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ABSTRACT 

Ultrasound imaging (US) is the most widely used and important 

imaging modality in medical domain. Due to certain artifact 

such as speckle, segmentation of US image has not remained a 

trivial task. Two stages segmentation process has been used in 

this paper to detect the solid mass (cancer) in breast US image. 

GLCM based texture feature image generation followed by local 

adaptive thresholding.  In first, Correlation, Variance, Sum 

variance and Sum average texture features for all angular 

relationships has been implemented on original image to obtain 

the feature images. In Second, adaptive local thresholdinig 

algorithm is applied recursively by dividing the feature image 

into nine sub-images and compared with the result of Otsu’s 

global thresholding technique. Results of our algorithm are 

better.       
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1. INTRODUCTION 
Ultrasound imaging (US) is very important medical imaging 

modality to examine the clinical problems. It has become more 

popular tool than its counterpart with its noninvasive and 

harmless nature to diagnose various abnormalities present in the 

human organs. Ultrasonography is relatively inexpensive and 

effective method of differentiating the cystic breast masses from 

solid breast masses. It is also fully established method      that 

gives the valuable information about the nature and extent of 

solid masses and other breast lesions [1], [2]. Segmentation of 

US images provides detection of desired region (e.g. defected 

organs, abnormal masses) and draws the boundary accurately 

around it. Due to some inherent characteristic artifacts such as 

attenuation, shadows and speckle noise, the process of 

segmentation of US images is quite difficult [3]. To acquire the 

accurate segmentation of US images, removal of speckle is an 

important task [4]. Texture is one of the important 

characteristics of an image, concerned with the spatial 

(statistical) distribution of the gray levels. In general, it provides 

vital information (structure) to identify the objects and area of 

interest in an image [5], [6]. Textural properties computed over 

image are specific to  

application domain [7]. In application, such as breast ultrasound 

imaging, it can be used to distinguish normal tissues from 

abnormal tissues [8], [9]. Gray Level Co-Occurrence Matrix 

(GLCM) was first proposed by Haralick [10] is one of the 

methods to analyze textural characteristics and calculate the 

texture feature.  

The other sections of this paper are organized as follows. In 

section II, formation of gray level co-occurrences matrix is 

discussed in detail and usefulness of the four texture features is 

proven. In section III, local adaptive thresholding technique is 

used on feature image to obtain the resultant segmented image. 

Conclusion is provided in section IV.     

2. GRAY LEVEL CO-OCCURRENCE 

MATRIX 
In this section, we formally describe and discuss the co-

occurrence matrices and four feature functions that are 

computed over them.  These features provides basis to 

discriminate between patterns present in an image, it further can 

be used in practical problems. Computation of all derived 

texture features are based on co-occurrence matrix. Construction 

of this matrix has depends on three important and closely related 

factors. These are, gray levels, spatial relationship between gray 

levels (i.e. distance d  between two neighboring gray levels,), 

and angular relationship between neighboring gray levels (i.e. 

horizontal (00), vertical (900), backward diagonal (450) and 

forward diagonal (1350)). In this paper, all the angular 

relationship has been considered with 1d to construct co-

occurrence matrices. Let I  be an image, which is two 
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dimensional matrix of size )( nXm containing finite number 

)(Ng of gray levels },,3,,2,1,0{ NgG  . G  has 

spread across horizontal and vertical spatial domain 

},{ NMD , },,3,,2,1{ mM  and

},,3,,2,1{ nN   Texture context information present 

in an image I  is completely represented by the matrix of 

unnormalized   relative frequencies Fij . This is the number of 

occurrence of pairs of two adjacent gray levels separated by 

distance d in an image, one with level i and other with level j. 

Fij for an angles quantized to 450 intervals and distance d  can 

be properly defined by:  
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 1

 Where # denotes the number of occurrence of pairs ),( ji  in 

the image.  

These matrices are symmetric in nature (i.e.

