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ABSTRACT 

Most processes in chemical industry reveal nonlinear 

behavior. A key requirement for many advanced process 

control is the availability of an accurate dynamic model, 

with lowest order, for process. This paper handles the 

problem of model order selection in non-linearity chemical 

processes identification procedure. In this respect a 

„nonlinearity test‟ method and four model order selection 

criteria known as the Aikaike Information Criterion (AIC), 

the Minimum Description Length (MDL), the 

Exponentially Embedded Family (EEF) and Unmodeled 

Output Variation (UOV) are considered. The abilities of 

these criteria in determining the order of the model 

subjected to different levels of nonlinearity are compared. 

For this purpose, two chemical processes: a two-tank 

system and a continuous stirred tank reactor (CSTR) with 

different levels of nonlinearity are employed. It has been 

shown that in a system with high level of nonlinearity, the 

UOV criterion is able to select the lowest order model 

compared to the other criteria. 
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1. INTRODUCTION 
Numerous information currently exist describing nonlinear 

behavior of processes such as CSTRs, distillation columns, 

evaporators and biotechnological processes.  Nonlinearity 

in a chemical process may arise from a variety of sources. 

It may be due to characteristics of the process such as 

temperature dependence of reaction rates.  It may also 

result from process limitations such as valve limits, leading 

to input saturation (i.e., flow rate manipulation) or from 

physical constraints on output variables (e.g., mole 

fractions of chemical species) [1]. 

Process nonlinearity is one of the most relevant factors in 

system identification problems that plays significant role in 

identifying a model for a system from measured 

input/output data, without necessarily knowing anything 

about the physical laws controlling the system. A model, in 

general, is any qualitative description of a system, taking  

 

into account the most important factors that affect the 

system. Many models are derived from fundamental  

 

 

physical laws. A model will never be complete, but good 

approximations may be possible [2]. 

Model order selection is also a basic problem in system 

identification. The model order selection criterion should 

be able to detect under modeling (too simple model) as well 

as over modeling (too complex model) [3]. It is proved that, 

in non-linear systems, the model order selection and its 

criteria are affected by the level of nonlinearity. 

 In this paper, at first we test the level of nonlinearity of 

several differential equations and the system dynamical 

equations of two application examples. Then we apply the 

above criteria to determine the model order of these 
systems. 

1. NONLINEARITY TEST 
One of the first steps in system identification is to consider 

a linear model for the system.    But in many cases, which 

level of nonlinearity is high, a linear model cannot be a 

good approximation of the system. To avoid an 

unnecessary time-waste, it is desirable to determine level of 

nonlinearity by employing simple tests. Nonlinearity tests 

are well known in the field of system identification [4, 5]. 

Among the tests listed, in these papers, one of them, known 

as „superposition checks‟ can be described as follows. 

Two main characteristics of linear systems which are 

superposition 

 

)]([)]([)]()([)(
2121

tftfttftY     (1) 

and homogeneity 

                (2) 

 

These characteristics are not satisfied in nonlinear systems; 

at least not over their entire operating range. If no 

disturbance affects the system, these conditions are often 

quite easy to check. It is necessary to assume that the 

system is at rest for (1) and (2). If the system is stable one 
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can also wait until the transient has disappeared before 

checking the conditions. 

For testing a system, one can try the following procedure:  

1-Apply a zero input signal and wait for the steady state to 

occur. Investigate if there is a DC offset (D). 

2- Apply two different input signals, and , obeying 

 =  (3) 

3- Calculate the below ratio 

   

 

(4) 

4- Calculate the „nonlinearity index‟, „‟ ‟‟, for the system 

 

 

(5) 

where „‟ ‟‟ is between 0 and 1. So the closer “ ” is to 

one, the higher the nonlinearity level of the system will be. 

2. MODEL ORDER SELECTION 
The  modeling  problem  being  considered  is the  

prediction  of  a  data  value  from  a  set  of  realizations  of  

measured  data. Model selection criteria are relative.  No  

absolute measure of model fit  exists,  and  if we do not 

include the  „correct‟  model  in  the  set  that  we  consider,  

then we will  certainly  make  the  wrong  choice. It  is 

generally  implicitly  assumed  that  any  criterion  that  will 

select  the  correct  model  over  all  others  given  a  large 

amount  of  data  will  select  the  „most  appropriate‟ model  

from  a  set  of  wrong  but  approximately  correct  models. 

Exactly what the most  appropriate  model  is, depends  on  

the  situation,  but  in  many  cases  we  are  interested  in  

minimizing  the  prediction  errors  when  new  data  are     

presented [6]. 

2.1 The Aikaike Information Criterion 

(AIC) 
According to Akaike's theory, the most accurate model has 

the smallest AIC: 

 

 

(6) 

 

where  is loss function, d is the number of estimated 

parameters, and N is the number of values in the estimation 

data set. 

The loss function  is defined by the following 

equation: 

   

 

(7) 

 

2.2 The Minimum Description Length 

Criterion (MDL) 
Rissanen has developed his MDL criterion using the 

framework of coding and estimation to   get the shortest 

possible description of the observed data [7]: 

   

 

(8) 

 

2.3 The Exponentially Embedded Family 

(EEF) 
It allows the user to embed two or more probability 

distribution functions (pdfs) into a family of (pdfs) that are 

indexed by one or more parameters. This embedded family 

has the form of an exponential family and chooses the 

model order that maximizes [8]: 

 

EEF )1()}1)(log({ 
d
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u
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dV          (9) 

 

where u(x) is the unit step function. 

