International Journal of Computer Applications (0975 — 8887)

Volume 32— No.2, October 2011

Parallel Implementation of Souvola’s Binarization
Approach on GPU

Brij Mohan Singh, Rahul Sharma
Department of CSE,
College of Engineering Roorkee,
Roorkee-247667,Uttarakhand, India

ABSTRACT

Binarization is widely used technique in many of the image
processing applications. Fast algorithms are needed for fast and
efficient image processing systems. Many algorithms of image
processing and pattern recognition have recently been
implemented on Graphic Processing Unit (GPU) for faster
computational times. GPUs are most prominent hardware in
utilizing parallelism and pipelining than general purpose CPUSs.
Moreover, Speed, programmability, and price become it more
productive. In this paper, we proposed a parallel implementation
of well known Sauvola’s local binarization algorithm for Optical
Character Recognition systems. In this experiment, we achieved
a computational speedup of parallel implementation on GPU
20.8x times faster than implementation on CPU. The speedup
results of GPU are promising.

General Terms

Document Image Analysis, GPU, Parallel Computing.

Keywords
Binarization; CUDA; OCR; GPU; Parallelization.

1. INTRODUCTION

Most document analysis and recognition approaches are
developed on taking advantages of the underlying binarised
image information [1]. Two level data representation reduced
computational overhead and pixel analysis compared to 256
levels of gray scale or color image representation. Document
analysis and recognition algorithms are very slower due to
requirement of large memory and computational power. These
systems require higher implementation performance and enable
real time data processing. In the development of fast and
accurate OCR systems, computational power reduction and
power saving techniques are desirable. GPUs fulfill all the
requirement of developing fast OCR systems. Speed,
programmability, and price became it more attractive [2-3].

One of the most straightforward strategies for image analysis
techniques are based on the use of brightness of regions in the
image as a means of identification. It is desirable that the same
type of feature will have the same brightness throughout the
whole image. Global methods works better when uniform

Ankush Mittal
Director (Research),
Graphic Era University, Dehradun-
248002, Uttarakhand, India

Debashish Ghosh
Department of E&C,
IIT Roorkee,
Roorkee-247667,Uttarakhand, India

illumination presents in the image [4-9]. Uniform illumination
allows easier and more reliable image thresholding and it can be
achieved mainly by using artificial light sources and isolating
the subject from noises occurred by light reflexes, sunlight etc.
However, real-life and real-time document image processing
approaches are performed in non-uniform lightning conditions.
There might appear different types of degradation such as
complexity backgrounds, non-uniform intensity and, shadows.
The non-uniformity of light and other kind of degradations can
be minimized or even eliminated by using image processing
approaches. Local thresholding methods play important role in
the processing of document images [10-16].

The era of GPUs were started by many researchers to implement
parallel algorithms in various areas such as computational
geometry, and scientific computation, as well as computer
graphics [17-21]. Parallel implementations on GPUs have been
applied to various numerical problems [22-25] to reduce the
computation time. Computational cost reduction approaches to
handwritten character recognition were proposed in [26-30]. Oh
at al. implemented neural networks on GPU, which is one of
popular algorithm of pattern recognition, and the GPU was used
to implement the matrix multiplication of a neural network to
enhance the time performance [31]. Jung [32] proposed a Neural
Network based text localization in color images. Recently, Singh
et al. proposed parallel implementation of well known profiling
based segmentation algorithm for Devanagari character
recognition on GPU [33].

In the following sections, we present a detailed description of
the proposed methodology as well as experimental results that
demonstrate the efficiency of the proposed methodology.

2. INTRODCTION TO NVIDIA CUDA
ARCHITECTURE

This paper proposes more quick and efficient parallel
implementation on graphics hardware. We use a GPU language
CUDA (Compute Unified Device Architecture) Instruction Set
Architecture (ISA) and the parallel compute engine in the GPU
developed by NVIDIA, as the CUDA code is similar to C
language style and has less computational restriction. Other
GPU compilers require much special knowledge on computer

28



graphics. CUDA enabled GPUs have hundreds of cores that can
collectively run thousands of computing threads. Each core has
shared resources, including registers and memory. The on-chip
shared memory allows parallel tasks running on these cores to
share data without sending it over the system memory bus [34].