),(),( adFjiadFij   where d  is distance and a  is 

angular relationship). In this paper, we are using symmetric 

GLCM of normalized frequencies, ),,( jip  which is calculated 

on specified area.   

 2),(
F

Fij
jip 

 

Where ),( jip is normalize frequency entry at the gray level 

).,( ji Fij  is unnormalize frequency entry at the gray level 

),( ji , F  is maximum possible frequency entry of 

neighboring gray level pairs in the GLCM. ( e.g. for 3x3 image,  

vertical and horizontal direction with d =1 value of  F  is 12 

forward diagonal and backward diagonal with d =1 value of F
is 8).  

Texture is the property of the region as texture of a point is not 

possible to calculate. Therefore we are considering the 3x3 

window to calculate the texture features on original image [11]. 

Haralick discussed 14 texture feature in his paper. We found 

four texture feature gives better result as compare to others. Four 

texture features have proved their importance in ultrasound 

image segmentation, are Correlation, Variance, Sum average 

and Sum variance. Co-occurrence matrix of the 3x3 window 

(region) is obtained and texture feature is calculated for this 

matrix, then value of texture feature is applied at the center. This 

process is repeated for entire image and feature image is 

obtained. Four texture features are described as follows.   
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Where, xyx  ,, and y are mean and standard deviation 

of co-occurrence matrix, row and column wise respectively. 

Using correlation feature, we are measuring the linear 

dependencies of gray levels. The abnormal (mass) regions in US 

images consist of mostly constant (homogeneous) gray levels 

plus some additive noise as compare to other regions of the 

image [3], [7]. Since noise samples are mostly uncorrelated, the 

correlation features for the abnormal region having less value as 

compared to normal region. Boundary between normal and 

abnormal region of a feature image is clear than original image. 

Original image and Correlation feature images for all angular 

relationship are shown in the Fig 1 and Fig.2 respectively. 
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 Where,   is mean of the co-occurrence matrix 
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For the course texture regions in an image, there will be more 

entries of smaller magnitude in the co-occurrence matrix as 
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compared to fewer entries of larger magnitude for smooth 

region. Entries for smooth region are concentrated along the 

diagonal of the co-occurrence matrix. Variance and Sum 

variance feature give greater values for homogenous region as 

compared to non-homogenous region to be entered at center of 

the image. Therefore, these features have great ability to 

discriminate between the homogeneous and non-homogeneous 

region. Feature image of Variance and Sum variance is shown in 

Fig.3 and Fig.4 respectively.    
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Sum average feature is focusing on the values around the 

diagonal of the co-occurrence matrix. Feature value of brighter 

homogeneous region is greater than the darker homogeneous 

region. This feature removes the noise but blur the boundary 

between defected and normal region [12]. The feature image 
obtained is brighter than the original image and shown in Fig.4.         

 

Fig 1: Original ultrasound image with abnormal mass 

present in the middle 

 

Fig 2: Correlation Feature : (a) 00 relationship (b) 450 

relationship (c) 900 relationship (d) 1350 relationship 

 
Fig 3: Variance Feature: (a) 00 relationship (b) 450 

relationship (c) 900 relationship (d)   1350 relationship 

 
Fig 4: Sum Variance Feature: (a) 00 relationship (b) 450 

relationship (c) 900 relationship (d) 1350 relationship 
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Fig 5: Sum Average Feature: (a) 00 relationship (b) 450 

relationship (c) 900 relationship (d)   1350 relationship   

3. LOCAL  ADAPTIVE  THRESHOLDING 
Threshlding technique has a tremendous potential to 

discriminate between objects (area of interest) and background 

in a given image. It is widely used tool for image segmentation, 

due to its responsive properties, simplicity of implementation 

and computational speed. Thresholding can be categories as bi-

level and multilevel [13]. In bi-level, only one threshold has 

been used to discriminate between object and background gray 

levels. In multilevel, multiple thresholds are used and gray 

levels are grouped accordingly. Global thresholding works well 

when there is clear valley between the modes of histogram 

related to object and background. N.Otsu’s [14] method is based 

on the computation performed on the histogram of an image. It 

gives the optimum global threshold, which is used to maximize 

the inter class variance and obtained the well separated classes 

in terms of their intensity values. It gives poor performance 

(over segmentation) for images where bad illumination and 

random distribution (texture) of gray levels is present. It is 

indeed a challenge to segment such images using thresholding 

techniques [15], [16].   Local adaptive thresholding is the 

solution for such kind of images [17]. We have implemented 

and tested Otsu threshold on all feature images for 
00  

relationship and superimpose segmentation result is shown in 

Fig.6.        

