
International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

28

 Parallel Implementation of Souvola’s Binarization

Approach on GPU

Brij Mohan Singh, Rahul Sharma
Department of CSE,

College of Engineering Roorkee,
Roorkee-247667,Uttarakhand, India

Ankush Mittal

Director (Research),
Graphic Era University, Dehradun-

248002, Uttarakhand, India

Debashish Ghosh
Department of E&C,

IIT Roorkee,
Roorkee-247667,Uttarakhand, India

ABSTRACT
Binarization is widely used technique in many of the image

processing applications. Fast algorithms are needed for fast and

efficient image processing systems. Many algorithms of image

processing and pattern recognition have recently been

implemented on Graphic Processing Unit (GPU) for faster

computational times. GPUs are most prominent hardware in

utilizing parallelism and pipelining than general purpose CPUs.

Moreover, Speed, programmability, and price become it more

productive. In this paper, we proposed a parallel implementation

of well known Sauvola’s local binarization algorithm for Optical

Character Recognition systems. In this experiment, we achieved

a computational speedup of parallel implementation on GPU

20.8x times faster than implementation on CPU. The speedup

results of GPU are promising.

General Terms

Document Image Analysis, GPU, Parallel Computing.

Keywords
Binarization; CUDA; OCR; GPU; Parallelization.

1. INTRODUCTION
Most document analysis and recognition approaches are

developed on taking advantages of the underlying binarised

image information [1]. Two level data representation reduced

computational overhead and pixel analysis compared to 256

levels of gray scale or color image representation. Document

analysis and recognition algorithms are very slower due to

requirement of large memory and computational power. These

systems require higher implementation performance and enable

real time data processing. In the development of fast and

accurate OCR systems, computational power reduction and

power saving techniques are desirable. GPUs fulfill all the

requirement of developing fast OCR systems. Speed,

programmability, and price became it more attractive [2-3].

One of the most straightforward strategies for image analysis

techniques are based on the use of brightness of regions in the

image as a means of identification. It is desirable that the same

type of feature will have the same brightness throughout the

whole image. Global methods works better when uniform

illumination presents in the image [4-9]. Uniform illumination

allows easier and more reliable image thresholding and it can be

achieved mainly by using artificial light sources and isolating

the subject from noises occurred by light reflexes, sunlight etc.

However, real-life and real-time document image processing

approaches are performed in non-uniform lightning conditions.

There might appear different types of degradation such as

complexity backgrounds, non-uniform intensity and, shadows.

The non-uniformity of light and other kind of degradations can

be minimized or even eliminated by using image processing

approaches. Local thresholding methods play important role in

the processing of document images [10-16].

The era of GPUs were started by many researchers to implement

parallel algorithms in various areas such as computational

geometry, and scientific computation, as well as computer

graphics [17-21]. Parallel implementations on GPUs have been

applied to various numerical problems [22-25] to reduce the

computation time. Computational cost reduction approaches to

handwritten character recognition were proposed in [26-30]. Oh

at al. implemented neural networks on GPU, which is one of

popular algorithm of pattern recognition, and the GPU was used

to implement the matrix multiplication of a neural network to

enhance the time performance [31]. Jung [32] proposed a Neural

Network based text localization in color images. Recently, Singh

et al. proposed parallel implementation of well known profiling

based segmentation algorithm for Devanagari character

recognition on GPU [33].

In the following sections, we present a detailed description of

the proposed methodology as well as experimental results that

demonstrate the efficiency of the proposed methodology.

2. INTRODCTION TO NVIDIA CUDA

ARCHITECTURE
This paper proposes more quick and efficient parallel

implementation on graphics hardware. We use a GPU language

CUDA (Compute Unified Device Architecture) Instruction Set

Architecture (ISA) and the parallel compute engine in the GPU

developed by NVIDIA, as the CUDA code is similar to C

language style and has less computational restriction. Other

GPU compilers require much special knowledge on computer

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

29

graphics. CUDA enabled GPUs have hundreds of cores that can

collectively run thousands of computing threads. Each core has

shared resources, including registers and memory. The on-chip

shared memory allows parallel tasks running on these cores to

share data without sending it over the system memory bus [34].

A fundamental building block of CUDA programs is the CUDA

kernel function [35]. When launching a CUDA kernel function,

a developer specifies how many copies of it to run. We call each

of these copies a task. Because of the hardware support of the

GPU, each of these tasks can be small, and the developer can

queue hundreds of thousands of them for execution at once.

These tasks are organized in a two-level hierarchy, block and

grid. Small sets of tightly coupled tasks are grouped into blocks.

