
International Journal of Computer Applications (0975 – 8887)

Volume 32– No.8, October 2011

30

 A Genetic Algorithm for Fault based Regression Test
Case Prioritization

Dr. Arvinder Kaur
Associate Professor,
University School of

Information Technology
 G.G.S. Indraprastha

 University, Delhi- 110043

 Shubhra Goyal
Research Student

University School of
Information Technology,

G.G.S. Indraprastha
University, and Delhi- 110043

ABSTRACT

Regression testing is the process of validating modified software

to detect errors that have been introduced into previously tested

code. As the software is modified, the size of the test suite grows

and the cost of regression testing increases. In this situation, test

case prioritization aims to improve the effectiveness of

regression testing by ordering the test cases so that most

beneficial test cases are executed first. In this research paper, a

new genetic algorithm is introduced that will prioritize

regression test suite within a time constrained environment on

the basis of total fault coverage. The proposed algorithm has

been automated and the results are analysed. The results

representing the effectiveness of algorithm are presented with

the help of Average Percentage of Faults Detected (APFD).

Keywords

Genetic Algorithm; Test Case Prioritization; Regression Testing.

1. INTRODUCTION
Throughout the software life cycle, most test cases should be

written adequately to test the software. As the software is

altered, a maintenance activity called regression testing is

performed to ensure the validity of the modified software. To

test the modified software, new test cases are added to the test

suite to test the changed requirements, which increase the size of

the test-suite, cost and time constraints. So, to enhance the

efficiency of software testing, improvements in the regression

testing would help in reducing the cost of the software. To

reduce the cost of regression testing, prioritization of test cases

becomes essential. Several techniques have been proposed for

the above techniques that are described in the next section of

related work.

This paper, investigates the use of an evolutionary approach,

called Genetic Algorithm for test case prioritization based on

total fault coverage in minimum execution time. Software test

automation refers to the activities that are required to automate

the test case generation, prioritization and execution of the test

cases. The proposed algorithm automates the process of

prioritization of test suites on the basis of complete fault

coverage using genetic algorithm.

2. RELATED WORK
This section presents the work done in the area of genetic

algorithm and test case prioritization. Genetic algorithms are

used in many areas such as cost estimation problem, hardware-

software embedded systems, cryptography, data warehousing

and data mining. In the cost estimation problem, the size of the

software, usually measured in lines of code or function points, is

examined in relation to the effort, which is usually measured in

person-months [1]. Search algorithms especially genetic

algorithms are used in order to find predictive functions for the

relation. The initial population is formed from a set of well-

formed equations, to which the operators of a genetic algorithm

are applied [1]. The main benefit of using a genetic algorithm is

it explores solutions solely based on their fitness values and does

not constrain the form of the solution. Thus, even complex

evaluation functions have the possibility of being found and the

final set of equations provided by the genetic algorithm truly

have the best predictive values [1].

A genetic algorithm addresses the problem of co synthesizing

hardware-software embedded systems [2]. A co-synthesis

system determines the hardware and software processing

elements (PE) that are needed and the links that are used for a

given embedded system. A co-synthesis system must carry out

four tasks: allocation, assignment, scheduling, and performance

evaluation. The allocation/assignment and scheduling tasks are

known to be NP-complete for distributed systems, so the co-

synthesis problem is an excellent candidate for search

algorithms [2]. Genetic algorithm has been used in the field of

networks. They are been used in network intrusion detection

system(IDS). In this technique, both temporal and spatial

information of network connections in encoding the network

connection rules in IDS is used and is more helpful for

identification of network anomalous behaviour [3]. Genetic

algorithms are used in cryptanalysis. An algorithm is developed

for finding the secret key of a block permutation cipher [4].

Genetic algorithms are applied in the field of data warehouse

and datamining. An algorithm is developed based on GA, for

incremental clustering in data mining and the efficiency of the

algorithm is demonstrated. ICGA requires distance function and,

therefore, it is applicable to any database containing data from a

metric space [5]. It has been used in the field of robotics for

robot navigation controller optimation, specially that are based

on neural networks [6].

