
International Journal of Computer Applications (0975 – 8887)

Volume 32– No.9, October 2011

23

An Optimal Model for Priority based Service
Scheduling Policy for Cloud Computing Environment

Dr. M. Dakshayini

Dept. of ISE,
BMS College of Engineering,

Bangalore, India.

 Dr. H. S. Guruprasad

Dept. of ISE,
BMS College of Engineering

Bangalore, India.

ABSTRACT

Cloud computing refers to the model, which is the pool of

resources. Cloud makes on-demand delivery of these

computational resources (data, software and infrastructure)

among multiple services via a computer network with different

load conditions of the cloud network. User will be charged for

the resources used based upon time. Hence efficient utilization

of cloud resources has become a major challenge in satisfying

the user’s requirement (QoS) and in gaining benefit for both the

user and the service provider. In this paper, we propose a

priority and admission control based service scheduling policy

that aims at serving the user requests satisfying the QoS,

optimizing the time the service-request spends in the queue and

achieving the high throughput of the cloud by making an

efficient provision of cloud resources.

Keywords

Subscription-category, service scheduling policy, Priority,

admission control and deadline.

1. INTRODUCTION
Cloud computing provides on-demand delivery of various

services like computation, software, data access, and storage

services that do not require end-user knowledge of the physical

location and configuration of the system that delivers the

services. As the user is charged for the resources used, resource

scheduling strategy plays significant role in cloud computing

environment. Users or clients can submit a job to the service

provider, without actually possessing the software or hardware.

The consumer's computer may contain very little software or

data (perhaps a minimal operating system and web browser

only), serving as a basic display terminal connected to the

Internet. Earlier, both data and software had to be stored and

processed on or near the computer. The design of cloud

computing technology allows the functional separation between

the resources used and the user's computer, usually residing

outside the local network. Consumers regularly use data

intensive applications driven by cloud computing technology

earlier which were unavailable due to the cost and the

complexity involved in deployment [1,4]. An analogy to explain

cloud computing is that of public utilities such as electricity, gas,

and water. Centralized and standardized utilities have made

individuals free from the difficulties of generating electricity or

pumping water. The development and maintenance tasks

involved were drastically reduced with cloud technology.

It is very much useful for small organizations that cannot afford

huge investment on their IT sector but in order to survive in

today’s complex competitive business world they expect

maximum benefit from such supporting industry. Cloud

computing can help such small organizations by providing

massive computing power, unlimited storage capacity, less

maintenance cost, availability of useful web-services etc [2].

As per Buyya et. all [3], “A Cloud is a type of parallel as well as

distributed system consisting of a collection of interconnected

and virtualized computers that are dynamically provisioned and

presented as one or more unified computing resources based on

service-level agreements established through negotiation

between the service provider and consumer”. The definition

clearly implies that there is a Service Level Agreement (SLA)

between the provider and the consumer for getting services from

cloud on pay per use basis. Hence efficient scheduling system is

one of the core and challenging area in cloud and grid

computing.

Actually in Cloud computing there are three types of services

such as Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), Software as a Service (SaaS). SaaS provides different

types of applications as a Service for the end user. It includes

different useful web-services. PaaS provides a standard platform

for better execution of application with proper exploitation of

physical resources. PaaS includes Database services,

Middleware Services etc, IaaS provides the infrastructure of

cloud consisting of physical resources like CPU, Storage, and

Network etc [3-5].

The rest of this paper is organized as follows. In Section 2,

related works in the area are discussed. Section 3 analyzes the

various system parameters used in the system model. Proposed

cloud architecture and the scheduling policy are described in

Section 4. Section 5 describes simulation model and

performance evaluation. Finally, in section 6, we conclude our

work and refer to future work.

