International Journal of Computer Applications (0975 — 8887)

Volume 32— No.4, October 2011

Histogram based Analysis of Page Replacement
Techniques

Ruchin Gupta
IT Deptt. , Ajay Kumar Garg
Engg. College, Ghaziabad

ABSTRACT

Modern operating systems use virtual memory concept because
of its advantages but they use different page replacement
techniques .An efficient page replacement technique is required
S0 as to produce minimum number of page faults. Some of the
page replacement techniques are FIFO, LRU, OPTIMAL
etc.Optimal has been proven to be best producing minimum
number of page faults .LRU approximates optimal. Considerable
research has been done to evaluate theses policies and to
develop new ones based on recency, frequency, token, and
locality model parameters etc.This paper uses a histogram based
approach to compare FIFO, LRU, LRU2, OPTIMAL policies.
Simulation results show that histograms for all policies equalize
as the number of frames increases. Also histogram for optimal
policy equalizes more rapidly then other policy’s histograms.
Also pages of large frequency of occurrences contribute much to
the total number of page faults in both LRU and optimal page
replacement algorithms.

General Terms
Operating system, virtual memory, simulation of page
replacement techniques.

Keywords
Operating system, virtual memory, page fault, page replacement
techniques, histogram, and matlab.

1. INTRODUCTION

Operating system acts as an interface between user and
hardware resources of a computer system [1]. Two purpose of
an OS are to provide a convenient interface to the user and
efficient utilization of computer resources. Operating system is
also known as a resource manager. It performs process
management, 1/O management, memory management, file
management etc. Since memory in computer is very important
for program execution, so it is very necessary to manage
memory especially main memory efficiently. Now a days,
almost all operating systems are multiprogramming.

The multiprogramming puts more than one program in memory
to be executed simultaneously through CPU scheduling .Now
for the programs bigger than main memory, earlier operating
systems were using the concept of overlay drivers but it was not
efficient, then after virtual memory concept came in to
existence. Virtual memory is a technique which provides an
illusion to a user having a very large amount of main memory
available [2].1t allows for program execution even the program
is partially there in memory. In most of the operating systems
virtual memory in implemented by demand paging. There are
several advantages of using this concept like less 1/O etc.

The principles behind virtual memory are as follows:

1. Load as much as possible of the process into actual/physical
memory;

2. Keep a copy of the complete process (its memory image) in a
disk file; this is called the swap file.

3. The virtual memory manager (in the kernel) organizes the
process's (virtual) memory into chunks called pages; pages are
normally of 512, 1024, 2048 or 4096 bytes. Some pages are in
main memory, others are not, but all are in the swap file.

4. 1f in 1, only part of the process could be loaded, the process
may run fine for a while. In this situation, the memory manager
has nothing to do. All needs to be done is that the hardware that
supports virtual memory management does appropriate address
translation.

However, at some stage, the process will try to access a memory
address that is not in physical memory. This is called a page
fault. When a page fault occurs, the memory manager must read
in from the swap file the page that is needed. This is not a happy
situation for a process; reading a disk file takes a minimum of
10-millisec, while reading memory takes only 10-
nanosec.However, where to put it. Which of the currently in
memory page to replace if there is no space in memory? That is
the subject of page replacement policy. There are various page
replacement policies like FIFO, OPTIMAL, LRU etc.

It is well-known, however, that there are many situations where
LRU behaves far from optimal [3].LRU based on recency and
frequency has been implemented in cache replacement policy
hence been proved to be better than simple LRU [4].

2. BASIC DEFINITIONS

2.1 Firstin, First out (FIFO)

With first-in-first-out, when a page is needed, the page that has
been in memory for the longest period of time is chosen. The
rationale is that a page that has only recently been swapped in
will have a higher probability of being used again soon.
However a frequently used page still gets swapped out when it
gets to be old enough, even though it will have to be brought in
again immediately.

2.2 Least Recently Used (LRU)

Least recently used page replacement policy is based on the
assumption that the page reference pattern in the recent past is a
mirror of the pattern in the near future. Pages that have been
accessed recently are likely to continue to be accessed and ought
to be kept in physical memory. An allocated memory page of a
program will become a replacement candidate if the page has

not been accessed for a certain period of time under two
conditions: (1) the program does not need to access the page;
and (2) the program is conducting page faults (a sleeping
process) so that it is not able to access the page although it might
have done so without the page faults. However, LRU page re-
placement implementations do not discriminate between two
types of LRU pages and treat them equally [5]. So it means that
LRU can be made closer to optimal policy by making
improvement in to that.

