributes in an entity or

relationship set.

 EC: Entity Complexity.

 AC: Attribute complexity.

 RC: Relationship Complexity.

 DIT: Depth of Inheritance Tree.

 The mapping cardinality of relationships.

3.2 Entity Complexity
We classify the complexity of entities into simple and complex

based on their associations with other entities of the same or

other entity sets as well as their degree of dependency with other

entities. The simple type is assigned to entity sets which add a

foreign key in their own state after converting to relation in

order to reflect their association with other entities. This

increases the attribute size of entity sets. So, a weight measure

of 1is assigned to this category of entity sets. The complex type

is assigned to weak entity sets as they depend on strong entity

set for their own existence. In this process, the prime attribute

and the foreign key of the relation of weak entity set are derived

from strong entity set. So a higher weight measure of 2 is

assigned to this category of entity sets as they not only reflect

their associations through foreign key definition but also through

their dependency on strong entity set.

Table 1. The Weight Measures of Entity Sets

Entity Sets
Entity

Type

Weight Measure

of Entities (WE)

Entity set participated with

1:1 relationship OR

participated with M:1

relationship OR

participated with unary 1:M

relationship

Simple 1

Weak entity set Complex 2

The different type of attributes of entity sets also contributes to

their overall complexity. Therefore, we classify the complexity

of attributes as simple, average and complex based on their

contribution to the state of the relation to which they belongs to.

The multivalued attributes are categorized as complex type as

their presence in the base relation resulted creation of smaller

relations through decompose. This is done in order to maintain

the relation state in 1NF. So, a higher weight measure of 2 is

assigned to this category of attributes. The average type is

assigned to all the derived attributes of an entity set as they

derive data value from some calculation. This requires

procedural implementation through lines of codes. Hence, a

lower weight measure of 1.5 is assigned to this category of

attributes. The simple type is assigned to all other category of

attributes as they neither require procedural extension nor do

they create separate relations. Therefore, the lowest weight

measure of 1 is assigned to this category of attributes.

Table 2. The Weight Measure of Attributes

Attribute Category
Attribute

Type

Weight Measure of

Attributes (WA)

Multivalued attribute Complex 2

Derived attributes Average 1.5

Other Attributes

(including descriptive

attributes of relationship

sets)

Simple 1

International Journal of Computer Applications (0975 – 8887)

Volume 33– No.2, November 2011

8

Another aspect of complexity of individual entity set is based on

its depth of inheritance (DIT) in a generalization relationship. It

is the maximum of the DIT (Depth of Inheritance Tree) values

obtained for each entity set in the ER model. The DIT value for

an entity set within a generalization hierarchy is the longest path

from the entity set to the root of the hierarchy. The more in the

DIT value may results in inheriting attributes from higher level

entity set(s) to lower level of entity set.

The structural complexity of entity sets can be calculated by

counting the complexity of individual entity sets based on the

different category of attributes they have and also counting the

DIT in a generalization. The total entity complexity is calculated

by counting the number of entity sets of each category (based on

their association with other entity sets), multiplying each by its

weighting factor, and adding up the products.

An entity can have more than one association with entities of

other entity sets. In some association, it may fall in simple

category and in some it may be in complex category. Therefore

the entity complexity (EC) may be computed as follow:

𝐸𝐶 = (𝑊𝐴)𝑖
𝑖=𝑁𝑂𝐴
𝑖=1 + 𝐷𝐼𝑇 + (𝑊𝐸)𝑗

𝑗 =𝑁𝑜𝐴𝑠𝑠
𝑗 =1 (1)

Where, NoAss represents the number of associations the entity

set has with other entity sets. NOA represents the number of

attributes the entity set.

Once the EC is calculated, then the total entity complexity

(TEC) of ER diagram can be calculated as follow:

𝑇𝐸𝐶 = (𝐸𝐶)𝑗
𝑗 =𝑁𝑂𝐸
𝑗 =1 . (2)

Here, NOE represents number of entity sets.