In recent years several researchers have addressed the test case

prioritization problem and presented techniques for addressing

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.8, October 2011

31

it. Test case prioritization techniques reported in [7, 8] orders

test cases such that the test cases with highest priority, according

to criteria defined by user, are executed first [9]. For example,

concerning coverage alone, testers might wish to schedule test

cases in order to achieve code coverage at the fastest rate

possible in the initial phase of regression testing, to reach 100%

coverage or to ensure that the maximum possible coverage is

achieved by some pre–determined cut–off point. In the

Microsoft Developer Network (MSDN) library, the achievement

of adequate coverage without wasting time is a primary

consideration when conducting regression tests [10]. Several

testing standards require branch adequate coverage, making the

speedy achievement of coverage an important aspect of the

regression testing process. There are several prioritizing

techniques such as total statement (or branch) coverage

prioritization and additional statement coverage prioritization

that can improve the rate of fault detection [11]. Test cases are

prioritized according to the criterion of „increasing cost per

additional coverage [8]. Greedy Algorithms are also used and

are implemented in a tool named ATAC [15]. A prioritization

technique has been presented that is based on the changes that

have been made to the program and focused on the objective

function of “impacted block coverage”[12]. Other non–coverage

based techniques in the literature include fault–exposing–

potential (FEP) prioritization [9], history–based test

prioritization [13], and the incorporation of varying test costs

and fault severities into test case prioritization [11,13]. Five

search techniques: two meta–heuristic search techniques (Hill

Climbing and Genetic Algorithms), together with three greedy

algorithms (Basic Greedy, Additional Greedy and 2–Optimal

Greedy) had been studied and proved that Genetic Algorithms

performed well in test case prioritization [14]. In our proposed

prioritization technique test suite execution time along with

coverage information has been used to prioritized.

3. THE GENETIC ALGORITHM

Genetic algorithms were invented by John Holland in the 1960s.

Genetic algorithms are used to find an optimal solution that

satisfies the criteria defined by user to reach the desired goal. To

operate with a genetic algorithm, one needs an encoding of the

solution, i.e., a representation of the solution in a form that can

be interpreted as a chromosome, an initial population, mutation

and crossover operators, a fitness function and a selection

operator for choosing the survivors for the next generation.

3.1 Methodology

In a genetic algorithm, a population of strings (called

chromosomes), which encode candidate solutions to an

optimization problem, evolves toward better solutions.

Initialization

Initially many individual solutions are randomly generated to

form an initial population. The population size depends on the

nature of the problem, but typically contains several hundreds or

thousands of possible solutions.

Selection

During each successive generation, a proportion of the existing

population is selected to breed a new generation. Individual

solutions are selected through a fitness-based process, where

better solutions are likely to be selected. Certain selection

methods rate the fitness of each solution and preferentially select

the best solutions.

Reproduction

The next step is to generate a second generation population of

solutions from those selected through genetic operators:

crossover and mutation. For each new solution to be produced, a

pair of "parent" solutions is selected for breeding from the pool

selected previously. By producing a "child" solution using the

methods of crossover and mutation, a new solution is created

which shares many of the characteristics of its "parents". New

parents are selected for each new child, and the process

continues until a new population of solutions of appropriate size

is generated. The crossover operator is applied to two

chromosomes (the parents), in order to create two new

chromosomes (their offspring). For example, if the two parents

are [v1,...,vm] and [w1,...,wm], then crossing the chromosomes

after the kth gene (1 ≤ k ≤ m) would produce the offspring:

[v1,...,vk,wk+1,...,wm] and [w1,...,wk,vk+1,...,vm]. Mutations are

a way of creating new individuals from the population at hand

by administering a minor change to one of the existing

individuals by changing alleles in a random locus. For example,

we could have a bit string 001100. By mutating this string in its

third locus the result would be 000100[16].