A fundamental building block of CUDA programs is the CUDA
kernel function [35]. When launching a CUDA kernel function,
a developer specifies how many copies of it to run. We call each
of these copies a task. Because of the hardware support of the
GPU, each of these tasks can be small, and the developer can
queue hundreds of thousands of them for execution at once.
These tasks are organized in a two-level hierarchy, block and
grid. Small sets of tightly coupled tasks are grouped into blocks.
In a given execution of a CUDA kernel function, all blocks
contain the same number of tasks. The tasks in a block run
concurrently and can easily communicate with each other, which
enables useful optimizations such as those of the section shared
memory. GPU’s hardware keeps multiple blocks in flight at
once, with no guarantees about their relative execution order. As
a result, synchronization between blocks is difficult. The set of
all blocks run during the execution of a CUDA kernel function
is called a grid.

3. SOUVOLA'’S BINARIZATION
APPROACH

Sauvola [12] proposed an algorithm similar to Niblack’s [11].
Niblack’s method works poorly on noisy and degraded
documents. Sauvola made some assumptions based on the
distribution of grey values associated with foreground and
background pixels. Threshold is computed as:

T(x,y)=m(x, Y)-{“ k '(w‘lﬂ 8

Where m(x,y) and s(x,y) are the same as in Niblack’s method. R
is the dynamic range of standard deviation. Values of R=128
and k=0.5 were used.

4. IMPLEMENTATION

In this experiment, first we implemented serial code of local
binarization approach of souvola’s proposed architecture and
second, parallel code is implemented. The sequential algorithm
is implemented in C++ and making use of C++ Standard
Template Library. VC++ version 14.00.50727.42 compiler for
80x86 is used.

The input image is given as a sequence of bytes representing the
intensity of a greyscale image. The input image is stored as
texture in the device memory. After that block and grid size was
calculated according to the dimensions of the input images. A
single thread calculates the threshold for a single pixel in the
output image. Following section dictates the detailed description
of the parallel implementation of the algorithm.

4.1 Parallel Implementation

In CUDA, it is assumed that both host and device maintain their
own DRAM. Host memory is allocated using malloc and device
memory is allocated using cudaMalloc. CUDA threads are
assigned a unique thread ID that identifies its location within the
thread, block and grid. This provides a natural way to invoke
computation across the image, by using the thread IDs for

International Journal of Computer Applications (0975 — 8887)
Volume 32— No.2, October 2011

addressing. The parallel implementation of algorithm of
binarization is shown in the form of pseudo code shown in
algorithm 1.

Algorithm 1: Parallel Implementation of binarization
algorithm

Texture graylmage;
Kernal( windowsSize, outputimage)
{ int x = blockldx.x * blockDim.x + threadldx.x;
inty = blockldx.y * blockDim.y + threadldx.y;
int sum=0, sqr_sum=0;
for( i=y-windowSize to y+windowsSize)
for( j=x-windowSize to x+windowSize){
int v = graylmage.getPixel( j, i);
sum +=v;
sqQr_sum += v*v;

Calculate mean & varience;

Threshold = mean*(1+k*(varience/R-1));

if(graylmage.getPixel( x, y) <= threshold)
outputlmage.setPixel( x, y) = BLACK;

else outputimage.setPixel( x, y) = WHITE;

}
Main()

dim3 dBlock( BLOCKSIZE, BLOCKSIZE);

dim3 dGrid( (width+dBlock.x-1)/dBlock.x,
(height+dBlock.y-1)/dBlock.y );

kernel<<< dGrid, dBlock>>>( windowsSize,
outputimage);

5. RESULTS AND DISCUSSIONS

For the testing of Souvola’s approach of local binarization, we
collected a data set of handwritten as well as printed documents
from newspapers, old books and from different writers. The
collected documents are scanned using a scanner at 300 dpi. All
the experiments were carried out using the hardware
specifications of GPU: GeForce 9500 GT, 1 MB DDR2, No of
Processors = 4, No of core =32, RAM 1 GB, Frequency 1.35
GHz, DDR2 and CPU: Intel Core 2 Duo, 2.66 GHZ, No of cores
available =2, No of thread=1, No of thread/core=1, Physical
Memory =2 GB, DDR2.