3.3 Relationship Complexity
Similarly to entity complexity, we categorized the relationship

complexity as simple, average and complex type based on the

number of referential integrity constraints established by the

relationship and based on the association of relationship with

aggregation. The simple type is assigned to relationships with

mapping cardinality 1:1 or 1:M or M:1 as they do not results any

new relations. This category results only one foreign key (or a

composite foreign key) in the relation of many side entity set. As

this category do not generate any new relation, so no weight

measure is assigned to this category of relationship sets. The

average type is assigned relationships having many to many

(M:N) mapping cardinality constraints and associative entity

sets as they results a new relation for the relationship set and

generates at least two foreign keys in the resultant relation and

the foreign keys contribute to formation of a composite primary

key. The associative entity sets are similar to binary M:N

relationship sets and having a peculiar extra attribute which can

act as a primary key. So, a weight measure of 2 (or more than 2)

is assigned to this category of relationship sets as they add two

sets of foreign keys (or more than two sets of foreign keys) in

the resultant relation. This weight measure depends on the

degree of relationship, that is, 2 for binary, 3 for ternary and n

for n-ary relationship. The complex type is assigned to

relationships that exist among aggregation and another entity

set. As aggregation relationships are treated as higher level

entity sets [14], the relationship created among aggregation and

other entity sets results substantially more foreign keys in the

relation which reflects this relationship. So, a higher weight

measure of 3 is assigned to this category.

Table 3. The Weight Measure of Relationship Sets

Relationships Set
Relation

Type

Weight Measure of

relationship (WR)

M:N Relationship or

Associative Entity Sets
Average ≥2

Relationship with

Aggregation
Complex 3

The individual relationship complexity (RC) can be calculated

by counting the number of attributes the relationship has in

terms of its descriptive attributes and the primary key attributes

inherited from participated entity sets for forming the primary

key for the relation of this relationship set and then adding the

weight measure. The relationship complexity (RC) may be

expressed as follow:

𝑅𝐶 = 𝑊𝐴 𝑖
𝐼=𝑁𝑂𝐴
𝐼=1 + (𝑊𝑅) . (3)

Here NOA represents number of attributes the relationship has

(refer Table 2) which include the descriptive attributes and the

attributes used for primary key.

The total relationship complexity (TRC) of ER diagram can be

calculated as follows:

𝑇𝑅𝐶 = (𝑅𝐶)𝑗
𝑗 =𝑁𝑂𝑅
𝑗 =1 . (4)

3.4 The Business Constraints
The types of constraints that can be specified in ER diagram are

mapping cardinality constraints and the participation constraints,

which are taken care by our proposed cost metrics. But there

may exist many other business constraints which can be

categorized as schema-based integrity constraints and semantic-

integrity constraints. These constraints are needed to be

represented during logical design. But if some (or all) of these

constraints are known during requirements gathering and

analysis phase of software development as well as during the

conceptual design phase of database development of the

software, then this may contribute substantially to the overall

complexity estimation. Here we have taken only semantics

integrity constraints which are identified only during the early

phase of database design. Our complexity metric named as Total

Semantic Constraint Complexity (TSCC) can be expressed as:

TSCC = Ck
𝑁𝑂𝐶
𝑘=1 . (5)

Here NOC represents the number of constraints and Ck

represents the semantic integrity constraints captured during

requirements gathering and it has been assigned a weight

measure of 1.5.

3.5 Total Complexity of ER Model
The total complexity (TC) of ER model can be calculated as the

sum of all above estimated complexities with the following

expression:

𝑇𝐶 = 𝑇𝐸𝐶 + 𝑇𝑅𝐶 + 𝑇𝑆𝐶𝐶 . (6)

International Journal of Computer Applications (0975 – 8887)

Volume 33– No.2, November 2011

9

4. Effort Estimation Based on BEC
After finding the Total Complexity of ER model (TC), it is

required to find the Technical Complexity Factor (TCF) and

Environment Factor (EF) using the formula: TCF = 0.6 +
(0.01 × TFactor) and EF = 1.4 + (−0.03 × EFactor) [13]. We

calculated the adjusted ER Point (ERP) using the widely used

formula ERP = TC × TCF × EF. The Estimated effort in person-

hours may be calculated as Effort = ERP × PHperERP. The

PHperERP is stands for person-hour per ERP. Here we have not

considered the environmental factor rather consider the technical

complexity factors for effort estimation. The

PHperERP considered here is 1.00 and it can be increased to a

higher value if the effort of modeling, analysis, design, coding

and testing of ER model is considered.