In a given execution of a CUDA kernel function, all blocks

contain the same number of tasks. The tasks in a block run

concurrently and can easily communicate with each other, which

enables useful optimizations such as those of the section shared

memory. GPU’s hardware keeps multiple blocks in flight at

once, with no guarantees about their relative execution order. As

a result, synchronization between blocks is difficult. The set of

all blocks run during the execution of a CUDA kernel function

is called a grid.

3. SOUVOLA’S BINARIZATION

APPROACH
Sauvola [12] proposed an algorithm similar to Niblack’s [11].

Niblack’s method works poorly on noisy and degraded

documents. Sauvola made some assumptions based on the

distribution of grey values associated with foreground and

background pixels. Threshold is computed as:

   
 

















 1

,
1,,

R

yxs
kyxmyxT

(1)

Where m(x,y) and s(x,y) are the same as in Niblack’s method. R

is the dynamic range of standard deviation. Values of R=128
and k=0.5 were used.

4. IMPLEMENTATION
In this experiment, first we implemented serial code of local

binarization approach of souvola’s proposed architecture and

second, parallel code is implemented. The sequential algorithm

is implemented in C++ and making use of C++ Standard

Template Library. VC++ version 14.00.50727.42 compiler for

80x86 is used.

The input image is given as a sequence of bytes representing the

intensity of a greyscale image. The input image is stored as

texture in the device memory. After that block and grid size was

calculated according to the dimensions of the input images. A

single thread calculates the threshold for a single pixel in the

output image. Following section dictates the detailed description

of the parallel implementation of the algorithm.

4.1 Parallel Implementation
In CUDA, it is assumed that both host and device maintain their

own DRAM. Host memory is allocated using malloc and device

memory is allocated using cudaMalloc. CUDA threads are

assigned a unique thread ID that identifies its location within the

thread, block and grid. This provides a natural way to invoke

computation across the image, by using the thread IDs for

addressing. The parallel implementation of algorithm of

binarization is shown in the form of pseudo code shown in

algorithm 1.

Algorithm 1: Parallel Implementation of binarization

algorithm

Texture grayImage;

Kernal(windowSize, outputImage)

{ int x = blockIdx.x * blockDim.x + threadIdx.x;

 int y = blockIdx.y * blockDim.y + threadIdx.y;

 int sum=0, sqr_sum=0;

 for(i=y-windowSize to y+windowSize)

 for(j=x-windowSize to x+windowSize){

 int v = grayImage.getPixel(j, i);

 sum += v;

 sqr_sum += v*v;

 }

 Calculate mean & varience;

 Threshold = mean*(1+k*(varience/R-1));

 if(grayImage.getPixel(x, y) <= threshold)

 outputImage.setPixel(x, y) = BLACK;

 else outputImage.setPixel(x, y) = WHITE;

}

Main()

{

 dim3 dBlock(BLOCKSIZE, BLOCKSIZE);

 dim3 dGrid((width+dBlock.x-1)/dBlock.x,

(height+dBlock.y-1)/dBlock.y);

 kernel<<< dGrid, dBlock>>>(windowSize,

outputImage);

}

5. RESULTS AND DISCUSSIONS
For the testing of Souvola’s approach of local binarization, we

collected a data set of handwritten as well as printed documents

from newspapers, old books and from different writers. The

collected documents are scanned using a scanner at 300 dpi. All

the experiments were carried out using the hardware

specifications of GPU: GeForce 9500 GT, 1 MB DDR2, No of

Processors = 4, No of core =32, RAM 1 GB, Frequency 1.35

GHz, DDR2 and CPU: Intel Core 2 Duo, 2.66 GHZ, No of cores

available =2, No of thread=1, No of thread/core=1, Physical

Memory =2 GB, DDR2.

To make faster the method, we parallelized Souvola approach of

binarization on CUDA and achieved an average speedup of

20.778803x over the serial implementation when running on a

GPU. The comparison of execution time of serial

implementation over parallel is shown in table 1. Table 1 also

shows that execution time depends on the window size and

image size in megapixels. As shown in table 1, average speed-up

is 22.89901941 when window size is 7, average speed-up is

20.96931534 when window size is 11, average speed-up is

20.31803128 when window size is 15, when window size is 19

the average speed-up is 19.98818541, and when window size is

23 the average speed-up is 19.71946374. The observation is that

when window size increases, the execution time decreases. Fig.

1 shows the graph of execution time of CPU in seconds vs.

window size. Fig. 2 shows the graph of execution time of GPU

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

30

in seconds vs. window size. Fig. 3 shows the graph of speedup

vs. window size.

On the basis of visual observation, Souvola’s method of

binarization completely recovers text from degraded document

images. The promising results of approach are shown in fig. 4.