To make faster the method, we parallelized Souvola approach of
binarization on CUDA and achieved an average speedup of
20.778803x over the serial implementation when running on a
GPU. The comparison of execution time of serial
implementation over parallel is shown in table 1. Table 1 also
shows that execution time depends on the window size and
image size in megapixels. As shown in table 1, average speed-up
is 22.89901941 when window size is 7, average speed-up is
20.96931534 when window size is 11, average speed-up is
20.31803128 when window size is 15, when window size is 19
the average speed-up is 19.98818541, and when window size is
23 the average speed-up is 19.71946374. The observation is that
when window size increases, the execution time decreases. Fig.
1 shows the graph of execution time of CPU in seconds vs.
window size. Fig. 2 shows the graph of execution time of GPU

29



in seconds vs. window size. Fig. 3 shows the graph of speedup
vs. window size.

On the basis of visual observation, Souvola’s method of
binarization completely recovers text from degraded document
images. The promising results of approach are shown in fig. 4.

o 60 CPU

E —_—

[~ §40 / =1 MegaPixels
5 9 / 2 MegaPixels
5 820 4 MegaPixels
g £ ____// 8 MegaPixels
x

o 0 —F——————

— 16 MegaPixels
7 11 15 19 23

International Journal of Computer Applications (0975 — 8887)

Volume 32— No.2, October 2011

Window Size

Figure 1: Execution time of CPU in seconds vs. window size

s 3 — GPU

E é ) g / 1 MegaPixels
S § 1 2 MegaPixels
‘a’:é 0'8 :4 —— 4 MegaPixels
w 8 MegaPixels

7 11 15 19 23

—— 16 MegaPixels
Window Size

Figure 2: Execution time of GPU in seconds vs. window size

25

a 20 - B 1 MegaPixels
-3 15 - | s 2 MegaPixels
§ 10 - g - W4 MegaPixels
2 g i i 8 MegaPixels

B 16 MegaPixels
11 15 19 23

Window Size

Window | Mega- | oo it [parallel Speed-Up Speed-Up
Size pixels Average
1 0.328 | 0.01388 23.6311239
2 0.625 | 0.0277 225631769
7 4 125 | 005545 | 22.5428314 |22.89901941
8 2.532 | 0.11016 22.9847495
16 5.047 | 0.22162 22.7732154
1 0.75 0.0358 20.9497207
2 15 0.0716 20.9497207
1 4 3 0.14318 | 20952647 |20-96931534
8 6.016 | 0.28642 21.0041198
16 12.03 | 057312 20.9903685
1 1.39 0.0681 20.4111601
2 2.797 | 0.1376 20.3270349
15 4 5594 | 0.2751 20.3344238 |20-31803128
8 11.172 | 0.5515 20.2574796
16 22.359 | 1.1036 20.260058
1 2.25 0.1123 20.0356189
45 0.2255 19.9556541
19 4 9.015 | 0.4512 19.9800532 | 19-98818541
8 18.047 | 0.9023 20.0011083
16 36.125 | 1.8091 19.9684926
1 3.296 | 0.1679 19.6307326
6.61 0.3368 19.6258907
23 4 13.281 | 0.6724 19.7516359 | 19-71946374
26.594 | 1.3445 19.7798438
16 53.265 | 2.6889 19.8092157
Avg. Speed-Up 20.778803

Figure 3: Speedup vs. Window size

Table 1: Execution time of serial over parallel implementation

30




International Journal of Computer Applications (0975 — 8887)

Volume 32— No.2, October 2011

Image No.

