
International Journal of Computer Applications (0975 – 8887)

Volume 32– No.3, October 2011

50

Study of 32-bit RISC Processor Architecture and VHDL

FPGA Implementation 32-bitMatrix Manipulation

Vandana S. Shah

Asstitant Professor, E&C Dept, SCET, Surat
(India)

Dr. R. V. Kshirsagar
Professor (E&C Dept), Dean (Acad.), PCEA,

Nagpur and Dean (Engineering Faculty), STM
Nagpur University, Nagpur (India)

ABSTRACT
Present title discloses a distinctive method to cram the

processor behavior while dealing with the multifaceted task of

matrix manipulation. System facilitates this distinct feature by

allowing user to input the data in suitable form and observe

the output using suitable display devices. [5]

System is build around high performance VLSI technology.

Matrix manipulation is on the whole parallel architecture of

logical expressions. VLSI when implemented using High

Performance Gate Arrays becomes most suitable for

implementing parallel architecture. [6]

Keywords

VLSI, Gate Arrays, Parallel Architecture, Matrix

Manipulation.

1. INTRODUCTION
Advanced RISC Machine (ARM) is the Implementation result

of the RISC microprocessor architecture. Reduced Instruction

Set Computer (RISC) basically represents a processor

architecture design methodology, emphasizing the insight that

highly simplified instructions that perform fewer tasks can be

used to achieve superior performance when executed at higher

rate. Fundamental of executing the small instructions at higher

speed is also called LOAD – STORE architecture. Such small

instructions are of fixed length helps to implement the

Pipelined architecture. RISC family includes ARM, AVR,

MIPS, ARC, ALPHA, Power Architecture, SPARC etc. [1]

RISC introduces simpler hardware processor architecture

because Fixed Length Instruction format with the opcode in

the same bit position requires less decoding, allowing any

register to be used in any context simplifies the compiler

design and Complex addressing is performed through

sequences of arithmetic and/or load store operations.

Different manufactures that develops ARM architecture are

Advanced Micro Devices, Atmel Corporation, Fujitsu, IBM,

Intel, Kawasaki LSI, Microchips, NVIDIA, Texas, etc.

Even though such powerful architecture from different

manufacturers provides best architecture solution, the

proposed co-processor design having VHDL – FPGA

implementation provides the arrangement with which one can

manually apply the input stimulus (Input Values) of the

matrix using the keypad , select the operation to be perform

(multiplication, transpose, inverse) and finally observe the

manipulated data on the display screen.

The proposed system is best option to analyze any higher

level application, at bit level, in which complex process of

mathematics such as matrix multiplication, transpose and

inverse is used. E.g. in Image Processing.

Same design can be then converted to operate at higher

operating speed, with fewer modifications, which can be used

in different applications design such as Image processing, as a

Math Co – Processor and etc. [7]

2. SYSTEM BLOCK DIAGRAM
The matrix manipulation system can be implemented using

high performance Field Programmable Gate Arrays (FPGA).

Figure1 shows the system block diagram for Matrix

Manipulation using FPGA.

Front end designers support different versions of the FPGA,

like Xilinx XC2S100/200/300/400, XC3S100/200/300/400, or

XC4S100/200/300/400 and so on, for the design under

considerations XC2S100 is the best suitable flavor. It supports

16-bit LUT RAM, In-System Programming (ISP), Boundary

Scan and Read Back Ability that makes it most suitable for

the said applications.

Figure1. System Block Diagram

4 X 4 Hex

Keypad

Hex Keypad

Scanner

FPGA Device For Logic

Implementation

Power Supply

for all Sub

modules

Display Screen

to Display the

manipulated data

Clock Generator

And

 Distribution Unit

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.3, October 2011

51

3. GATE ARRAYS
Many forms of gate arrays are available like PLA, PAL, PLD

and FPGA. These devices can be differed based on their

granularity, ascending order of their appearance, and the

programming methodology of the individual. PLA, PAL and

PLDs are basically implementation of simple SOP, POS or

combination of both representations and are smaller in

capacity as compared to the FPGA devices.