Figure 1: Execution time of CPU in seconds vs. window size

Figure 2: Execution time of GPU in seconds vs. window size

Figure 3: Speedup vs. Window size

Table 1: Execution time of serial over parallel implementation

Window

Size

 Mega-

pixels
Serial Parallel Speed-Up

Speed-Up

Average

7

1 0.328 0.01388 23.6311239

22.89901941

2 0.625 0.0277 22.5631769

4 1.25 0.05545 22.5428314

8 2.532 0.11016 22.9847495

16 5.047 0.22162 22.7732154

11

1 0.75 0.0358 20.9497207

20.96931534

2 1.5 0.0716 20.9497207

4 3 0.14318 20.952647

8 6.016 0.28642 21.0041198

16 12.03 0.57312 20.9903685

15

1 1.39 0.0681 20.4111601

20.31803128

2 2.797 0.1376 20.3270349

4 5.594 0.2751 20.3344238

8 11.172 0.5515 20.2574796

16 22.359 1.1036 20.260058

19

1 2.25 0.1123 20.0356189

19.98818541

2 4.5 0.2255 19.9556541

4 9.015 0.4512 19.9800532

8 18.047 0.9023 20.0011083

16 36.125 1.8091 19.9684926

23

1 3.296 0.1679 19.6307326

19.71946374

2 6.61 0.3368 19.6258907

4 13.281 0.6724 19.7516359

8 26.594 1.3445 19.7798438

16 53.265 2.6889 19.8092157

 Avg. Speed-Up

 20.778803

0

20

40

60

7 11 15 19 23

Ex
e

cu
ti

o
n

 T
im

e
(i

n
 s

e
co

n
d

s)

Window Size

CPU

1 MegaPixels
2 MegaPixels
4 MegaPixels
8 MegaPixels
16 MegaPixels

0
0.5

1
1.5

2
2.5

3

7 11 15 19 23

E
x

ec
u

ti
o
n

 T
im

e

(i
n

 s
ec

o
n

d
s)

Window Size

GPU

1 MegaPixels

2 MegaPixels

4 MegaPixels

8 MegaPixels

16 MegaPixels

0
5

10
15
20
25

7 11 15 19 23

Sp
e

e
d

 U
p

Window Size

1 MegaPixels

2 MegaPixels

4 MegaPixels

8 MegaPixels

16 MegaPixels

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

31

Image No. Degraded Image Souvola’s Output

1.

2.

3.

4.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

32

5.

Figure 4: Output images of Souvola’s approach of binarization

6. CONCLUSION

In this research work, a well known Souvola’s binarization

algorithm for optical character recognition has been parallelized

and achieved an average speed-up of 20.8x. The implementation

of binarization algorithm on the graphics device is promising

with large two dimensional degraded document images.

CUDA itself has been shown to be an excellent framework to

accelerate computational problems of OCR systems for handling

large size documents. A fast OCR can be designed using the

parallel implementation on GPUs.

7. REFERENCES
[1] He, J., Do, Q. D. M, Downton, and Kim, J. H. 2005. A

comparison of binarization methods for historical archive

documents. In proceeding of Eighth International

Conference on Document Analysis and Recognition

(ICDAR'05), 538-542.

[2] Fung, J. and Man, S. 2005. OpenVIDIA: Parallel GPU

computer vision. In Proceedings of ACM International

Conference on Multimedia, 849-852.

[3] Fernando, R and Kilgard, M. J. 2003. The Cg tutorial the

definitive guide to programmable real-time graphics.

Addison-Wesley.

[4] Otsu, N. 1979. A threshold selection method from gray

level histograms. IEEE Trans. on Systems, Man and

Cybernetics, Vol. 9, 62-66.

[5] Yu, B., Jain, A. and Mohiuddin, M. 1997. Address block

location on complex mail Pieces,” In Proceeding of

International Conference of Document Analysis and

Recognition, IEEE, 897-901.

[6] Rosenfeld, A. and Kak, A.C. 1982. Digital picture

processing, second ed., Academic Press, New York.

[7] Kittler J. and Illingworth J. 1985. On threshold selection

using clustering criteria. IEEE Trans. Systems Man

Cybernetics, Vol. 15, 652–655.

[8] Brink, A.D. 1992. Thresholding of digital images using

two-dimensional entropies. Pattern Recognition, Vol. 25,

803–808.

[9] Yan, H. 1996. Unified formulation of a class of image

thresholding techniques. Pattern Recognition, Vol. 29,

2025–2032.

[10] Bernsen, J. 1986. Dynamic thresholding of grey-level

images. In Proceeding of International Conference of

Pattern Recognition, 1251-1255.