As shown in Figure 1, data related to data modeling needs to be

gathered under software requirements gathering phase. Then the

ER (and its extension EER) diagram is undertaken as part of

data analysis followed by estimating the complexity using BEC

cost metric and then effort calculation is based on the back-end

complexity using ERP.

Fig. 1. Effort Estimation Using BEC Metric

5. EXPERIMENTAL STUDY
For empirical evaluation of proposed approach of effort

estimation, we considered ER diagrams (and its extensions,

EER) of ten different student projects developed as part of

course assignments of KIIT University, having varying with

different number of business constraints. The details of all ten

projects and their data have been depicted in Table 4. It has been

observed from Table 4 that ER diagrams having more entities,

relationships and constraints (both ER constraints and business

constraints) are resulted with higher total complexity as well as

effort of development. The higher in the overall complexity

results with increasing in overall size of the system. Also, it has

been observed from the Table 4 and Figure 2 that the mean

MRE is with value 0.26394 of the estimated effort with actual

effort

Our proposed model has been validated by analyzing their

accuracy in terms of error range and PRED [18]. The MRE

(Magnitude of Relative Error) of all projects and the MMRE

(Mean MRE) of all eight projects are presented in Table 4. The

MRE and MMRE are computed using the following formula:

𝑀𝑅𝐸 =
𝐸𝑓𝑓𝑜𝑟𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 −𝐸𝑓𝑓𝑜𝑟𝑡 𝐴𝑐𝑡𝑢𝑎𝑙

𝐸𝑓𝑓𝑜𝑟𝑡 𝐴𝑐𝑡𝑢𝑎𝑙
 and 𝑀𝑀𝑅𝐸 =

1

𝑛
 (𝑀𝑅𝐸)𝑖

𝑖=𝑛
𝑖=1

The PRED(25) can be defined as the proportion of frequency

that predicted effort fall within 25% of actual effort and this can

be achieved by the equation PRED 25 =
k

n
 , here k denotes the

number of projects with MRE less than equal to 25%. It has also

been observed from the data set that 62% of projects estimated

effort with PRED(25) = 0.625, which is encouraging.

The BEC metric approach for estimating effort of development

of database part of software is primarily based on the level of

complexity rather than only on the size of the database. Our

result based on the dataset from Table 4 shows that the

estimated effort is very close to the actual effort of development.

This is presented graphically in Figure 2.

Table 4. Cost Versus ER Diagrams Complexity

Project

No.
TEC TRC TSCC TC TCF ERP

Estimated

Effort in PH

Actual Effort

in PH
MRE

Mean

MRE

1 9 7 6 22 0.64 14.08 14.08 18 0.218

0.26

2 31.5 5 10.5 47 0.64 30.08 30.08 42 0.284

3 19 12 12 43 0.64 27.52 27.52 36 0.236

4 15.5 4 7.5 27 0.64 17.28 17.28 24 0.28

5 16.5 3 7.5 27 0.64 17.28 17.28 24 0.28

6 23 2 9 34 0.64 21.76 21.76 32 0.32

7 26 5 7.5 38.5 0.64 24.64 24.64 33 0.253

8 38 0 6 44 0.64 28.16 28.16 37 0.239

Software

Requirements

gathering

Development of

ER (and EER)

diagram

Estimating

complexity using

BEC cost metric

Effort calculation

based on the back-

end complexity

Input

Output

International Journal of Computer Applications (0975 – 8887)

Volume 33– No.2, November 2011

10

Fig. 2. Estimated Versus Actual Effort

It has been observed from Figure 3, that the overall effort of

database development primarily depends on total entity

complexity taken from ER diagram and moderately on total

semantic complexity. The effort takes less account on the

presence of total relationship complexity which is based on M:N

relationship and aggregation.

