
International Journal of Computer Applications (0975 – 8887)

Volume 32– No.4, October 2011

1

Histogram based Analysis of Page Replacement

Techniques

Ruchin Gupta
IT Deptt. , Ajay Kumar Garg
Engg. College, Ghaziabad

ABSTRACT

Modern operating systems use virtual memory concept because

of its advantages but they use different page replacement

techniques .An efficient page replacement technique is required

so as to produce minimum number of page faults. Some of the

page replacement techniques are FIFO, LRU, OPTIMAL

etc.Optimal has been proven to be best producing minimum

number of page faults .LRU approximates optimal. Considerable

research has been done to evaluate theses policies and to

develop new ones based on recency, frequency, token, and

locality model parameters etc.This paper uses a histogram based

approach to compare FIFO, LRU, LRU2, OPTIMAL policies.

Simulation results show that histograms for all policies equalize

as the number of frames increases. Also histogram for optimal

policy equalizes more rapidly then other policy’s histograms.

Also pages of large frequency of occurrences contribute much to

the total number of page faults in both LRU and optimal page

replacement algorithms.

General Terms

Operating system, virtual memory, simulation of page

replacement techniques.

Keywords

Operating system, virtual memory, page fault, page replacement

techniques, histogram, and matlab.

1. INTRODUCTION
Operating system acts as an interface between user and

hardware resources of a computer system [1]. Two purpose of

an OS are to provide a convenient interface to the user and

efficient utilization of computer resources. Operating system is

also known as a resource manager. It performs process

management, I/O management, memory management, file

management etc. Since memory in computer is very important

for program execution, so it is very necessary to manage

memory especially main memory efficiently. Now a days,

almost all operating systems are multiprogramming.

The multiprogramming puts more than one program in memory

to be executed simultaneously through CPU scheduling .Now

for the programs bigger than main memory, earlier operating

systems were using the concept of overlay drivers but it was not

efficient, then after virtual memory concept came in to

existence. Virtual memory is a technique which provides an

illusion to a user having a very large amount of main memory

available [2].It allows for program execution even the program

is partially there in memory. In most of the operating systems

virtual memory in implemented by demand paging. There are

several advantages of using this concept like less I/O etc.

The principles behind virtual memory are as follows:

1. Load as much as possible of the process into actual/physical

memory;

2. Keep a copy of the complete process (its memory image) in a

disk file; this is called the swap file.

3. The virtual memory manager (in the kernel) organizes the

process's (virtual) memory into chunks called pages; pages are

normally of 512, 1024, 2048 or 4096 bytes. Some pages are in

main memory, others are not, but all are in the swap file.

4. If in 1, only part of the process could be loaded, the process

may run fine for a while. In this situation, the memory manager

has nothing to do. All needs to be done is that the hardware that

supports virtual memory management does appropriate address

translation.

However, at some stage, the process will try to access a memory

address that is not in physical memory. This is called a page

fault. When a page fault occurs, the memory manager must read

in from the swap file the page that is needed. This is not a happy

situation for a process; reading a disk file takes a minimum of

10-millisec, while reading memory takes only 10-

nanosec.However, where to put it. Which of the currently in

memory page to replace if there is no space in memory? That is

the subject of page replacement policy. There are various page

replacement policies like FIFO, OPTIMAL, LRU etc.

It is well-known, however, that there are many situations where

LRU behaves far from optimal [3].LRU based on recency and

frequency has been implemented in cache replacement policy

hence been proved to be better than simple LRU [4].

2. BASIC DEFINITIONS

2.1 First in, First out (FIFO)
With first-in-first-out, when a page is needed, the page that has

been in memory for the longest period of time is chosen. The

rationale is that a page that has only recently been swapped in

will have a higher probability of being used again soon.

However a frequently used page still gets swapped out when it

gets to be old enough, even though it will have to be brought in

again immediately.