2.4 The Unmodeled Variation (UOV) 

The parameter  is defined as the percentage of 

variation in the output measurement that is not explained 

by the model: 
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                                                                                 (10) 

where  is the average of the sampled output: 

 

 

                                 (11) 

The unmodeled output variation is compared to the 

percentage of relative variation due to noise when 

there is no movement in the inputs  
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The model order  is selected such that is greater 

than : 

 

  
 

 

(13) 

 

 and 

 

  
(14) 

 

The model order is selected at the elbow in the plot of 

unmodeled output variation  by selecting an 

appropriate value of P [7]. 

3. EXAMPLES 
The criteria that are expressed in the previous section are 

used to determine the model order of the following three 

differential equations: 

 

Equations 1 to 3 have nonlinearity levels of:  

low , medium 
 

and high 

 
respectively. The model order for each 

system is selected by sing a Nonlinear Auto Regressive 

with exogenous variable (NARX) model structure and a 

uniformly distributed random signal applied to its input. 

The parameters associated with the mode 

order, , where is output lags, is input 

lags and   is delay, and the percentage of the output 

variation that is explained by the model are displayed in 

Table 1: 

 

 

 

 

Table 1. The selected model order by each criterion and 

their percentages of the output variation 

 

ytiraenilnon fo leveL 

 

noiretirC 
 

hgiH 

 

muideM 

 

woL 

[1 3 2]  

73.31% 

[1 2 2]  

%87.25 

[1 1 2]  

%100  

 

CIA 

[1 3 2]  

73.31% 

[1 2 2]  

%87.25 

[1 1 2]  

%100 

 

LDM 

[2 2 3]  

71.74% 

[1 3 2]  

%86.63 

[1 1 2]  

%100 

 

FEE 

[1 2 2]  

75.13% 

[1 1 2]  

%88.05 

[1 1 2]  

%100 

 

VOU 

 

As can be seen in the Table 1, all criteria resulted in the 

same model order for the system with low level of 

nonlinearity. However, by increasing the level of non-

linearity, the UOV criterion has shown the best 

performance in comparison to the other criteria. In a highly 

nonlinear system, MDL and AIC criteria results in lower 

performance indices than the UOV criterion and the EEF 

criterion has the least performance index. 

4. CASE STUDY 
Two nonlinear chemical processes are considered as the 

application examples in this section. The first example is a 

Two-Tank system with medium nonlinearity 

level  . The model of the system is given by 

 

 

where The input is the voltage  applied to a 

pump, which generates an inflow to the first  tank, 

and denote the water level in the first and the 

second tank, respectively,  Ai is the cross-sectional 

area of tank i , ‟ai‟ is the cross-sectional area of the outlet 

hole and „g‟ is the gravity constant [9]. 
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The second system is a Non-Adiabatic (CSTR) with high 

nonlinearity level . Its dynamical model is 

given by: 
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Where the manipulated input is Tj(t) and controllable 

output is CA(t). For further information on this model and 

its derivation, see [10]. 

These two systems are simulated using MATLAB [9]. To 

generate output data, a uniformly distributed random input 

is applied to each of these systems.  The input signals of 

both systems are showed in figures 1 and 2. 
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Fig 1: The input signal(uniformly distributed random) 

which is used for excitation of  ‘Two-Tank’ system 
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Fig 2: The input signal(uniformly distributed random) 

which is used for excitation of ’CSTR’system 

 

The data set, that are obtained by exciting each model 

(named as the Z set), are divided into the estimation data 

set (Ze) and the validation data set (Zv).  First, each system 

is identified using Ze, then the resulting estimated model is 

validated by Zv. Figure 3 shows the validation and the 

UOV-based model output for the two-tank system. Similar 

results are shown in Figure 4 for the CSTR. 
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zv; measured

UOV-Mod ; fit : 83.93%

 

Fig 3: The measured (validation) data of the ‘Two-

Tank’ system and the output signal of estimated model 

using the UOV criterion 
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zv ; measured

UOV-Mod ; fit: 70.73%

 

Fig 4:  The measured (validation) data of the ‘CSTR’ 

system and the output signal of estimated model using 

the UOV criterion 

Finally, the selected model orders together with the 

percentages of the output variation using different criteria 

are presented in Table 2. As shown in this table, the UOV 

criterion selected a more appropriate model order compared 

to the other criteria. 

Table 2. The selected model orders for case studies and 

their percentages of the output variation 

Criterion  

AIC 

 

MDL 

 

EEF 

 

UOV Case Study 

 

TOW_TANK 

[2 2 1] 

81.29 

[2 2 1] 

81.29% 

[2 3 1] 

79.47% 

[2 1 1] 

83.93% 

 

CSTR 

[3 4 1] 

70.04% 

[3 4 1] 

70.04% 

[3 4 3] 

69.17% 

[3 2 1] 

70.73% 

 

5. CONCLUSIONS 
A‟ Nonlinearity test‟ method and four model order 

selection criteria have been described and used for several 

examples and chemical processes with different levels of 

nonlinearity.          

 

 

 

 

 

 

Nonlinearity test is first applied to determine the level of 

nonlinearity and the model order is then selected by 

utilizing the criteria. In systems with low level of 

nonlinearity, the model orders obtained from all criteria are 

identical.  The model order determined by the UOV 

criterion in the systems with high level of nonlinearity is 

lower than the order determined by the other criteria. In 

fact, by increasing the level of non-linearity, the UOV 

criterion demonstrated the best performance compared to 

the other criteria. Among the discussed criteria, the EEF 

criterion resulted in the worst model selection. 
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