2. RELATED WORK
In case of Cloud computing environment, there are some critical

QoS parameters to be considered, such as time, cost (service

charge for the user and servicing charge for provider), reliability

and trust/security. In particular, QoS requirements are not static

and need to be updated dynamically over the time due to

continuous changes in the operating environments. That is

greater importance should be given to user’s time as they pay for

using services from the Clouds based on time. In addition,

dynamic negotiation of SLAs between the users and the service

provider is not completely supported in the Cloud computing

environment. S. Venugopal, X. Chu, and R. Buyya [9] have

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.9, October 2011

24

developed negotiation mechanisms based on alternate offers

protocol for establishing SLAs. Rajkumar Buyya, Chee Shin

Yeo and Srikumar Venugopal have presented a 21st century

vision of computing in their keynote paper [3]. They also have

identified various computing paradigms promising to deliver the

vision of computing utilities. Cloud computing definitions and

the architecture for creating market-oriented Clouds by

leveraging technologies such as VMs are also discussed. Buyya

et al. [8] have proposed scheduling policies to address the time

minimization and cost minimization problem in the context of

Grid computing. K.Mukherjee, G.Sahoo, [2] have given a

Mathematical Model for Market-Oriented Cloud Computing.

They also have proposed a Bee and Ant colony system based

scheduling policy. Qiang Li and Yike Guo [10] have proposed a

model for resource scheduling in cloud computing based on

stochastic integer programming technique, but none of these

papers have considered the concept of admission control and

priority of user’s requests. In this paper we are proposing an

efficient priority based scheduling policy [PSP] and the

supporting cloud architecture with appropriate components to

achieve optimization. We also have incorporated an admission

control technique based on deadline of the service-request, that

allows the cloud to accept the service-requests only if the cloud

can provide the service satisfying the required QoS.

3. SYSTEM MODEL
According to the analysis of the behavior of the cloud

computing network with multiple servers and service-requests

for service, the cloud can be considered as a pool of resources.

The priority based group of service-requests in the cloud

computing environment can be considered as M/G/c queue, and

all the queues together can make a queuing network. Hence

applying multiple server queueing system, we give a model for

the proposed Priority based scheduling policy [PSP]. The

parameters considered in this system model are listed in the

table 1.

Table 1. Parameters considered for the queuing system

model

Parameter Definition

QH High Priority Queue

QM Medium Priority Queue

QL Low Priority Queue

|QH| Size of QH

|QM| Size of QM

|QL| Size of QL

T1 Threshold time for deadline at level 1

T2 Threshold time for deadline at level 2

 Mean request arrival rate

λe Effective arrival rate

w
Q

i
 Total time a Reqi spends in the queue


i

Total service time taken by the Reqi

w
Average time spent by the user request in the

cloud

Ρ Server utilization

We define the PSP with the following assumptions

a. Subscription: Before demanding for the service every user must

subscribe themselves to the cloud manager using one of the 3

subscription category (SBCAT).

 SBCAT – High,

 SBCAT - Medium or

 SBCAT - Low.

For each subscription category subscription charge varies.

b. Requests arrival pattern: The user’s request arrivals occur

randomly according to a Poisson distribution with λ arrivals per

unit time.

c. SLA between the cloud providers and the cloud users: is an

agreement on guaranteed high quality service and cost for the

service

d. QoS of the service requests: There are 3 attributes: guaranteed

service, high quality service and cost for the service

e. Queue behavior: Request is selected from one of the three

queues based on the priority.

In this model, whenever the request for the service from the

user i (service-requesti) arrives at the cloud, the Req-control-mgr

estimates the service time ST
i

est required to complete that

service-requesti based on the type of the service-request and the

average service time taken (by experience) for that type of

service-request.

 delay
T

i = (DL
T

i - C
T

i) ------------- (1)

where

 C
T

i - Current time

 DL
T

i - Deadline given by service-requesti

 delay
T

i - Maximum tolerable time of ith ser-req

Req-control-mgr also estimates the total servicing time required

ST
T

est for all the service requests in all the three queues (Y) and

is computed as:

 ST
T

est
 = 



Y

i

i

estST
1

 -------------- (2)