Termination

This process is repeated until a termination condition has been

reached. Common terminating conditions are:

 A solution is found that satisfies minimum criteria

 Fixed number of generations reached

 Allocated budget (computation time/money) reached

 The highest ranking solution's fitness is reaching or

has reached a plateau such that successive iterations

no longer produce better results

 Manual inspection

 Combinations of above criterias[17]

.

4. GENETIC ALGORITHM FOR

PRIORITIZATION OF TEST CASES

This paper present a new Genetic Algorithm that uses

genetic operators, crossover and mutation to prioritize test

cases based on maximum fault coverage. This algorithm

takes number of test cases as the number of chromosomes

and stopping criteria for each chromosome is total fault

coverage

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.8, October 2011

32

 4.1 Flowchart

 Fig 1. Flowchart of Genetic Algorithm.

 4.2 Algorithm

STEP 1. Initialization of initial population

 Generate „n‟ number of chromosomes {c1, c2… cn}

 Set No. Test Suite= No. of chromosomes (n)

STEP 2. Fitness function criteria

 Set fitness function= total fault coverage +

 minimum time of execution to run the selected test

 case

STEP 3. Select suitable population on the basis of Fitness

 Function

SELECT (Best 2 chromosomes)

STEP 4. Genetic Operators Applied

 Do for selected Chromosome(s)

 While (all faults are covered)

 Do crossover

 Do mutation

 Duplication removed

 EndWhile

EndFor

STEP 5. Optimization of solution cheked.

 If (solution!= optimised)

 Goto STEP 4

 Else END.

4.3 Algorithm Explained

In GA, the optimal solution is searched on the basis of desired

population which further can be replaced with the new set of

population. The generation and initialization of test cases

(population) is done according to the problem. The fitness

criterion chosen is maximum fault covered in minimum

execution time to run the test cases. Henceforth, this fitness

function will help in selecting suitable population for problem.

Further, the genetic operations are performed. First, crossover,

which recombines two individuals. Second, mutation, which

randomly swaps the individuals. Third, the duplicate individuals

are removed. Finally, the solution is checked for optimization. If

solution is not optimized, then, the next generation population is

reproduced and genetic operations are applied.

4.4 Analysis Of Algorithm

The execution time of Genetic Algorithm is bounded by sum of

time required to generate the population, applying genetic

operators „n‟ number of times and checking the optimal solution.

We use O-notation to give an upper bound on a function within

a constant factor. For the population of size „n‟, the population

generation requires O(n) operations . All „n‟ chromosomes in

population will go through crossover and mutation and removal

of duplicity till the final test suite is obtained through GA. Since,

only two chromosomes are selected it takes a total time of

2[n(O(n)) + 2]. For final result all the „n‟ individuals will go for

maximum of 3 iterations as 3 point crossover is possible. Hence,

taking 3O(n) operation complexity. Therefore, the best running

time of proposed algorithm is O(n) + O(n) + 1 + O(n) +

2[n(O(n)) + 2]+ 3O(n), which makes the final running time as

O(n2).

4.5 Implementation Of the Proposed

Algorithm

Test cases are prioritized on the basis of total fault coverage

using Genetic Algorithm. The algorithm is developed and then

implemented using Java IDE. The code takes the input of test

cases with the faults they cover and execution time to run those

test cases and prioritize the test cases based on fitness function

and genetic operators‟ crossover and mutation.

4.6 Problem Definition

The code is analyzed using five examples and the results are

shown.