2.2 Least Recently Used (LRU)
Least recently used page replacement policy is based on the

assumption that the page reference pattern in the recent past is a

mirror of the pattern in the near future. Pages that have been

accessed recently are likely to continue to be accessed and ought

to be kept in physical memory. An allocated memory page of a

program will become a replacement candidate if the page has

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.4, October 2011

2

not been accessed for a certain period of time under two

conditions: (1) the program does not need to access the page;

and (2) the program is conducting page faults (a sleeping

process) so that it is not able to access the page although it might

have done so without the page faults. However, LRU page re-

placement implementations do not discriminate between two

types of LRU pages and treat them equally [5]. So it means that

LRU can be made closer to optimal policy by making

improvement in to that.

2.3 Optimal method
This policy selects a page for replacement which will be used

after the longest period of time .Since this requires future

knowledge of the reference string, this can not be implemented

in the system. Hence this policy is used for comparative study

only.

2.4 LRU k method
LRU k [6] method has been successfully applied in database

disk buffering and has been shown to be better than LRU. Also

LRU 2 has been found to be best for k=2. As per this policy

LRU is a special case of LRU k where k=1.

The LRU-K Algorithm specifies a page replacement policy

when a memory frame is needed for a new page requested: the

page p to be dropped (i.e., selected as a replacement victim) is

the one whose Backward K-distance bt(p,K) is the maximum of

all pages in memory. The only time the choice is ambiguous is

when more than one page has bt(p,K) = ∞.In this case, a

subsidiary policy may be used to select a replacement victim

among the pages with infinite Backward K-distance; for

example, classical LRU could be employed as a subsidiary

policy.

2.4.1 Backward K-distance bt(p,K)
Given a reference string known up to time t, r1, r2. . . rt, the

backward K-distance bt(p,K) is the distance backward to the Kth

most recent reference to the page p:

bt(p,K) = x, if rt-x has the value p and there have been exactly

K-1 other values i with t - x < i <=t ,

where ri = p,

 = ∞, if p does not appear at least K times in r1, r2. . . rt

2.5 Memory Reference Pattern Plot
Memory reference plot show how page numbers are being used

as the application executes. X axis shows the progress of time

while Y axis shows which page numbers are used at different

times during the execution of an application. It shows the

memory access pattern of an application during execution of that

particular application.

2.6 Histogram
Histogram has been very popular in digital imaging and other

subjects. A histogram for any given data set shows the

frequency of occurrences of every element in the given data set.

It gives a clear idea about high frequency element and low and

medium frequency elements for a given data set (Data set

contains similar kind of data in the given data set).

3. SIMULATOR
The proper choice of a page replacement algorithm is actually

quite a complex matter. To make the proper choice, we must

know something about real applications. How do they really

access memory? Do they generate many page accesses in order?

To answer these questions, we must see what real applications

do.

In this, paper evaluates how real applications respond to a

variety of page replacement algorithms. Modifying a real

operating system to use different page replacement algorithms is

quite a technical mess, so it will make this by simulation. We

write a program that simulates the behavior of a memory system

using a variety of page replacement algorithms. We obtain

memory traces from real applications so that we can evaluate

algorithm properly.

 Here the purpose is to build a simulator that reads a memory

trace and simulates the action of a virtual memory system with a

single level page table in single programming model. The

simulator keeps track of what pages are loaded into memory. As

it processes each memory event from the trace, it should check

to see if the corresponding page is loaded. If not, it should

choose a page to remove from memory. Assume that all pages

and page frames are 4 KB etc.

It implements different page replacement algorithms such as

LRU and OPTIMAL, FIFO, LRU2. The simulator is written in

plain C in MS-DOS environment

It assumes that reference string is containing six thousands

references stored in an array. Numbers of frames are varied and

no of page faults are calculated. Reference strings of different

applications are taken as input and numbers of page faults are

calculated and graphs are plotted in MS-EXCEL between no of

frames vs. no of page faults. Also MATLAB is used to plot

memory reference pattern plot for different applications and to

plot histograms for page fault behavior of different application.