Degraded Image

Souvola’s Output

‘fﬁﬂﬁ( WA A AT e ar g

""g”fﬂ'wm TEATT T
MMW”WG}HMW% T
49 5 ﬂﬂrw SASATEL

—lm
—c1 —‘5’\

f o f%91 “j%f}ﬁ’? WEET a7

=57
U
oy
e
ﬁ?\_
—)
=
=
[end
&
Ny
B
3:\

=
™)
=,
=
5
\Iq
L

Ehemc types ol todol i

Pisiiy Tiw s,
i i e vl
Gon erers e

S

_Sozeman

P
Memny B smonie
Huwadoxono

Oye Acamen npEsaEn w
noaroTemes Gonawoi
wro Xepaw, Hoomy
e s me

apom EysER .
A OG0 e o
Toyunn oooduan Temes .

A O e e

e, M premeLme @O R
Meperaites ToyMBny omonym

o w.Owamee:

"NITHO M CTPOTO, o} ETL Bl

Moaywma Doms NooTarmn mS RoHOEY K OATROTOBNN

Huralcwors CGormameosns o Eoonseo SORY G

ronapn Bac Be mpanarss esn o
15 mmoum 1945 roma” - =

Merommemme e e .

OT AN

MO NOT OBV
10 _CTRED e e ity

A Mo p . GTATHE

Consrain—

—ny Xepmm. Bee

— e B

LA POBAHHAR TENECPARAMA

Buzm on
Eu SR

skl TR TSy T EyaE

T mcayoweom 18 e
Dewm gm GOA B MeCRY

o osnne on awteage LS
g B . Ol ASHwE
Cums PSSO rT RS MR Sw oD,
Tayume ceswan T,

AR AT L e e v

e seecks s
Swd e
MepugatTe ToyMsy CO0DYMEEen noos

AHICIEO M GTPOre o mpo B Lowana e

AT mem e o e s —

A¥mn PiAE G NSOmARES e w0k
vty Mepms. Smio

ouianom m UBmOr S DBy SOt RR
ek Heo B o aTeon B e pe o

An maan 1EAS ot .
P

Tme afla e e G e

e e
Mo T oT amn

Cunomow-JumwimED

-
Lt

R

APPLICATION FOR 1877 ASTM MEMBERSHIP

on v,
PLEASE COMPLETE (Frint or Type)

e e

Aembar Mame (ic

¥ or Parent Company code

Applicaton s made fur 4 Membarshin 0 the American Society fer Testing and
e e o individust. business, gevermimuntal, ressarch or protessional
Srgmnizatian, . Smociation, or suparate horeot

TUBRC Bing 1o the GurRoIes OF the Society Brovided e the
Eoncanend By

L1 Membar EY chiviciisnt o stitution (educational, fie Hibrary, or a
iclcnr-‘-c gl AL v, . [ Bt

ng 1o the purposes ot the Bociety ravided i the Gh

aha e

1 Sr. Member an indivicuar o retired whe nos been o member of the
B e ieipa S W far @ toral o

M ocurrmmily smrving on ASTA committess, oh

Floase sand in on the

Maior Product

(or sorvice

Individual's major fAield of nteresr

APPLICATION FOR 1977 ASTM MEMBERSHIP

P in the American Society for Testing and

Application i3 made for a Memberah
Materials
L) Organizatienst

cearch o rotessionol
Sanciation, Gr Senarete facility thereot
ine’ SoZiety mraviasda n the

G, e trad
o v eurposes” o

et B

seiue) o an institution (educarianal, public Lbrary. or
te engineering, technical nan Greli society)

(L o the purpotes Tof the Baciaty praviasd i the G

been o member of the

L3 Sr. Member individusl fuily retired, whg has
W andsor a part

leipant in Soclety activities for a to

PLEASE COMPLETE

FMemboer mame (low name frs

Faciiny or Farent Campany

StrwaT Address

v, Siaie, ZIF CODE

SFicial Repra:antative (eroanizational membarhin Sniy)

1 currantly scrving on ASTA . Please list: S

[P — an the

Maior Product -
lor sorvice purformed by your raamzationt

Individual's mojer fisld of inter.