2.3 Optimal method

This policy selects a page for replacement which will be used
after the longest period of time .Since this requires future
knowledge of the reference string, this can not be implemented
in the system. Hence this policy is used for comparative study
only.

2.4 LRU k method

LRU k [6] method has been successfully applied in database
disk buffering and has been shown to be better than LRU. Also
LRU 2 has been found to be best for k=2. As per this policy
LRU is a special case of LRU k where k=1.

The LRU-K Algorithm specifies a page replacement policy
when a memory frame is needed for a new page requested: the
page p to be dropped (i.e., selected as a replacement victim) is
the one whose Backward K-distance bt(p,K) is the maximum of
all pages in memory. The only time the choice is ambiguous is
when more than one page has bt(p,K) = oo.In this case, a
subsidiary policy may be used to select a replacement victim
among the pages with infinite Backward K-distance; for
example, classical LRU could be employed as a subsidiary

policy.

2.4.1 Backward K-distance bt(p,K)
Given a reference string known up to time t, r1, r2. . . rt, the
backward K-distance bt(p,K) is the distance backward to the Kth
most recent reference to the page p:
bt(p,K) = x, if rt-x has the value p and there have been exactly
K-1 other values i with t-x<i<=01t,
where ri = p,

= oo, if p does not appear at least K times in rl, r2.. . rt

2.5 Memory Reference Pattern Plot

Memory reference plot show how page numbers are being used
as the application executes. X axis shows the progress of time
while Y axis shows which page numbers are used at different
times during the execution of an application. It shows the
memory access pattern of an application during execution of that
particular application.

2.6 Histogram

Histogram has been very popular in digital imaging and other
subjects. A histogram for any given data set shows the
frequency of occurrences of every element in the given data set.
It gives a clear idea about high frequency element and low and
medium frequency elements for a given data set (Data set
contains similar kind of data in the given data set).

3. SIMULATOR

The proper choice of a page replacement algorithm is actually
quite a complex matter. To make the proper choice, we must

International Journal of Computer Applications (0975 — 8887)
Volume 32— No.4, October 2011

know something about real applications. How do they really
access memory? Do they generate many page accesses in order?
To answer these questions, we must see what real applications
do.

In this, paper evaluates how real applications respond to a
variety of page replacement algorithms. Modifying a real
operating system to use different page replacement algorithms is
quite a technical mess, so it will make this by simulation. We
write a program that simulates the behavior of a memory system
using a variety of page replacement algorithms. We obtain
memory traces from real applications so that we can evaluate
algorithm properly.

Here the purpose is to build a simulator that reads a memory
trace and simulates the action of a virtual memory system with a
single level page table in single programming model. The
simulator keeps track of what pages are loaded into memory. As
it processes each memory event from the trace, it should check
to see if the corresponding page is loaded. If not, it should
choose a page to remove from memory. Assume that all pages
and page frames are 4 KB etc.

It implements different page replacement algorithms such as
LRU and OPTIMAL, FIFO, LRU2. The simulator is written in
plain C in MS-DOS environment

It assumes that reference string is containing six thousands
references stored in an array. Numbers of frames are varied and
no of page faults are calculated. Reference strings of different
applications are taken as input and numbers of page faults are
calculated and graphs are plotted in MS-EXCEL between no of
frames vs. no of page faults. Also MATLAB is used to plot
memory reference pattern plot for different applications and to
plot histograms for page fault behavior of different application.

3.1 Memory Traces

Each trace obtained from Internet is a real recording of a
running program, taken from the SPEC2000 benchmarks. Real
traces are enormously big having billions and billions of
memory accesses. However, a relatively small trace will be
more than enough. Each trace only consists of one million
memory accesses taken from the beginning of each program.
Traces are gcc.trace.gz , swim.trace.gz , bzip.trace.gz.

Each trace is a series of lines, each listing hexadecimal memory
addresses followed by R or W to indicate a read or a write. For
example, gcc.trace trace starts like this:

0041f7a0 R 13f5e2c0 R 05678900 R 00475820 R
4. SIMULATION RESULTS

In all the tables, numbers of page faults are shown for various
numbers of frames for various page replacements techniques. It
assumes the page size of 4KB and reference string of size six
thousand.

http://www.cse.nd.edu/~dthain/courses/cse341/spring2005/projects/memory/gcc.trace.gz
http://www.cse.nd.edu/~dthain/courses/cse341/spring2005/projects/memory/swim.trace.gz

International Journal of Computer Applications (0975 — 8887)
Volume 32— No.4, October 2011