Where Y= |QH| + |QM| + |QL|

 According to the tolerable delay computed (delay
T

i) and SBCAT

of ith service-request (ser-reqi), arrived service-request will be

placed in one of the 3 queues (QH – High priority queue, QM -

Medium priority queue or QL-Low priority queue)

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.9, October 2011

25

__

 { If ((delay
T

i = ((ST
T

est /C) + ST
i

est)) and

 SBCAT ==1or 2 or 3)

 Place the ser-reqi in QH

 If ((delay
T

i > ((ST
T

est /C) + ST
i

est) by T1))

 { If and SBCAT ==1)

 Place the ser-reqi in QH

 If and SBCAT ==2)

 Place the ser-reqi in QM

 If and SBCAT ==3)

 Place the ser-reqi in QL }

 If ((delay
T

i > ((ST
T

est /C) + ST
i

est) by T2))

 { If and SBCAT ==1)

 Place the ser-reqi in QH or in QM based on the space

 availability

 If and SBCAT ==2)

 Place the ser-reqi in QM or in QL based on the space

 availability

 If and SBCAT ==3)

 Place the ser-reqi in QL based on space availability }

 } -------------- (3)

__

With this system model, the probability that there are N

customers in the system is PN . The effective arrival rate, that is

the mean number of arrivals per time unit who enter and remain

in the system is λe.

 λe = λ (1 - PN) -------------- (4)

The total time a ser-reqi (wi
) spends in the cloud is:



i

Q

ii ww 
 ---------- (5)

Where

 w
Q

i - is the total time a ser-reqi
 spends in the queue



i - is the total service time taken by the ser-reqi

The average time spent by the user request ser-reqi in the cloud

is the average req-to-service delay/ ser-req in the Cloud.

 w = 


N

i
iw

N 1

1
 ---------------------- (6)

The average number of user requests being served in the cloud is

the average server utilization p

 Ρ =




c

i
i

e

1





Where

 C – is the number of servers in the system

The maximum delay delay
T

i the ser-reqi can tolerate is

specified in SLA. To meet this QoS requirement for the ser-reqi

 delay
T

iiw 

In addition to meet the QoS requirement of the service-request,

the profit ωi for the cloud in providing the service to user-

requests should also be considered and computed.

We assume that:

 The unit of cost for service from the cloud as ∂/min

 Total amount of unit time for which service is provided to

ser-reqi as H .

 Charge per Request ser-reqi is

  i
 = H * ∂ /min

Total profit of servicing all the requests

 = 


||

1

QH

i
i + 



||

1

QM

j
j +



||

1

QL

k

k

Our optimization problem is to

 Minimize the total time a ser-reqi
 spends in the queue

Min w
Q

i

 Guaranteed high quality of service

 wi
 ≤ delay

T

i

 Maximizing the throughput

4. PRIORITY BASED SCHEDULING

ALGORITHM AND ARCHITECTURE

4.1 Architecture
Our proposed architecture consists of 2 levels, cloud service

provider level (SPL) and user level (UL). SPL provides a set of

services to the user with suitable communication among several

components of the cloud. Various components of the cloud are

“Request Control-Manager (Req-Cntr-mgr)”, “Service Manager

(Ser-mgr) in association with Resource usage Accounting-

Manager” (Res-mgr) etc; whereas the UL provides secured

access point between the user and the service provider.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.9, October 2011

26

Figure 1: Cloud architecture to support Priority and Admission control based service scheduling system

Whenever the request from UL arrives at the cloud the Req-

Cntr-mgr accepts the request after ensuring that the service-

request can be served with the required QoS (Admission

control). For this, the Req-Cntr-mgr interacts continuously with

Ser-mgr regarding resource availability; while the Bill-mgr

decides the charges for the finished job. The final billing charge

of the finished job is fixed by the Bill-mgr, based on the actual

time taken for the service by hiring the required resources. Thus,

it ensures that there is no overloading of resources whereby

many service requests cannot be fulfilled successfully due to

limited resources available. The main role of Ser-mgr is to keep

track of the availability of processors (Virtual Machines (VM)),

assigning the available required resources to the service-request

and initiating the servicing of the service-request on the

allocated Virtual Machines. The Virtual Machines execute the

service- request on physical machines. It is observed that

performance monitoring of any application in cloud computing

is always complex, different and challenging.