Fig. 3. Effort versus TEC, TRC, TSCC

Again, we considered the total complexity (i.e. the sum of entity

complexity, relationship complexity and semantic constraint

complexity) with the estimated effort. It has been observed from

the Figure 4, that database development effort proportionately

increases with the total complexity.

Fig. 4. Total Complexity (TC) versus Estimated Effort

The multiple regression analysis approach has been adopted here

in order to study the effectiveness of our model. The resultant

equation of effort estimation based on multiple regressions with

respect to actual effort is given below:

𝑒𝑓𝑓𝑜𝑟𝑡 = −1.074 + 0.759 ∗ 𝑇𝐸𝐶 + 0.303 ∗ 𝑇𝑅𝐶 + 1.629

∗ 𝑇𝑆𝐶𝐶

The multiple coefficients (R2) is 0.9959 which is close to 1 and

the adjacent R2 is 0.9929, which is close to R2 indicating better

strength of multiple regression relationship.

6. COMPARISON WITH RELATED

WORK
Many techniques for estimating the cost of the relational

database development based on ER model have been reported in

the literature. ER model is known for its rich capability of

specifying various business constraints. Several related works

have used the number of entities, relationships and attributes and

some have considered the path complexity [1]. The path

complexity metric is a complexity metric and used for effort

estimation and it is used for getting the information about

number of paths one entity could influence other entities and the

length of each path. This path complexity is computed from a

graph derived from the ER diagram. So the process of creating a

graph from an ER diagram and then calculating complexity from

the graph is itself an additional effort in the process of

estimation. Compared to the above, we used a catalog table

(Table 4) containing the information about total entities, total

relationships, total semantic constraint complexity and based on

these information, the total complexity and then the effort can be

estimated. The work [19] takes into account only the number of

fields, primary keys, and foreign keys for effort estimation with

the given formula:

𝐸𝑓𝑓𝑜𝑟𝑡1 = 2.94 − 0.032 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑𝑠 + 2.90
∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐾𝑒𝑦𝑠 − 2.62
∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑜𝑟𝑒𝑖𝑔𝑛 𝐾𝑒𝑦𝑠

This paper also estimated effort by considering the number of

1:1 and 1:M relationships using the formula:

𝐸𝑓𝑓𝑜𝑟𝑡2 = 4.24 + 3.23 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1: 1 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑝𝑠
+ 0.007 ∗ Number of 1: M relationships

We compare our proposed effort estimation approach with the

above work [19] and the result as shown in Figure 5.

Fig. 5. Comparison of Actual Effort with Estimated and

Existing Approach

However, the BEC metric model includes the features of ER and

EER diagram like mapping cardinality, degree of relationships,

different types of attributes, the concepts of aggregation and the

depth of inheritance from generalization/specialization. So, for a

better estimation of database development effort, it is desired to

identify all factors contributing to total size and complexity of

the database at the conceptual design stage.

0

10

20

30

40

50

1 2 3 4 5 6 7 8

E
ff

o
rt

 i
n

 P
er

so
n

H
o

u
r

Project Number

Estimated

Effort

Actual Effort

0

10

20

30

40

1 2 3 4 5 6 7 8

C
o

st

Project Number

TEC

TRC

TSCC

Estimated

Effort

0
10
20
30
40
50

1 2 3 4 5 6 7 8

T
C

,
E

ff
o

rt

Project Number

TC

Estimated

Effort
0

10

20

30

40

50

1 2 3 4 5 6 7 8

E
ff

o
rt

 i
n

 P
er

so
n

H
o

u
r

Project Number

Actual

Effort

Estimated

Effort

Effort-1

Effort-2

International Journal of Computer Applications (0975 – 8887)

Volume 33– No.2, November 2011

11

7. CONCLUSION
We have proposed an effort estimation technique namely BEC

metric model. The experimental outcomes conducted by us

predict the development effort within an improved accuracy of 3

to 4%. The model may deploy to outsource the development of

the database part of an application. As a future scope of work,

this can be experimented with more industry standard projects.