Table 1 (Using swim application)

o of | Mo of | Mo of o of
Page | Page | Page Page
faults | faults | faults faults
MNo of |using |using | using using FIFO/ LRU! LRUZ
frames | FIFO LRU LRU2 OPTIMAL | OPTIMAL | OPTIMAL | /OPTIMAL
5] 2540 2155 2069 1574 | 1613723 1.368123 1.314485
10 1949 1750 1186 939 | 2075612 1.863685 1.263046
15 1558 1247 359 a72 | 2723776 218007 1.501748
20 1102 820 505 361 | 3052632 | 2271468 1.398892
25 754 472 395 247 | 3052632 1.910931 1.59919
30 587 320 295 190 | 3.089474 1.6684211 1.552632
35 489 253 256 156 | 2.942308 1.621795 1.641026
40 372 212 230 1358 | 2.695B52 1.536232 1.66EERY
45 318 187 208 126 252381 1.484127 1.650794
50 261 165 157 117 | 2.2307E69 1.418803 1.505291
55 236 149 174 12| 2107143 1.330367 1.5663571
B0 205 141 161 107 | 1.915888 1.317757 1.504E73
B5 184 133 153 105 | 1.752381 1.2666E7 1.457 143
70 172 124 139 105 | 1.638095 1.180952 1.32381
75 155 118 137 105 1.47619 1.12381 1.304762
80 150 116 131 105 | 1.428571 1.104762 1.247619
85 140 113 123 105 | 1.333333 1.076149 1.171429
90 134 111 114 105 1.27619 1.057 143 1.085714
95 132 107 112 105 | 1.257143 1.015048 1.066B67
100 122 106 107 105 | 1.161905 1.009524 1.015048
105 105 105 105 105 1 1 1
110 105 105 105 105 1 1 1
15 105 105 105 105 1 1 1
Table 2 (Using gcc application)
o of o of Ma of
Fage Page Fage
fFault= faults fFault= Ho of Fage
=itz usitg REE=T Y= Faults vsing
™Mo of FIFO LRI LRIT2 OPTINMAL FIFOs LRI LRU2
fraimes (Seriesl) (Sexries2) (Series3) (Seriesd) OPTIMAL OPTIR AL SOPTIRMAL
=S 1709 1419 141 1067 1 &01637 1 Z2O0E0F 1 =52 521 1
10 12=6 1054 1024 FEa 1. 6703 1. A0=2719 1 AreEs0
15 EEN Bl Erard &1= 1620085 1. 431373 1. 5096405
=0 =27 S FF0 =22 B3] 1 50376 1_ 447 Z6S 1 E57E0 S
=5 o6 14 TED ErE] 1. 700Es5 1. 52561 1. 625207
=0 53 &7 1 =ke] a4z = 1. 72012 1. 586288 1. 63220
=5 T2 2T) =Y 1 ==0203 1 Es32El S 1 67 1E7 5
=10 aa 1l S=E0 525 =50 1.=24123a 1.61 5599 1. &a51=11
a5 Gle =30 57 =6 1. 233333 1. 577321 1 7O0E3=3
S0 57T 405 525 1= 1.21 4455 1. 556604 1. 650043
S5 San 5= S01 =07 1. 52249104 1. 5249975 1. éas51922
&0 s==] ElE] =N 1.=11 == 1. 4491552 1. 626263
&5 S0 T 458 =) 1. 72E027 1. A452904 1. SE2aA9 S
o =S =H & <2 22T 1. ax322927F 1.41 46354 1. 540077
75 455 =N E] =) 1.61347 5 1. =7 == 1. 50709
=0 Y] =72 410 27T 1. 588 a8 1. 342596 1.512635
=5 iy e =Han0 2T 1. 55585824 1. 3132555 1. A470555E
[=la] E=E] =5 =03 =67 1. a9 a3z 1. 202155 1. a7 191
=5 =Y 3= =0 &2 1. 503817 1. 200076 1. 450382
100 =71 =11 pEpr] i 1. G435 1. 210117 1. 97471
105 =61 =26 E=) =52 1. a9=2 54 1. 293651 1. a=650%
110 54 =06 5= =7 1. 433108 1. Z3=saa 1. A440 303
115 =50 R =51 T 1 A2 2 Fe 1 =11==2 (=T =]
1=0 =46]] =6 1. 90650 1191057 1. 304309
125 St =] =37 T 1. 30837 1. 174797 1. 369919
1m0 = == T =i T 1 =0 A=E00 1 1aBa6 7 1 52026
1=5 =0 =26 == =6 1. 572049 1162602 1 =1707=
10 =56 283 =10 EET 1 SasEsa 1. 150407 1. 2o TaE

International Journal of Computer Applications (0975 — 8887)

Volume 32— No.4, October 2011

[X:

T

Figure 1 (for swim application)

Figure 2 (for gcc application)

Figure 3 (for bzip application)

1L

‘X, '[' '”I.