[11] Niblack, W. 1986. An Introduction to digital image

processing, Prentice-Hall, Englewood Cliffs, NJ, 115–116.

[12] Sauvola, J. and Pietikainen, M. 2000. Adaptive document

image binarization. Pattern Recognition, Vol. 33, 225–236.

[13] Kim, I.K., Jung, D.W. and Park, R.H. 2002. Document

image binarization based on topographic analysis using a

water flow model. Pattern Recognition, Vol. 35, 265–277.

[14] Gatos, B., Pratikakis, I. and Perantonis, S. J. 2006.

Adaptive degraded document image binarization. Pattern

Recognition, Vol. 39, 317–327.

[15] Chang, Y.F., Pai, Y.T. and Ruan, S.J. 2008. An efficient

thresholding algorithm for degraded document images

based on intelligent block detection. In Proceeding of IEEE

International Conference on Systems, Man, and

Cybernetics,667-672.

[16] Valizadeh, M., Komeili, M., Armanfard, N. and Kabir, E.

2009. Degraded document image binarization based on

combination of two complementary algorithms. In

Proceeding of International Conference of Advances in

Computational Tools for Engineering Applications, IEEE,

595-599.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

33

[17] Moravanszky, A. 2003. Linear algebra on the GPU, in:

W.F. Engel (Ed.), Shader X 2, Wordware Publishing,

Texas.

[18] Manocha, D. 2003. Interactive geometric & scientific

computations using graphics hardware, SIGGRAPH 2003

Tutorial Course #11.

[19] Moreland, K. and Angel E. 2003. The FFT on a GPU. In

Proceedings of SIGGRAPH Conference on Graphics

Hardware, 112-119.

[20] Mairal, J., Keriven, R. and Chariot, A. 2006. Fast and

efficient dense variational Stereo on GPU. In Proceedings

of International Symposium on 3D Data Processing,

Visualization, and Transmission, 97-704.

[21] Yang, R. and Welch, G. 2002. Fast image segmentation and

smoothing using commodity graphics hardware. Journal of

Graphics Tools, Vol. 17, (4), 91-100.

[22] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M.,

Kruger, J., Lefohn, A. E. and Purcell, T. J. 2005. A survey

of general-purpose computation on graphics hardware. In

proceeding of Eurographics, State of the Art Reports, 21–

51.

[23] Larsen, E. S., McAllister, D. 2001. Fast Matrix Multiplies

using Graphics Hardware. In Proceeding of International

Conference for High Performance Computing and

Communications, 159-168.

[24] Trendall C. and Stewart, A. J. 2000. General calculations

using graphics hardware with applications to interactive

caustics. Rendering Techniques 2000: 11th Eurographics

Workshop on Rendering, 287-298.

[25] Li, Wei, Wei, Xiaoming, A. and Kaufman, 2001.

Implementing lattice boltzmann computation on graphics

hardware. In proceeding of the International Conference for

High Performance Computing and Communications.

[26] Mizukami, Y., Koga, K. and Torioka, T. 1994. A

handwritten character recognition system using hierarchical

extraction of displacement. IEICE, J77-D-II(12):2390–

2393.

[27] Kruger, J. and Westermann, R. 2003. Linear operators for

GPU implementation of numerical algorithms. In

Proceedings of SIGGRAPH, San Diego, 908- 916.

[28] Steinkraus, D., Buck, I., and Simard, P. Y. 2005. GPUs for

machine learning algorithms. In proceeding of International

Conference of Document Analysis and Recognition, 1115-

1120.

[29] Mizukami, Y. and Koga, K. 1996. A handwritten character

recognition system using hierarchical displacement

extraction algorithm. In Proceeding of International

Conference of Pattern Recognition, volume 3,160–164.

[30] Ilie, A. Optical character recognition on graphics hardware.

Downloaded from www.cs.unc.edu/~adyilie/IP/Final.pdf

[31] Oh, K.S. and Jung, K. 2004. GPU implementation of neural

networks. Pattern Recognition, Elsevier, 1311-1314.

[32] Jung, K. 2001. Neural Network-based text localization in

color images. Pattern Recognition Letters, Vol. 22, (4),

1503- 1515.

[33] Singh, B.M., Mittal A., and Ghosh, D. 2011. Parallel

implementation of Devanagari text line and word

segmentation approach on GPU. International Journal of

Computer Applications 24(9):7–14.

[34] NVIDIA CUDA Programming Guide Version 2.0,

available at www.nvidia.com/object/cuda_develop.html.

[35] NVIDIA Corporation: NVIDIA CUDA programming

guide. Jan 2007, available at

http://developer.download.nvidia.com/compute/cuda/2_0/d

ocs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

http://www.nvidia.com/object/cuda_develop.html