3.1 Memory Traces
Each trace obtained from Internet is a real recording of a

running program, taken from the SPEC2000 benchmarks. Real

traces are enormously big having billions and billions of

memory accesses. However, a relatively small trace will be

more than enough. Each trace only consists of one million

memory accesses taken from the beginning of each program.

Traces are gcc.trace.gz , swim.trace.gz , bzip.trace.gz.

Each trace is a series of lines, each listing hexadecimal memory

addresses followed by R or W to indicate a read or a write. For

example, gcc.trace trace starts like this:

0041f7a0 R 13f5e2c0 R 05e78900 R 004758a0 R

4. SIMULATION RESULTS
In all the tables, numbers of page faults are shown for various

numbers of frames for various page replacements techniques. It

assumes the page size of 4KB and reference string of size six

thousand.

http://www.cse.nd.edu/~dthain/courses/cse341/spring2005/projects/memory/gcc.trace.gz
http://www.cse.nd.edu/~dthain/courses/cse341/spring2005/projects/memory/swim.trace.gz

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.4, October 2011

3

Table 1 (Using swim application)

Table 2 (Using gcc application)

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.4, October 2011

4

Figure 1 (for swim application) Figure 2 (for gcc application) Figure 3 (for bzip application)

Figure 4 (memory reference Figure 5(memory reference Figure 6 (memory reference

pattern plot using swim app.) pattern plot using gcc app.) pattern plot using bzip app.)

Table 3 (using bzip application)

 Figure 7 swim application memory reference Figure8 gcc application memory reference

 pattern plot in detail pattern plot in detail

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.4, October 2011

5

Figure 9 bzip application memory reference pattern plot in detail

 Figure 10 (swim app. Histogram) Figure 11 (gcc app. histogram) Figure 12 (bzip app. Histogram)

4.1 Histograms for various applications’ page faults for different numbers of frames

4.1.1 swim application

 Figure 13 using lru, frames =5 Figure 14 using lru, frames =15 Figure 15 using lru, frames =50

 Figure 16 using optimal, frames =5 Figure 17 using optimal, frames =15 Figure 18 using optimal, frames =50

4.1.2 For gcc application

Figure 19 using lru, frames =5 Figure 20 using lru, frames =15 Figure 21 using lru, frames =50

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.4, October 2011

6

 Figure 22 using optimal, frames =5 Figure 23 using optimal, frames =15 Figure 24 using optimal, frames = 50

4.1.3 For bzip application

 Figure 25 using lru, frames =5 Figure 26 using lru, frames =15 Figure 27 using lru, frames =50

Figure 28 using optimal, frames =5 Figure 29 using optimal, frames =15 Figure 30 using optimal, frames =50

5. OBSERVATIONS FROM

 SIMULATION RESULTS
Here we define a new term named as per page fault factor for

the analysis. Per page fault factor for any policy defines the

ratio of number of page faults for that policy and the number

of page faults in optimal policy for the same application. If

this factor is always decreasing for increasing number of

frames then that policy behaves more closely with optimal

policy. So in tables, factors FIFO/OPTIMAL,

LRU/OPTIMAL, LRU2/OPTIMAL define per page fault

factors for FIFO, LRU, LRU2 policies. Also for any policy, if

this factor decreases more rapidly then that policy is better. So

this factor gives deviation from optimal policy in terms of

page faults.

Also from figur4, which shows the memory reference pattern

plot for swim application, pattern appears to be quite stable.

Also from table2 for gcc application & table3 for bzip

application ,conclusions are same for FIFO and LRU2

described in the above paragraph except the fact that per page

fault factor is always more then LRU for gcc and bzip

application. From figure 8&9, it is clear that LRU2 performs

better & close to optimal when pattern is more stable. Patterns

in 8 &9 are not as stable as pattern for swim application in

figure4.