FOR SOCIETY USE ONLY

TET ¥ USE oMLY

- - I s:ﬁl_n

Philadelphia, Pa. 19103 —Atn. Membershin

& Race St
~

SEE REVERSE SIDE FOR BEMERTS AMD FEES
AL TO: ASTM, 1916 Race St Pa. 121
e 7/76 Printad in U.S, A,

31



International Journal of Computer Applications (0975 — 8887)
Volume 32— No.2, October 2011

f the
a toral of

code  phone number

APPLICATION FOR 1977 ASTM MEMBERSHIP

Application is made for a Membarshis
Materials

L1 Organizational  —

L3 Mermber

(3 8r. Member

PLEASE COMPLETE

Member Mame (last ne

g Py

if home address,
please indicate

ior Product

Individual's major field of interest
Signature

Title

for service per formed by your arganization)

__FOR SOCIETY USE ONLY

Ack:
DAl | Retoived Bat,

| asea
Ll

" FOR SOCIETY USE ONLY 3 o SR
s [ e

Payment
Recoived

SEE REVERSE SIDE FOR BEMNEFITS AND FEES

Rev. 7/76 Printed in U.S.A

MAIL TO: ASTM, 1916 Race St, Philadelphio, Pa. 192 103—Amn.: Membership

SEE REVERSE SIDE FOR BENEFITS AND FEES
MAIL TO: ASTM, 1916 Race St., Philadelphia, Pa. 19103—Aln.: Membership
Rev. 7/76 Printed in U.S. A

Figure 4: Output images of Souvola’s approach of binarization

6. CONCLUSION

In this research work, a well known Souvola’s binarization
algorithm for optical character recognition has been parallelized
and achieved an average speed-up of 20.8x. The implementation
of binarization algorithm on the graphics device is promising
with large two dimensional degraded document images.

CUDA itself has been shown to be an excellent framework to
accelerate computational problems of OCR systems for handling
large size documents. A fast OCR can be designed using the
parallel implementation on GPUSs.

7. REFERENCES

[1] He, J., Do, Q. D. M, Downton, and Kim, J. H. 2005. A
comparison of binarization methods for historical archive
documents. In proceeding of Eighth International
Conference on Document Analysis and Recognition
(ICDAR'05), 538-542.

[2] Fung, J. and Man, S. 2005. OpenVIDIA: Parallel GPU
computer vision. In Proceedings of ACM International
Conference on Multimedia, 849-852.

[3] Fernando, R and Kilgard, M. J. 2003. The Cg tutorial the
definitive guide to programmable real-time graphics.
Addison-Wesley.

[4] Otsu, N. 1979. A threshold selection method from gray
level histograms. IEEE Trans. on Systems, Man and
Cybernetics, Vol. 9, 62-66.

[5] Yu, B., Jain, A. and Mohiuddin, M. 1997. Address block
location on complex mail Pieces,” In Proceeding of
International Conference of Document Analysis and
Recognition, IEEE, 897-901.

[6] Rosenfeld, A. and Kak, A.C. 1982. Digital picture
processing, second ed., Academic Press, New York.

[7] Kittler J. and Illingworth J. 1985. On threshold selection
using clustering criteria. IEEE Trans. Systems Man
Cybernetics, Vol. 15, 652-655.

[8] Brink, A.D. 1992. Thresholding of digital images using
two-dimensional entropies. Pattern Recognition, Vol. 25,
803-808.

[9] Yan, H. 1996. Unified formulation of a class of image
thresholding techniques. Pattern Recognition, Vol. 29,
2025-2032.

[10] Bernsen, J. 1986. Dynamic thresholding of grey-level
images. In Proceeding of International Conference of
Pattern Recognition, 1251-1255.

[11] Niblack, W. 1986. An Introduction to digital image
processing, Prentice-Hall, Englewood Cliffs, NJ, 115-116.

[12] Sauvola, J. and Pietikainen, M. 2000. Adaptive document
image binarization. Pattern Recognition, Vol. 33, 225-236.

[13] Kim, I.LK., Jung, D.W. and Park, R.H. 2002. Document
image binarization based on topographic analysis using a
water flow model. Pattern Recognition, Vol. 35, 265-277.

[14] Gatos, B., Pratikakis, I. and Perantonis, S. J. 2006.
Adaptive degraded document image binarization. Pattern
Recognition, Vol. 39, 317-327.