FPGA devices are based on SRAM technology, it consist of

Configurable Logic Blocks (CLBs), Programmable I/O

Blocks, Delayed lock loops (DLL) and ISP Supports. CLBs

are the unit that holds the user logic, and can be configured by

application program created by the user. Application

programs are created by certain Hardware Description

Language (HDL).

3.1 Look up table
Look Up table is an implementation of universal device i.e.

multiplexer. Figure2 depicts architecture of look-up table.

 S0

S1
Figure2. Look Up Table.

Look up table is much similar to the logic expression

implementation using decoder structure, as shown in figure 2,

combination of three multiplexer implements any boolean

expressions having four inputs and single output. But as the

multiplexes are volatile device, data will lose when power is

down; the Look up table can hold the data for power up

period.

Field Programmable Gate Array consists of enormous LUTs,

that, when described using hardware description language,

implements the required logic.

3.2 Configurable Logic Blocks
The application program can be described by the user using

hardware description language, like Very High Speed

Integrated Circuit Hardware Description Language (VHDL)

or VeriLog.

The hardware description of the application is converted to

physical level that is represented using Boolean expressions

that may be optimized highly considering factors like speed or

area.

The Boolean expression that is to be implemented using

physical level architecture may be purely combinational or

purely sequential or combination of both of the techniques.

The configurable logic block is responsible for successful

implementation of Boolean expressions. Figure 3 shows

generalized architecture for the configurable logic blocks.

As per the given logic circuit, if the circuit is purely

combinational then the D-FF is bypassed and the logic output

is produced at the output. But in case of implementing the

sequential circuit logic the D-FF is engaged and the final

output is computed. This option can be implemented by using

one 2:1 multiplexer; by adjusting the select line appropriate

logic can be implemented.

Figure 3: Configurable Logic Block

Again the output may be true or complemented; to have this

astonishing feature 2:1 multiplexer can be used with one true

input and the second one as inverted input. By adjusting the

select input line implementation of the desired logic pattern is

possible.

3.3 Buffers
Field Programmable Gate Arrays (FPGAs) are usually

programmed and used to have higher speed execution per unit

time. While implementing such high speed logic and to have

read back facility they are equipped with high performance

bidirectional buffers. Figure 4 depicts the architecture of 1-bit

bidirectional buffer.

They are intentionally used for signal flattening and boundary

scanning process. Boundary scanning is a process like

emulation which is performed to check the hardware

functionality of the FPGA device; secondly it is used for

signal flattening.

For emulation process, the buffers are interfaced in queue, the

first input of the buffer is used to input the test pattern and is

called as Test Data Input (TDI), and the output of the last

buffer is used to collect the data pattern sent from the TDI,

called as Test Data Output (TDO).

Figure 4: Input Output Buffer.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.3, October 2011

52

If the data pattern sent from the TDI pin is received

successfully at the TDO pin the it is test successful but in case

if mismatch occurs between the data at TDI and the TDO then

test fail occurs and further it can be concluded that device is

either failure or there is certain power supply related problem.

3.4 In-System Programming
With the help of the In-System Programming it is possible to

make the device program when it is interfaced in the

application. The modern technology makes the memory

technology more user friendly by the advent of the USB

technology which is also called as “Plug and Play

Technology”. In the present context, by the advent of ISP

technology the Gate Arrays like FPGA or CPLD are called as

Designer Friendly Gate Arrays.

In this technique the device itself generates the internal

voltage for programming the unit. With such unusual feature

it is possible for the user to integrate the programming and

testing into single phase.

4. HEX KEY-PAD
Hex keypad is the matrix arrangement of 4x4 press to on

switches. With 4x4 arrangements it becomes 16 possible

values that can be encoded and designer can encode the values

as per their convenience. For entering the values for matrix

manipulation it is required to values to be input form the 4x4

matrix.