Example 1

The problem taken is “college program for admission in

courses”. The problem specification is available at website

http://www.planet-source-code.com.In this example a test suite

has been developed which consisted of 40 test cases. For

 END

Selection on the basis of

fitness function

 Population generated

Reproduce New

Population Genetic Operators Applied

Optimized

Solution

START

No

Yes

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.8, October 2011

33

simplification, to explain the technique, a test suite with 9 test

cases is considered in it, covering a total of 5 faults. The

regression test suite T contains nine test cases with the default

ordering {T1, T2, T3, T4, T5, T6, T7, T8, T9}, the faults

covered by each test case and the execution time required by

each test case in finding faults are as shown in Table 1. The

equal priority is given to the number of faults covered and

minimum execution time in selecting test suites.

Table 1. Test cases with faults covered and execution time

for example 1

Test case No. Faults Covered Execution Time(Units)

 1 1 2 3 5 11.5

 2 1 2 11.5

 3 1 3 5 12.33

 4 1 4 5 10.66

 5 1 15.0

 6 1 3 5 8.33

 7 1 15.0

 8 1 2 4 10.0

 9 3 6 11.0

OUTPUT

Selected chromosomes after applying Genetic Algorithm are: 6,

8 which cover all five faults and total Execution Time to run

these two test cases is : 18.33 unit.

Example 2

Another problem specification is for software “Hotel

Reservation” which reserves the rooms in hotel and maintains

the record. The complete problem specification is available at

the website http://www.planet-source-code.com. It contains 40

test cases with 10 faults as shown in the table 2.

OUTPUT

Selected chromosomes after applying Genetic Algorithm are: 5,

1 which cover all ten faults and Execution Time to run these

test cases is: 20.7 unit.

Example 3

Another problem specification is for software “Railway

Reservation” which reserves and cancels the seats in railways. It

contains 26 test cases with 10 faults as shown in the table 3.

OUTPUT

Selected chromosomes after applying Genetic Algorithm are:

2,1,3,4 which cover all ten faults and Execution Time to run

these test cases is: 54.0 units

Table 2. Test cases with faults covered and execution time

for example 2

Test Case No. Faults Covered Execution Time(Units)

 1 1 3 4 5 7 8 9 10 10.1

 2 1 3 5 7 12.8

 3 2 3 5 6 8 11.28

 4 1 5 7 10 18.9

 5 2 6 10.6

 6 1 2 3 4 7 8 9 20.8

 7 1 2 3 6 18.66

 8 2 3 5 8 10 22.6

 9 1 5 7 9 23.68

 10 1 3 4 5 8 16.68

 11 3 5 6 19.9

 12 2 3 8 9 15.5

 13 1 2 4 7 10 10.28

 14 1 2 14.48

 15 2 3 8 22.68

 16 2 3 4 5 6 9 17.34

 17 1 3 5 21.82

 18 1 5 8 10 26.62

 19 2 3 4 5 25.28

 20 1 2 3 7 8 9 18.8

 21 1 2 3 15.76

 22 2 6 8 10 19.86

 23 1 3 5 20.21

 24 1 2 3 4 5 8 9 21.0

 25 1 3 5 7 9 13.68

 26 2 5 8 9 16.28

 27 1 2 3 6 9 10.19

 28 1 2 3 5 8 10.28

 29 2 3 5 7 18.79

 30 2 3 4 5 6 8 10 27.19

 31 1 3 4 5 6 8 10 29.86

 32 1 3 4 7 9 30.8

 33 2 7 10 32.68

 34 1 2 3 6 8 19.29

 35 1 2 7 27.28

 36 4 5 9 10 18.86

 37 1 25.57

 38 1 2 8 23.86

 39 1 2 3 6 7 9 10 15.78

 40 1 2 3 4 5 10 30.31

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.8, October 2011

34

Table 3. Test cases with faults covered and execution time

for example 3

 Example 4

 The example taken is the triangle problem. It takes the three

 sides of the triangle as input and gives the output as scalene,

 isosceles, equilateral and not a triangle according to the

 input[18], contains 17 test cases and 6 faults as shown in the

 table 4.