8. REFERENCES
[1] Yuan Zhao, and Hee Beng Kuan Tan, Wei Zhang, Software

Cost Estimation through Conceptual Requirement, Third

International Conference On Quality Software (QSIC’03),

2003 IEEE, pp.141

[2] B. Londeix, Cost Estimation for Software Development,

STC Telecommunications, UK, Addison-Wesley

Publishing Company, 1987.

[3] Ramez Elmasri, S. B. Navathe. D VLN Somayajulu, S.K

Gupta, Fundamentals of Database Systems, Pearson

Education 2006.

[4] Capers Jones, Estimating Software Costs, Bringing Realism

to estimation, 2nd Edition, TMH 2007.

[5] Geoffrey J. Kennedy, Elementary structures in entity-

relationship diagrams: a new metric for effort estimation,

1996 IEEE, pp. 86-92

[6] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K.

Clark, E. Horowitz, R. Madachy, D. J. Reifer, and B.

Steece, Software Cost Estimation with COCOMO II,

Prentice Hall PTR, 2000.

[7] Narayan S. Umanath, Richard W. Scamell, Data Modeling

and Database Design, THOMSON INDIA Edition 2007.

[8] Emilia Mendes, Nile Mosley, Steve Counsell, Web Effort

Estimation, Web Engineering, Springer International

Edition 2006.

[9] Samaresh Mishra, P.K. Pattnaik, Rajib Mall, A Novel

Effort Estimation Model for Data Centric Software,

National Conference on Embedded System, Current Issues

and Applications, NCESA-2009, Feb14-15, 2009.

[10] Mile Pavlic, Marin Kaluza, Neven Vrcek: Database

complexity measuring method, Proceedings of the ISRM

2002 Conference, Las. Vegas, NV, USA, 2002.

[11] Marcela Genero, Luis Jiménez, and Mario Piattini

Measuring the Quality of Entity Relationship Diagrams,

A.H.F. Laender, S.W. Liddle, V.C. Storey (Eds.): ER2000

Conference, LNCS 1920, pp. 513-526, 2000. Springer-

Verlag Berlin Heidelberg 2000

[12] P. P. Chen, The Entity-Relationship model – towards a

Unified View of Data, ACM Trans, Database Syst,1(1),

Mar. 1976, pp. 9-36

[13] Parastoo Mohagheghi, Bente Anda, Reidar Conradi, Effort

Estimation of Use Cases for Incremental Large-Scale

Software Development, ICSE’05, May 15–21, 2005, ACM

1-58113-963-2/05/000.

[14] A. Silberschatz, H. F. Korth, S. Sudarshan, Database

System Concepts, 5th Edition, McGRAW HILL

Publication. pp-234.

[15] Samaresh Mishra, Krushna Chandra Tripathy, Manoj

Kumar Mishra, Effort Estimation Based on Complexity and

Size of Relational Database System, International Journal

of Computer Science and Communication, Vol. 1, No. 2,

July-December 2010, pp. 419-422.

[16] Koh, T.W., M.H. Selamat and A.A.A. Ghani, Exponential

effort estimation model using unadjusted function points,

Information Technology Journal, 2008, Volume: 7, Issue:

6, pp 830-839.

[17] Rajib Mall, Fundamentals of Software Engineering, PHI,

Second Edition, 2007.

[18] Jianfeng Wen, Shixian Li, Linyan Tang, Improve Analogy-

Based Software Effort Estimation using Principal

Components Analysis and Correlation Weighting, 16th

Asia-Pacific Software Engineering Conference,2009, pp

179-186

[19] Bushra Jamil, Javed Ferzund, Asma Batool, Shaista

Ghafoor, Empirical Validation of Relational Database

Metrics for Effort Estimation, 6th International Conference

on Network Computing, IEEE, 11-13 May 2010, pp-1-5

[20] Samaresh Mishra, Kabita Hazra, Rajib Mall, A Survey of

Metrics for Software Development Effort Estimation,

International Journal of Research and Reviews in Computer

Science, Vol. 2, No. 5, October 2011, pp. 1199-1204.