Figure 10, 11, 12 shows histograms for the reference strings

of 3 applications swim, gcc, and bzip applications

respectively. From figure 10,11, 12 it is clear that few pages

are used very heavily while few pages are used very rarely .It

is clear from figure 10 page numbers near 100000 have very

high frequency of occurrences .Also these page numbers are

being used quite stably over a uniform pattern which is

confirmed from figure 4, 7.

 Also from figure 13, 14, 15, it is clear that as no of frames

increase for LRU, page faults occur on same pages but with

less frequency .Also as no of frames increases, LRU equalizes

no of page faults for different pages.

 From figure 25, 26, 27, it is clear that for 5 frames LRU

generates largest no of page faults for pages of highest

frequency of occurrence. Also for LRU, as no of frames

increases, the pages on which higher no of page faults occur

change. The same is true for optimal policy in figure 28, 29,

30.

In figure 13 , largest no of page faults are not generated for

highest frequency of occurrence page numbers .Also from

figure 13,14,15 it is concluded that as the no of frames

increases , the pages on which higher no of page faults occur

change .The same is true for optimal policy in figure 16,17,18.

From figure 19, 20, 21,22,23,24 it is clear that both LRU and

Optimal generates largest no of page faults for pages not

having highest frequency of occurrence. Also in both, as no of

frames increases the pages on which largest no of page faults

occur remain almost same.

From figure 16, 17, 18 (Histogram for page faults for

optimal), It is clear that optimal also equalizes the no of page

faults as no of frames increases but in a better way than LRU.

6. CONCLUSION
This paper studies lru and optimal with respect to frequency

of page faults on different pages .It compares lru and optimal

using histogram approach. Selected applications swim, gcc,

bzip show different memory access pattern .Swim application

show quite table pattern of memory access. Also different

applications have different number of pages. Bzip application

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.4, October 2011

7

exhibits more correlated access than swim and gcc

application.

 It concludes that optimal and LRU both may and may not

generate largest no of page faults on page numbers of highest

frequency, depending upon memory reference access pattern.

Results show that as number of frames increases, both LRU,

Optimal generates page faults on almost same page numbers

with less frequency of page faults. For both LRU and Optimal

the no, of page faults on pages of higher frequency change

with no of frames.

It shows that page number of high frequency of occurrence

contribute much to the total number of page faults for LRU

policy. Also higher frequency page number’s contribution to

total number of page fault varies with the number of frame

present in main memory. The same applies to optimal policy.

It can be noted that pages of higher frequency of occurrence

contribute a good amount to the total no. of number of page

faults for both LRU and Optimal policies. Also in some cases,

contribution of highly frequent pages to total no of page fault

is less in optimal then LRU policy. It can be concluded that

histograms for both LRU and Optimal policies equalize as the

number of frames increases. Also histogram for optimal

policy equalizes more rapidly then LRU policy’s histograms.

This study can be quite useful for future designing of page

replacement techniques.

7. ACKNOWLEDGEMENTS
I am thankful to my wife Mrs. Vandana gupta and my guide

Prof. Navin rajpal for their support and cooperation.

8. REFERENCES
[1] Abraham Silberschatz, Peter Baer, 1999, Operating

System Concepts (5th Ed.).New York: John Wiley &

Sons, Inc.

[2] Peter J. Denning, Working Sets Past and Present, 1980

IEEE.

[3] Ben Juurlink, Approximating the Optimal Replacement

Algorithm, CF’04, April 14–16, 2004, ACM

1581137419/ 04/0004.

[4] Sedigheh Khajoueinejad, Mojtaba Sabeghi, Azam

 Sadeghzadeh, A Fuzzy Cache Replacement Policy and its

 Experimental Performance Assessment, 2006 IEEE.

[5] Song Jianga,, Xiaodong Zhangb,, Token-ordered LRU: an

 effective page replacement policy and its

 implementation in Linux systems, 2004 Elsevier.

[6] Elizabeth J. O'Neil1, Patrick E. O'Neil1, Gerhard

 Weikum, the LRU-K Page Replacement Algorithm For

 Database Disk Buffering, SIGMOD Washington, DC,

 USA 1993 ACM.