Figure 1 shows the architecture of the system model supporting

Priority, subscription-category (SUBCAT) and SLA based service

scheduling in Clouds and Data Centers. There are basically five

main components involved in this design:

 Users: Users can submit their requests for servicing the jobs
from anywhere in the world to the Cloud through secured
connection.

 Request-Control-Manager (Req-Cntr-mgr): The Req-Cntr-
mgr behaves as an interface between the Cloud service
provider and external users. In order to schedule the
services, it requires the interaction with the other entities to
support priority, Admission control and subscription-
category based service management. When the service-

request is first submitted, the Req-Cntr-mgr checks whether
the service-request can be admitted to the cloud or not by
computing tolerable delay for that request using the
equation (1)

__

 if (delay
T

i ≥ ((ST
T

est /C) + ST
i

est))

 Admit the service-request

 else

 reject the service-request

__

the Req-Cntr-mgr assigns the priority to each user request based

on the delay
T

i and SBCAT to which user belongs.

Every user has to subscribe themselves to the cloud before

accessing the cloud for submission of service request. During

this subscription phase SLA is signed between the cloud service

provider and the user. The Req-Cntr-mgr analyzes the submitted

request for QoS requirements based on the priority and adds the

request to one of the 3 queues High priority queue (Q-H),

Medium priority queue (Q-M), low priority queue (Q-L) based

on the priority computed using equation (3), SUBCAT and on the

availability of the resources. These ser-reqs will be taken from

these queues and serviced based on the availability of the

resources required.

Before deciding whether to accept or reject the request Req-

Cntr-mgr communicates with the Ser-mgr. Thus, it ensures that

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.9, October 2011

27

there is no overloading of resources whereby many service

requests cannot be fulfilled successfully due to limited resources

available. It also needs the latest status information regarding

resource availability (from Ser-mgr) in order to make resource

allocation decisions effectively. Then, it assigns requests to

VMs.

 Queuing-manager (Q-mgr) : is responsible for keeping all

the ser-reqs in an appropriate queue based on the priority

decided (computed by Assign-Priority module) by Req-Cntr-

mgr. It releases the ser-reqs for servicing according to the

instruction given by Req-Cntr-mgr with ser-mgr.

__

 (Pri) = Assign-priority(delay
T

i , ST
T

est ,SUBCAT)

 If (Pri == H)

 QH = ser-reqi

 If (Pri == M)

 QM = ser-reqi

 If ((Pri == L)

 QL = ser-reqi

 __

 Storage-Manager (Sto-mgr): Sto-mgr stores and retrieves the

data required for processing of the jobs.

 Billing-Manager (Bill-mgr): The Billing-mgr decides

(computed by Amt-to-be-paid module) how the completed

serviced requests should be charged. For instance, service-

request can be charged based on the total time taken to

complete the service Hμ and billing rates (fixed/changing).

4.2 Algorithm

[Nomenclature :

Reqi - Service –request from user i

Hμ - Total time (mins) served

SBCAT - Subscription category

delay
T

i - Tolerable delay for the request i

]

When a request for the service from the user i ser-reqi
 arrives at

the Cloud (Service provider)

Req-control-mgr checks for the admission by computing the

maximum tolerable delay and required service time for that ser-

reqi

if (delay
T

i ≥ ((ST
T

est /C) + ST
i

est))

 Admit the service-request

else

 reject the service-request

Req-control-mgr assigns the priority by calling Assign-priority

module.