Table 4. Test cases with faults covered and execution time

for example 4

 Test Case No. Faults Covered Execution Time(Units)

 1 1 3 6 5.0

 2 1 2 3 6 2.0

 3 1 2 3 6 3.0

 4 1 2 3 4 4.0

 5 1 2 3 4 5 5.0

 6 1 2 3 6 3.0

 7 1 2 3 6 6.0

 8 1 3 6 4.0

 9 1 2 3 6 5.0

 10 1 2 3 6 3.0

 11 1 2 3 4 5 8.0

 12 1 2 3 6 4.0

 13 1 2 3 6 6.0

 14 1 3 6 3.0

 15 1 2 3 6 2.0

 16 1 2 3 6 3.0

 17 1 3 6 5.0

OUTPUT

Selected chromosomes after applying Genetic Algorithm are: 2,

4 which cover all six faults and Execution Time to run these test

cases is: 7.0 units

Example 5

The example taken is the quadratic equation problem which

takes the three numbers of the equation as input and gives the

output as equal roots, real roots, imaginary roots and not a

quadratic equation according to the input[18], contains 19 test

cases and 9 faults as shown in the table 5.

Table 5. Test cases with faults covered and execution

For example 5

OUTPUT

Selected chromosomes after applying Genetic Algorithm are: 2,

9, 6 which cover all nine faults and Execution Time to run these

test cases is: 11.0 units

 Test Case

No.

Faults Covered Execution

Time

(Units)

 1 2 8.0

 2 5 8 9 10 12.0

 3 1 3 4 6 9 10 16.0

 4 1 3 4 5 7 9 10 18.0

 5 1 3 4 16.0

 6 1 2 4 14.0

 7 1 2 4 15.0

 8 1 2 4 14.0

 9 1 2 4 12.0

 10 1 2 4 14.0

 11 1 2 4 14.0

 12 1 2 4 14.0

 13 1 2 3 4 13.0

 14 1 2 3 4 13.0

 15 1 2 3 4 13.0

 16 1 2 3 4 13.0

 17 1 2 3 4 13.0

 18 1 2 3 4 13.0

 19 1 2 3 4 13.0

 20 1 2 4 10 15.0

 21 1 2 3 4 13.0

 22 1 2 4 14.0

 23 1 2 4 10 14.0

 24 1 2 4 10 14.0

 25 1 2 4 10 13.0

 26 1 2 4 10 13.0

 Test Case

No.

Faults Covered Execution Time

(Units)

 1 1 2 3.0

 2 3 8 9 5.0

 3 1 4 7 9 2.0

 4 1 4 5 9 6.0

 5 1 4 6 8 3.0

 6 1 3 6 9 4.0

 7 1 2 2.0

 8 0 6.0

 9 1 4 5 6 7 4.0

 10 1 3 5 6 8 7.0

 11 1 2 5 6 9 3.0

 12 1 4 5 6 8 2.0

 13 2 5 7.0

 14 2 3 3.0

 15 2 5 7 9 5.0

 16 1 4 5 7 9 6.0

 17 1 4 5 6 9 3.0

 18 1 3 5 6 8 4.0

 19 2 1.0

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.8, October 2011

35

4.7 Analysis of the results

 The examples that are prioritized using genetic algorithm are

analyzed ten times each and the results are compared and

analyzed as shown:

Example 1

 The college program test cases is run ten times and the result

are recorded and prioritized test cases that cover total faults are

(6,8),(4,9),(8,9) the test case (6,8) cover all faults in Minimum

execution time of 18.33 units and out of ten the result (6,8) is six

times and (4,9) and (8,9) are two times each. Genetic Algorithm

gives the optimum result 60% times.

Example 2

 The hotel reservation test cases are run ten times and the results

are recorded and the prioritized test cases that cover total faults

are: (1, 7), (1, 3) and (5, 1). the test cases (5,1) cover total faults

in minimum execution time of 20.7 units and out of ten, the

result (5,1) is six times, (1,7) and (1, 3) are two times each.