[15] Chang, Y.F., Pai, Y.T. and Ruan, S.J. 2008. An efficient
thresholding algorithm for degraded document images
based on intelligent block detection. In Proceeding of IEEE
International Conference on Systems, Man, and
Cybernetics,667-672.

[16] Valizadeh, M., Komeili, M., Armanfard, N. and Kabir, E.
2009. Degraded document image binarization based on
combination of two complementary algorithms. In
Proceeding of International Conference of Advances in
Computational Tools for Engineering Applications, IEEE,
595-599.

32



[17] Moravanszky, A. 2003. Linear algebra on the GPU, in:
W.F. Engel (Ed.), Shader X 2, Wordware Publishing,
Texas.

[18] Manocha, D. 2003. Interactive geometric & scientific
computations using graphics hardware, SIGGRAPH 2003
Tutorial Course #11.

[19] Moreland, K. and Angel E. 2003. The FFT on a GPU. In
Proceedings of SIGGRAPH Conference on Graphics
Hardware, 112-119.

[20] Mairal, J., Keriven, R. and Chariot, A. 2006. Fast and
efficient dense variational Stereo on GPU. In Proceedings
of International Symposium on 3D Data Processing,
Visualization, and Transmission, 97-704.

[21] Yang, R. and Welch, G. 2002. Fast image segmentation and
smoothing using commodity graphics hardware. Journal of
Graphics Tools, Vol. 17, (4), 91-100.

[22] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M.,
Kruger, J., Lefohn, A. E. and Purcell, T. J. 2005. A survey
of general-purpose computation on graphics hardware. In
proceeding of Eurographics, State of the Art Reports, 21—
51.

[23] Larsen, E. S., McAllister, D. 2001. Fast Matrix Multiplies
using Graphics Hardware. In Proceeding of International
Conference for High Performance Computing and
Communications, 159-168.

[24] Trendall C. and Stewart, A. J. 2000. General calculations
using graphics hardware with applications to interactive
caustics. Rendering Techniques 2000: 11th Eurographics
Workshop on Rendering, 287-298.

[25] Li, Wei, Wei, Xiaoming, A. and Kaufman, 2001.
Implementing lattice boltzmann computation on graphics
hardware. In proceeding of the International Conference for
High Performance Computing and Communications.

International Journal of Computer Applications (0975 — 8887)
Volume 32— No.2, October 2011

[26] Mizukami, Y., Koga, K. and Torioka, T. 1994. A
handwritten character recognition system using hierarchical
extraction of displacement. IEICE, J77-D-11(12):2390—
2393.

[27] Kruger, J. and Westermann, R. 2003. Linear operators for
GPU implementation of numerical algorithms. In
Proceedings of SIGGRAPH, San Diego, 908- 916.

[28] Steinkraus, D., Buck, 1., and Simard, P. Y. 2005. GPUs for
machine learning algorithms. In proceeding of International
Conference of Document Analysis and Recognition, 1115-
1120.

[29] Mizukami, Y. and Koga, K. 1996. A handwritten character
recognition system using hierarchical displacement
extraction algorithm. In Proceeding of International
Conference of Pattern Recognition, volume 3,160-164.

[30] Ilie, A. Optical character recognition on graphics hardware.
Downloaded from www.cs.unc.edu/~adyilie/IP/Final.pdf

[31] Oh, K.S. and Jung, K. 2004. GPU implementation of neural
networks. Pattern Recognition, Elsevier, 1311-1314.

[32] Jung, K. 2001. Neural Network-based text localization in
color images. Pattern Recognition Letters, Vol. 22, (4),
1503- 1515.

[33] Singh, B.M., Mittal A., and Ghosh, D. 2011. Parallel
implementation of Devanagari text line and word
segmentation approach on GPU. International Journal of
Computer Applications 24(9):7-14.

[34] NVIDIA CUDA Programming Guide Version 2.0,
available at www.nvidia.com/object/cuda_develop.html.

[35] NVIDIA Corporation: NVIDIA CUDA programming
guide. Jan 2007, available at
http://developer.download.nvidia.com/compute/cuda/2_0/d
ocs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

33


http://www.nvidia.com/object/cuda_develop.html