4.1 Hex Key-pad Scanning
For encoding the values from the 4x4 hex keypad matrix,

keypad scanning routine needs to be executed repeatedly,

keypad can be scanned by enabling only one row (or column)

at a time and checking the individual column (or row). For

each of the column in an enabled row, different values can be

encoded. Figure 5 shows the matrix like structure of the Hex-

keypad.

Figure 5: Hex Key-Pad like structure

Same process can be repeated for remaining rows; for first

row four values can be allotted, similarly, for four rows, 16

different values can be allotted and encoded by the designer.

For matrix manipulation hexadecimal values, 0 to 9 and A - H

values are used and hence are encoded from the keypad

scanning accordingly.

5. DISPLAY UNIT
The manipulated data by the FPGA can be displayed on the

various display units like 7 segment displays, matrix display

units, CRT displays and etc. Out of these display devices

Liquid Crystal Display Unit (LCD) is best suitable for the said

application.

LCDs are available in different shape and sizes like 16x2 and

16x4 characters, 20x1 and 20x2 characters and 40x2

characters. Typically 16x2 character is most suitable for the

matrix manipulation.

Basically, LCD is consisting of two special purpose registers,

called as Data Register and the Control register. The LCD

device, being intelligent device, needs to be initialized as per

the requirement of the data to be displayed. Figure 6 gives

detailed table of mode selection.

LCD device can be initializing to different modes like

automatic display address increment or decrement to position

the next data or digit or character. Further it can be adjusted to

display the data item on single line or dual line, size of the

character to be displayed and so on.

Once the pattern of the data to be displayed is decided, the

data can be loaded into the control register by making the

Register Select (RS) pin Low, on each downbeat of signal on

Enable (E) pin, the data is stored into the Control Register.

Figure 6: Functional Table

After successful initialization of the LCD, the data can be

displayed by making RS High on each downbeat of signal on

Enable (E) pin; the data is displayed on the screen.

6. PROPOSED ALGORITHM
The process of matrix manipulation can be initiated by

initializing the LCD display unit to following mode:

a. 8-bit Interface Mode,

b. Double Character Line Mode with 5x7 Dot

Matrix

c. Display Curser On and

d. Increment next character display address

automatically.

For initializing the LCD unit to the above mode data pattern

of 38H, 0CH and 06H can be input to the control register with

Register Select pin as Low. The above pattern can be loaded

into the RS Register by each trailing edge of the pulse on

Enable (E) pin. After such initialization the LCD unit is ready

for the data to be displayed.

 j

i

R1 R2 R3 R4

C1

A11

A12

A13

A14

C2

A21

A22

A23

A24

C3

A31

A32

A33

A34

C4

A41

A42

A43

A44

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.3, October 2011

53

The proposed system is designed around FPGA, considering

the hardware limitations it is possible to perform following

four operations:

a. Transpose

b. Addition

c. Multiplication and

d. Subtraction.

Any of the above modes can be selected to perform the

operation. For performing the matrix transpose it is required

to enter only one matrix but for remaining all three operations

it is required to enter both the matrix as an input.

Figure 7: Proposed Algorithm

The data once available inside the FPGA, it can be operated to

get the desired operation by operating it using suitable

algorithm for matrix manipulation.

Algorithm can be designed to operate the Hex data directly or

data can be first converted to decimal values and then operate

on the converted data. It is also possible to convert the

incoming data into binary format or octal format and then

operate on the new data.

For any of the converted data manipulation algorithm data

needs to be converted into ASCI value for displaying on the

LCD unit.