Genetic Algorithm gives the optimum result 60% times

Example 3

The railway reservation test cases are run ten times and the

results are recorded and the prioritized test cases that cover total

faults are: (6,2,3,4), (10,2,3,4), (2,1,3,4) and (3,9,4,2). The test

cases (2,1,3,4) cover total faults in minimum execution time of

54.00 units and out of ten, the result (2,1,3,4) is five times,

(6,2,3,4), and (10,2,3,4) are two times each and (3,9,4,2) is one

time. Genetic Algorithm gives the optimum result 50% times.

Example 4

The triangle problem test cases are run ten times and the results

are recorded and the prioritized test cases that cover total faults

are: (5,10), (2,5), (8,5) and (9, 5). the test cases (2,5) cover total

faults in minimum execution time of 7.00 units and out of ten,

the result (2,5) is six times, (8,5) is two times and (5,10) and

(9,5) is one time each. Genetic Algorithm gives the optimum

result 60% times.

 Example 5

The quadratic equation problem test cases are run ten times and

the results are recorded and the prioritized test cases that cover

total faults are: (3,10,7) and (2,7,9). Both the test cases cover

total faults in minimum execution time of 11.00 units and out of

ten, the result (3,10,7) is six times and (2,7,9) is four times.

Since, both the test cases cover total faults in minimum

execution time, therefore, Genetic Algorithm gives the optimum

result 100% times.

Five examples had been run for ten times each using Genetic

algorithm and the percentage of optimum results obtained are

summarised in table 6.

 Table 6. Summary table of all the examples

 Efficiency= 100*
ln sumberofruntota

timumrunsnumberofop

Exa

mpl

e

No.

No.

of

test

cases

No.

of

fault

s

Optim

al GA

order

No.

of

runs

Optim

um

Runs

efficien

cy

1

 9

 5

6,8

10

6

60%

2

 40

 10

5,1

10

6

60%

3

 26

 10

2,1,3,4

10

5

50%

4

 17

 6

2,5

10

6

60%

5

 19

 9

3,10,7

10

10

100%

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.8, October 2011

36

4.8 Comparison

In this section, the fault based testing is compared with

respect to the following prioritization: No order,Random

Order, Reverse order, optimal order of the test cases.

These approaches are compared by calculating Average

Percentage of Faults Detected (APFD) [8] which is given

by the equation 1 and figure 2-6 plots the APFD.

APFD= n
nm

TFmTFTF
2/1

.....21
1 


 (1)

Where, T - The test suite under evaluation;

m - The number of faults contained in the program under

test P;

n - The total number of test cases;

TFi - The position of the first test in T that exposes ith

fault.

 Table 7. Representing APFD values

 Fig. 2. APFD for example 1 of total fault coverage

 Fig. 3. APFD for example 2 of total fault coverage

 Fig. 4. APFD for example 3 of total fault coverage

 Fig. 5. APFD for example 4 of total fault coverage

 Fig. 6. APFD for example 5 of total fault coverage

5. CONCLUSION

The algorithm has been proposed to prioritize test cases

using Genetic Algorithm. Here, total fault coverage with

in time constrained environment on different examples is

used for prioritization of test cases and their finite

solution is obtained. Through Genetic Algorithm

technique, an approach has been identified to find a

suitable population, which was further formulated by GA

operations to make it more flexible and efficient. The

elaborations of results are shown with the help of APFD

metrics. The APFD has been calculated to evaluate the

usefulness of the proposed algorithm. The algorithm has

been automated and are analysed for various examples.

The algorithms implemented are used only for an integer

input. In future, it has to be developed for string input

variable so we can generate and prioritize test cases for

any input value.