 (Pri) = Assign-priority(delay
T

i , ST
T

est ,Tdmax)

 If (Pri == H)

 QH = ser-reqi

 If (Pri == M)

 QM = ser-reqi

 If ((Pri == L)

 QL = ser-reqi

Based on priority and SUBCAT of the ser-reqi service scheduling

happens as follows

While (QH ≠ NULL)

 {For each service-request in QH

 Req-ser-mgr Checks for the resource availability by

 communicating with the Ser-mgr

 if (required resources are available)

 { Schedule the ser-reqi for the service and initiate the

 servicing of ser-reqi

 Once the 
i

 is completed

 Billing is done by Bill-mgr to charge for the service

 provided to ser-reqi

Amt-to-be-paid(Hμ) }

 else

 dynamically reallocate the resources based on delay
T

i

 and ST
i

est and SBCAT }

 While (QM ≠ NULL)

 {For each service-request in QM

 Req-ser-mgr Checks for the resource availability by

 communicating with the Ser-mgr

 if (required resources are available)

 { Schedule the ser-reqi
 for the service and initiate the

 servicing of ser-reqi

 Once the 
i

 is completed

 Billing is done by Billing-mgr to charge for the service

 provided to ser-reqi

Amt-to-be-paid(Hμ) }

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.9, October 2011

28

 else

 dynamically reallocate the resources based on delay
T

i

 and ST
i

est and SBCAT

 }

 While (QL ≠ NULL)

 {For each service-request in QL

 Req-ser-mgr Checks for the resource availability by

 communicating with the Ser-mgr

 if (required resources are available)

 { Schedule the ser-reqi for the service and initiate the

 servicing of ser-reqi

 Once the 
i

 is completed

 Billing is done by Billing-mgr to charge for the service

 provided to ser-reqi

Amt-to-be-paid(Hμ) }

 else

 dynamically reallocate the resources based on delay
T

i

 and ST
i

est and SBCAT }

Priority assignment Module

char Assign-Priority(delay
T

i , ST
T

est ,)

 { If ((delay
T

i = ((ST
T

est /C) + ST
i

est)) and

 SBCAT ==1or 2 or 3)

 Rethrn(H)

 If ((delay
T

i > ((ST
T

est /C) + ST
i

est) by T1))

 { If and SBCAT ==1)

 Rethrn(H)

 If and SBCAT ==2)

 Rethrn(M)

 If and SBCAT ==3)

 Rethrn(L) }

 If ((delay
T

i > ((ST
T

est /C) + ST
i

est) by T2))

 { If and SBCAT ==1)

 Place the service-request in QH or in QM

 If and SBCAT ==2)

 Place the service-request in QM or in QL

 If and SBCAT ==3)

 Place the service-request in QL }

 }

Billing Module

Int Amt-tobe-paid (H)

 {

  qiRe = H * ∂ /min

 Return ( qiRe)

 }

5. SIMULATION MODEL AND

PERFORMANCE EVALUATION
In our simulation model, we have a single cloud with group of 4

servers. There are 3 queues namely high priority queue-QH,

medium priority queue-QM and low priority queue-QL with

queue size of 15 each. We assume that, there is sufficient

bandwidth in the cloud network. Simulation has been conducted

for 5 hours. The table 2 lists the performance parameters

considered for the simulation.

Table 2:. Parameters for the Simulation model

Parameter Definition

|QH| 15

|QM| 15

|QL| 15

T1 25 mins

T2 60 mins

 46 request/hr

λe 30 to 45/hr

C 4

Unit time Minutes

Service Completion Rate with QoS Vs Priority: In

comparison with the traditional service scheduling

technique(TSC) with out considering any priority and admission

control [TSC-(AC+P)], Figure 2 shows service completion rate

for the service-requests with our proposed priority based

scheduling policy with admission control [PSC+AC]. During the

admission of the service-request itself this algorithm checks

whether the guaranteed quality service can be provided by

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.9, October 2011

29

computing delay
T

i and ST
i

est . Hence almost 99% of the service-

requests have been provided with guaranteed high quality

service. Since ST
i

est is the estimated service time required to

complete the service-request, as λ and λe increases ≤1% of the

requests could not finish their service within the specified

deadline as shown in the figure 2. Whereas the traditional

service scheduling policy in which, the priority and admission

control policy are not considered accepts all the requests. Hence

it is not able to complete all the requests with specified QoS as

shown in figures 2 and 3. Thus the overall performance of the

cloud throughput has been increased in the proposed priority

based scheduling policy with admission control technique.