Figure 4 (memory reference
pattern plot using swim app.)

Figure 5(memory reference
pattern plot using gcc app.)

Table 3 (using bzip application)

Figure 6 (memory reference
pattern plot using bzip app.)

Mo of
Mo of FPage Mo of Mo of
Page faults Page Page
faults uszing faults faultsz
using LRU using using
Mo of FIFO LRU2 OPTIMAL | FIFOY LRU/ LRUZ2

frames [(Series1) | (Series2) | (Series3) | (Seriest) | OPTIMAL | OPTIMAL | /OPTIMAL
i) 416 342 362 287 1. 4006573 1.151515 1.218855
10 290 270 295 233 1.244535 1.158798 1.266094
15 255 240 270 206 [1.252427 1.165049 1.31068
20 244 231 265 196 1.2443398 1.178571 1.352041
25 237 226 255 189 1.253968 1.195VE7 1.349208
30 229 216 244 184 [1.244565 1.173913 1.326087
35 223 213 235 179 1.24581 1.1585994 4 1.329609
40 221 209 234 174 | 1.270115 1.201149 1.344828
45 210 202 228 171 1.22807 1.181287 1.332181
50 208 199 223 171 1.216374 1.163743 1.304054
55 205 196 214 171 1.19383 1.145199 1.251462
B0 203 192 210 171 1.1687135 1.122807 1.22807
B5 195 190 207 171 1.157 895 1.111111 1.210528
70 197 190 204 171 1.152047 1111111 1.192932
75 191 1858 201 171 1.116359 1.0959415 1.175439
g0 183 187 200 171 1.099415 1.093567 1.169591
85 186 186 195 171 1.0687718 1.0877189 1.157 335
90 185 1584 194 171 1.0815871 1.076023 1.134503
a5 185 182 120 171 1.0815871 1.064327 1111111
100 185 181 190 171 1.081571 1.05548 1111111
105 183 180 184 171 1.070175 1.052632 1.076023
110 182 179 183 171 1.064327 1.046754 1.070175
115 182 178 181 171 1.064327 1.040936 1.05543

-

Figure 7 swim application memory reference
pattern plot in detail

Figure8 gcc application memory reference
pattern plot in detail

International Journal of Computer Applications (0975 — 8887)
Volume 32— No.4, October 2011

.""]""—'_ TSN TTT T i

| I | .

v
L

Figure 9 bzip application memory reference pattern plot in detail

Figure 10 (swim app. Histogram) Figure 11 (gcc app. histogram) Figure 12 (bzip app. Histogram)

4.1 Histograms for various applications’ page faults for different numbers of frames
4.1.1 swim application

LLLdy L) I |

Figure 13 using Iru, frames =5 Figure 14 using Iru, frames =15 Figure 15 using Iru, frames =50

i) pamiemy panii

Figure 16 using optimal, frames =5 Figure 17 using optimal, frames =15 Figure 18 using optimal, frames =50

4.1.2 For gcc application

|
Ll | | .] ll)

Figure 19 using Iru, frames =5 Figure 20 using Iru, frames =15 Figure 21 using Iru, frames =50

International Journal of Computer Applications (0975 — 8887)

Volume 32— No.4, October 2011

" ol

\l

Figure 22 using optimal, frames =5

4.1.3 For bzip application

Figure 23 using optimal, frames =15

Figure 24 using optimal, frames = 50

i ot | i

|

Figure 25 using Iru, frames =5

Figure 26 using Iru, frames =15

Figure 27 using Iru, frames =50

| | |

Figure 28 using optimal, frames =5

5. OBSERVATIONS FROM
SIMULATION RESULTS

Here we define a new term named as per page fault factor for
the analysis. Per page fault factor for any policy defines the
ratio of number of page faults for that policy and the number
of page faults in optimal policy for the same application. If
this factor is always decreasing for increasing number of
frames then that policy behaves more closely with optimal
policy. So in tables, factors FIFO/OPTIMAL,
LRU/OPTIMAL, LRU2/OPTIMAL define per page fault
factors for FIFO, LRU, LRU2 policies. Also for any policy, if
this factor decreases more rapidly then that policy is better. So
this factor gives deviation from optimal policy in terms of
page faults.