Technique

Exam
ple 1

APFD

%

Example
2

APFD

%

Exampl
e 3

APFD

%

Exampl
e 4

APFD

%

Example
5

APFD %

No Order 77 46 92.32 89.2 88

Random

Order

58 62 78.5 84.3 84.5

Reverse
Order

71 62 52.72 84.3 90.4

Optimal

Order

80 62 92.32 96.1 91

GA Order 80 62 93.5 95.1 93.8

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.8, October 2011

37

6. REFERENCES
[1] Clarke. J., Dolado, J. J., Harman, M., Hierons, R. M.,

Jones, B. and M. Shepperd, Reformulating, “Software

Engineering as a Search Problem,” IEEE Proceedings -

Software, vol.150, No.3, 2003, pp. 161-175.

[2] Dick, R.P. and Jha, N.K. “MOGAC: A

multiobjective genetic algorithm for the co-synthesis of

hardware-software embedded systems,” IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol.17, No. 10, Oct. 1998, pp. 920-

935.

[3] li, W. “using genetic algorithm for network intrusion

detection”, Masters project report, 2002.

[4] gorodilov, A. and morozenko, V. “Genetic algorithm

for finding key‟s length and cryptanalysis of the

permutation cipher,” International journal of information

theories and applications, vol. 15, 2008.

[5] kamble, A. “Incremental clustering in data mining

using genetic algorithm,” International journal of

computer theory and engineering, vol.2, no.3, June 2010,

pp. 1793-8201.

[6] Cernic, S., Jezierski, E., Britos, P., Rossi, B. and

García Martínez, R. “Genetic algorithm applied to robot

navigation controller”.

[7] Rothermel, G., Untch, R., Chu, C. and Harrold, M.

J. “Test case prioritization: An empirical study”, In

Proceedings ICSM 1999, Sept. 1999, pp. 179–188.

[8]Wong, W. E., Horgan, J. R., London, S. and Agrawal,

H. “A study of effective regression testing in practice”,

In Proceedings of the Eighth International Symposium

on Software Reliability Engineering, November 1997 ,

pp. 230– 238

[9] Rothermel, G., Untch, R., Chu, C. and Harrold, M.

J. “Prioritizing test cases for regression testing”, IEEE

Transactions on Software Engineering, vol. 27, No.10,

October 2001, pp.929–948.

[10]MicrosoftCorporation.Regressiontesting.http://msdn.

microsoft.com/library/default.asp?url=/library/enus/vsent

7/html/vxconregressiontesting.asp.

[11] Elbaum, S., Malishevsky, A. G. and Rothermel, G.

“Test case prioritization: A family of empirical studies”,

IEEE Transactions on Software Engineering, vol.28, No.

2, 2002 , pp.159–182.

[12] Srivastava, A. and Thiagarajan, J. “Effectively

prioritizing tests in development Environment, in

Proceedings of the ACM SIGSOFT international

symposium on Software testing and analysis, USA, 2002,

pp. 97–106.

[13] Kim, J.M. and Porter, A. “A history-based test

prioritization technique for regression testing in resource

Constrained environments”, In Proceedings of the 24th

International Conference on Software Engineering, 2002

, pp. 119–129.

[14] Li, Z., Harman, M. and Hierons, R. M. “Search

Algorithms for Regression Test Case Prioritization”,

IEEE Transactions on software Engineering, vol.33,

No.4, April 2007, pp. 225-237.

[15]Roubtsov,V. “Emma a free java code coverage tool”,

http://emma. sourceforge.net/index.html, March.2005.

[16]Mitchell, M. “An Introduction to Genetic

Algorithms”, MIT Press, USA, 1996.

[17]. Rothermel, G., Untch, R., Chu, C. and Harrold,

M. J. “Prioritizing Test Cases for Regression Testing,”

IEEE Transactions on Software Engineering, October

2001, vol. 27, no. 10, pp. 929-948.

[18].Aggarwal, K.K. and Singh, Y. “A book on software

engineering”, New Age International (P) Ltd.;

Publishers, 4835/24, Ansari Road, Daryaganj, New

Delhi, 2001.