Figure 2: Service Completion Rate Vs Priority

Impact of Priority and admission control based scheduling

policy on an average time a user request spends in the

Queue: Keeping all the ser-reqs in the appropriate queues the

proposed algorithm ensures the guaranteed quality service to

every user request. As [PSP+AC] gives higher precedence to

high priority service-request, the average time service-request

waits in the queue also decreases as the priority increases as

shown in the figure 3.

Figure 3: No. of reqs met delayT Vs No. of reqs violated

delayT

6. CONCLUSION
In this paper an efficient Priority and admission control based

service scheduling policy[PSP+AC] and an optimization model

are proposed. This policy with the proposed cloud architecture

has achieved very high (99%) service completion rate with

guaranteed QoS over the traditional scheduling policy which

does not consider the priority and admission control

techniques[TSP-(AC+P)]. As this policy provides the highest

precedence for highly paid user service-requests, overall

servicing cost for the cloud also increases. In our future work,

we are planning to extend this model to hire resources from

other clouds and provision of security to improve the

performance of the cloud system.

7. REFERENCES
[1] Cloud computing - Wikipedia, the free encyclopedia.htm

[2] K.Mukherjee, G.Sahoo, ”Development of Mathematical

Model for Market-Oriented Cloud Computing”,

International Journal of Computer Applications (0975 –

8887), Volume 9– No.11, November 2010.

[3] Rajkumar Buyya, Chee Shin Yeo and Srikumar Venugopal,

“Market-Oriented Cloud Computing: Vision, Hype, and

Reality for Delivering IT Services as Computing Utilities”,

The 10th IEEE International Conference on High

Performance Computing and Communications, IEEE

Computer Society, 2008, pages 5-13.

[4] P. Mell and T. Grance, “Draft NIST working definition of

cloudcomputing,” Referenced on June. 3rd, 2009 Online at

http://csrc.nist.gov/groups/SNS/cloud-

computing/index.html, 2009.

[5] Liu Peng. Cloud computing principle. Web Page

http://www.chinacloud.cn/show.aspx?id=1929&cid=12.

[6] Chen Ming1，Li Mengkun1,Cai Fuqin1 “A model of

scheduling optimizing for cloud computing resource

sevices based on”, 2010 IEEE International conference on

Granular Computing. DOI 10-1109/GiC 2010.180

[7] A Sachin V. Solanki, B. Minal Gour and C. A.R. Mahajan,

“An overview of Different Job Scheduling Heuristics

Strategies for Cloud Computing Environment”,

www.icett.com.

[8] R. Buyya, M.M. Murshed, D. Abramson, and S.

Venugopal. Scheduling parametersweep applications on

global grids: a deadline and budget constrained cost-time

optimization algorithm. Software Practice and Experience,

35(5):491{512, 2005.

[9] S. Venugopal, X. Chu, and R. Buyya. A Negotiation

Mechanism for Advance Resource Reservation using the

Alternate Offers Protocol. In Proceedings of the 16th

International Workshop on Quality of Service (IWQoS

2008), Twente, The Netherlands, June 2008.

[10] Qiang Li, Yike Guo. “Optimization of Resource

Scheduling in Cloud Computing”, 12th International

Symposium on Symbolic and Numeric Algorithms for

Scientific Computing, 978-0-7695-4324-6/10© IEEE, DOI

10.1109/SYNASC.2010.8.