Also from figur4, which shows the memory reference pattern
plot for swim application, pattern appears to be quite stable.
Also from table2 for gcc application & table3 for bzip
application ,conclusions are same for FIFO and LRU2
described in the above paragraph except the fact that per page
fault factor is always more then LRU for gcc and bzip
application. From figure 8&9, it is clear that LRU2 performs
better & close to optimal when pattern is more stable. Patterns
in 8 &9 are not as stable as pattern for swim application in
figure4.

Figure 10, 11, 12 shows histograms for the reference strings
of 3 applications swim, gcc, and bzip applications
respectively. From figure 10,11, 12 it is clear that few pages
are used very heavily while few pages are used very rarely .It
is clear from figure 10 page numbers near 100000 have very
high frequency of occurrences .Also these page numbers are
being used quite stably over a uniform pattern which is
confirmed from figure 4, 7.

Figure 29 using optimal, frames =15 Figure 30 using optimal, frames =50

Also from figure 13, 14, 15, it is clear that as no of frames
increase for LRU, page faults occur on same pages but with
less frequency .Also as no of frames increases, LRU equalizes
no of page faults for different pages.

From figure 25, 26, 27, it is clear that for 5 frames LRU
generates largest no of page faults for pages of highest
frequency of occurrence. Also for LRU, as no of frames
increases, the pages on which higher no of page faults occur
change. The same is true for optimal policy in figure 28, 29,
30.

In figure 13 , largest no of page faults are not generated for
highest frequency of occurrence page numbers .Also from
figure 13,14,15 it is concluded that as the no of frames
increases , the pages on which higher no of page faults occur
change .The same is true for optimal policy in figure 16,17,18.

From figure 19, 20, 21,22,23,24 it is clear that both LRU and
Optimal generates largest no of page faults for pages not
having highest frequency of occurrence. Also in both, as no of
frames increases the pages on which largest no of page faults
occur remain almost same.

From figure 16, 17, 18 (Histogram for page faults for
optimal), It is clear that optimal also equalizes the no of page
faults as no of frames increases but in a better way than LRU.

6. CONCLUSION

This paper studies Iru and optimal with respect to frequency
of page faults on different pages .It compares Iru and optimal
using histogram approach. Selected applications swim, gcc,
bzip show different memory access pattern .Swim application
show quite table pattern of memory access. Also different
applications have different number of pages. Bzip application

exhibits more correlated access than swim and gcc
application.

It concludes that optimal and LRU both may and may not
generate largest no of page faults on page numbers of highest
frequency, depending upon memory reference access pattern.

Results show that as number of frames increases, both LRU,
Optimal generates page faults on almost same page numbers
with less frequency of page faults. For both LRU and Optimal
the no, of page faults on pages of higher frequency change
with no of frames.

It shows that page number of high frequency of occurrence
contribute much to the total number of page faults for LRU
policy. Also higher frequency page number’s contribution to
total number of page fault varies with the number of frame
present in main memory. The same applies to optimal policy.
It can be noted that pages of higher frequency of occurrence
contribute a good amount to the total no. of number of page
faults for both LRU and Optimal policies. Also in some cases,
contribution of highly frequent pages to total no of page fault
is less in optimal then LRU policy. It can be concluded that
histograms for both LRU and Optimal policies equalize as the
number of frames increases. Also histogram for optimal
policy equalizes more rapidly then LRU policy’s histograms.

This study can be quite useful for future designing of page
replacement techniques.

International Journal of Computer Applications (0975 — 8887)

Volume 32— No.4, October 2011

7. ACKNOWLEDGEMENTS

I am thankful to my wife Mrs. Vandana gupta and my guide
Prof. Navin rajpal for their support and cooperation.

8. REFERENCES
[1] Abraham Silberschatz, Peter Baer, 1999, Operating
System Concepts (5th Ed.).New York: John Wiley &

Sons, Inc.
[2] Peter J. Denning, Working Sets Past and Present, 1980
IEEE.

[3] Ben Juurlink, Approximating the Optimal Replacement
Algorithm, CF’04, April 14-16, 2004, ACM
1581137419/ 04/0004.

[4] Sedigheh Khajoueinejad, Mojtaba Sabeghi, Azam
Sadeghzadeh, A Fuzzy Cache Replacement Policy and its
Experimental Performance Assessment, 2006 IEEE.

[5] Song Jianga,, Xiaodong Zhangb,, Token-ordered LRU: an
effective page replacement policy and its
implementation in Linux systems, 2004 Elsevier.

[6] Elizabeth J. O'Neill, Patrick E. O'Neill, Gerhard
Weikum, the LRU-K Page Replacement Algorithm For
Database Disk Buffering, SIGMOD Washington, DC,
USA 1993 ACM.