In this section, local adaptive thresholding technique has been 

used on feature ultrasound images, which are   acquired in the 

first phase. To implement the adaptive thresholding, feature 

image needs to be divided into sub-images. Selection of the 

optimum number of sub-images is specific to content of US 

image. Therefore selection of number of sub-images involves a 

trade-off between removal of normal tissue region and retaining 

edge and tissues of abnormal region in an image. In this paper 

we are dividing feature image in to 9 sub-images (3 rows and 3 

colums). Following algorithm is applied on all feature images 

with all angular relationship and results are obtained. 

Superimpose segmentation results for all feature images are 

shown in Fig.7, Fig.8, Fig.9 and Fig.10.    

Thresholding Algorithm: 

1. Divide feature image into finite set of sub-images  
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2. Select an initial threshold iT  randomly  for the sub-

image },,3,2,1{ AiwhereSi   

3. Divide the gray levels of sub-image iS  using iT in to 

two groups, 21 GandG  : 
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4. Compute the average (mean) intensity values 1m
 
and 

2m  for the gray levels in 1G and 2G respectively 

5. Compute new threshold value: 

2

21 mm
Ti


  

6. Repeat step 3 through 5 until the difference between 

values of iT  in successive iteration is smaller than 

predefined parameter iT   

7. Apply threshold iT
 
on sub-image iS : 
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8. Repeat step 2 through 7 for complete set S  

9. If any sub-image iS  is not threshold properly then 

repeat step 1 through 8 on only image iS  
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Fig 6: Global thresholding using Otsu’s threshold for 00 

relationship (a) Correlation (b) Sum average, (c) Variance  

(d) Sum variance 

 

Fig 7: Correlation: (a) 00 relationship, (b) 450 relationship, 

(c) 900 relationship (d) 1350 relationship 

 

Fig 8: Variance: (a) 00 relationship, (b) 450 relationship, (c) 

900 relationship (d) 1350 relationship 

 

Fig 9: Sum Variance: (a) 00 relationship, (b) 450 relationship, 

(c) 900 relationship (d) 1350 relationship  
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Fig 10: Sum Average: (a) 00 relationship, (b) 450 

relationship, (c) 900 relationship (d) 1350 relationship 

4. CONCLUSION  
In this paper, we have presented two stage segmentation method 

applied to the US image for breast cancer detection. In the 

proposed method, first, Haralick’s texture feature are used to 

characterized and distinguish between breast lesions and normal 

tissue region. It also makes the edge prominent between normal 

and abnormal tissue region. Then, adaptive thresholding draws 

the boundary between the same and gives the proper segmented 

image. We perform experimentation using GLCM and texture 

features on US image. In acquired feature images, the boundary 

gray levels, which are slightly brighter, are merged with the 

darker gray levels of the defected region. Over segmentation is 

the problem with Otsu global thresholding, when it applied to 

these feature images shown in Fig 6. The recursive local 

adaptive thresholding, shown in Fig 7,8,9 and 10 gives good 

results and also easy to implement (less complex) as compared 

to Otsu thresholding. To select appropriate threshold T
 
the 

value of T  in local adaptive thresholding is zero in ideal 

case, but it would be computationally inefficient, therefore we 

are using value closer to zero (i.e. T =0.0001).  According to 

the medical experts the result of the Correlation, Variance and 

Sum variance features is almost similar except Sum average 

feature.      
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