7. OBSERVATIONS

7.1 Key-Pad Scanning

if c = "1110" then

 reg <= "00110000";

 elsif c = "1101" then

 reg <= "00110001";

 elsif c = "1011" then

 reg <= "00110010";

 else

 reg <= "00110011";

 end if;

7.2 Encoder

when "00110000" =>

bcd <= "0000";

when "00110001" =>

 bcd <= "0001";

when "00110010" =>

bcd <= "0010";

when "00110011" =>

bcd <= "0011";

when "00110100" =>

bcd <= "0100";

when "00110101" =>

bcd <= "0101";

when "00110110" =>

bcd <= "0110";

when "00110111" =>

bcd <= "0111";

7.3 Stack Unit

when 0 =>

regnumber <= "0011000000110000";

when 1 =>

regnumber <= "0011000000110001";

when 2 =>

regnumber <= "0011000000110010";

when 3 =>

regnumber <= "0011000000110011";

when 4 =>

 regnumber <= "0011000000110100";

when 5 =>

regnumber <= "0011000000110101";

when 6 =>

 regnumber <= "0011000000110110";

when 7 =>

regnumber <= "0011000000110111";

Start

Initialize the

Display

Select

Operation

Enter the first

matrix

Enter the

Second matrix

Execute

Operation

Display

Computed Data

Repeat the

Process

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.3, October 2011

54

7.4 LCD Initialization

when 0 =>

 lcd <= "00111000";

 rs <= '0';

 en <= '1';

 state <= 1;

when 1 =>

en <= '0';

 state <= 2;

when 2 =>

 lcd <= "00001100";

 en <= '1';

 state <= 3;

when 3 =>

 en <= '0';

 lcd_state <=4;

when 4 =>

 lcd <= "00000110";

 en <= '1';

 count <= 0;

 state <= 5;

when 5 =>

en <= '0';

count <= 0;

 state <= 6;

when 6 =>

 lcd <= "00000001"; -- reset;

 en <= '1';

 lcd_state <= 7;

when 7 =>

 en <= '0';

 lcd_state <= 7;

end case;

7.5 Synthesis Results

Target Device: xc2s100-5-pq208

Summary:

 inferred 2 Finite State Machine(s).

 inferred 1 ROM(s).

 inferred 3 Counter(s).

 inferred 39 D-type flip-flop(s).

Macro Statistics

ROMs: 1

 32x16-bit ROM: 1

 Counters: 3

 19-bit up counter: 2

 5-bit up counter: 1

 Registers: 7

 1-bit register: 3

 16-bit register: 1

 4-bit register: 1

 8-bit register: 2

Optimization of FSM state on signal state [1:34] with

One-hot encoding.

--

 State | Encoding

--

 000000 | 0000000000000000000000000000000001

 000001 | 0000000000000000000000000000000010

 000010 | 0000000000000000000000000000000100

 000011 | 0000000000000000000000000000001000

 000100 | 0000000000000000000000000000010000

 000101 | 0000000000000000000000000000100000

 000110 | 0000000000000000000000000001000000

 000111 | 0000000000000000000000000010000000

 001000 | 0000000000000001000000000000000000

 001001 | 0000000000000010000000000000000000

 001010 | 0000000000000100000000000000000000

 001011 | 0000000000001000000000000000000000

 001100 | 0000000000010000000000000000000000

 001101 | 0000000000100000000000000000000000

 001110 | 0000000001000000000000000000000000

 001111 | 0000000010000000000000000000000000

 010000 | 0000000100000000000000000000000000

 010001 | 0000001000000000000000000000000000

 010010 | 0000010000000000000000000000000000

 010011 | 0000100000000000000000000000000000

 010100 | 0001000000000000000000000000000000

 010101 | 0010000000000000000000000000000000

 010110 | 0100000000000000000000000000000000

 010111 | 1000000000000000000000000000000000

 011000 | 0000000000000000000000000100000000

 011001 | 0000000000000000000000001000000000

 011010 | 0000000000000000000000010000000000

 011011 | 0000000000000000000000100000000000

 011100 | 0000000000000000000001000000000000

 011101 | 0000000000000000000010000000000000

 011110 | 0000000000000000000100000000000000

 011111 | 0000000000000000001000000000000000

 100000 | 0000000000000000010000000000000000

 100001 | 0000000000000000100000000000000000

LUT RAM:

--

 | ram_type | Block | |

--

 | Port A |

 | aspect ratio | 32-word x 16-bit | |

 | mode | write-first | |

 | clkA | connected to signal <clk> | rise |

 | weA | connected to internal node | high |

 | addrA | connected to signal <count> | |

 | diA | connected to internal node | |

 | doA | connected to signal <regnumber> | |

| optimisation | speed | |

Advanced HDL Synthesis Report

Macro Statistics

FSMs: 2

RAMs: 1

32x16-bit single-port block RAM: 1

Counters: 3

19-bit up counter: 2

5-bit up counter: 1

Registers: 58

Flip-Flops: 58

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.3, October 2011

55

8. CONCLUSIONS
Considering the market segment, different manufacturers

supports different processors or co-processors that can be used

to compute the complex algorithms. As compared to that the

present system is more users friendly and demonstrates each

and every step of execution of the complex algorithm.

System is designed around high computing, high performance

gate arrays that are extensively used for integrating parallel

architecture and furnishes outstanding performances when

operated at frequencies in the range of and above 100 MHz.

As per the discussion under the section 7 it is obvious that the

proposed system uses minimum hardware resources. The first-

rate programming techniques results One-Hot encoding that

reduces switching of state to certain states.

9. REFERENCES
[1] Kuan Jen Lin, Yi Tang Chiu and Shan Chief

Fang,“Design Optimization and Automation for

Secure Cryptographic Circuits”, 22
nd

International

conference on VLSI, 5-9 Jan.2009 , New Delhi,India.

[2] FPGA prototyping by VHDL Examples: Xilinx

 Spartan-3 Version, e-book, 2008.

[3] Arifur Rahman, “FPGA based design and

 applications”, Springer edition, July 2008.

[4] Morris Mano, “Digital Logic and Computer Design-

 Advanced Digital Design fundamentals and Issues”

Prentice Hall , 2003.

[5]http://www.xilinx.comPreliminaryproductspecificationDS0

77-1(v1.0).

[6] XILINX available at http://www.xilinx.com DS312.

[7]XILINX available at http://www.xilinx.com, JTAG

Programmers Guide.

[8] ALLDATASHEET.COM is the biggest online electronic

component datasheets search engine.

http://www.alldatasheet.com/datasheetpdfpdf/197436/XI

LINX/XCF01S.html.

[9]http://www.national.com In System Programming

 Communication Protocol, revision 2.

[10] http://www.itu.dk/courses/ISOM/E2005/ARMv6_ Archi

tecture.pdf

[11]Matrix Operations for Image

Processing http://www.graficaobscura.com/matrix/index.

ht ml

 [12] klabs.org

http://klabs.org/richcontent/Tutorial/MiniCourses/archite

cture_logic_mapld2001/Architecture

Section/07_PLD_Architecture.PDF

[13] PLA (programmable logic array) available at http://tams-

www.informatik.uni

 hamburg.de/applets/hades/webdemos/42-

 programmable/10-pla/pla.html

[14] The Datasheet Archive

http://www.datasheetarchive.com/XC2S100PQ2 08-

5C-datasheet.html

[15] http://www.national.com In System Programming

 Communication Protocol, revision 2.

[16] PIC Tutorial Nine - HEX Keypad available at

http://www.winpicprog.co.uk/pic_tutorial9.htm

[17] Dot Matrix Liquid Crystal Display

Controller/Driver http://www.adafruit.com/datasheets/H

D44780.pdf

http://www.itu.dk/courses/ISOM/E2005/ARMv6_���Architecture.pdf
http://www.itu.dk/courses/ISOM/E2005/ARMv6_���Architecture.pdf
http://www.graficaobscura.com/matrix/index.ht������ml
http://www.graficaobscura.com/matrix/index.ht������ml
http://www.datasheetarchive.com/XC2S100PQ2�������08-5C-datasheet.html
http://www.datasheetarchive.com/XC2S100PQ2�������08-5C-datasheet.html
http://www.winpicprog.co.uk/pic_tutorial9.htm
http://www.adafruit.com/datasheets/HD44780�������.pdf
http://www.adafruit.com/datasheets/HD44780�������.pdf
http://www.adafruit.com/datasheets/HD44780�������.pdf

