
International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

22

 Parallel Implementation of Niblack’s Binarization

Approach on CUDA

Brij Mohan Singh, Rahul Sharma
Department of CSE,

College of Engineering Roorkee,
Roorkee-247667,Uttarakhand, India

Ankush Mittal

Director (Research),
Graphic Era University, Dehradun-

248002, Uttarakhand, India

Debashish Ghosh
Department of E&C,

IIT Roorkee,
Roorkee-247667,Uttarakhand, India

ABSTRACT
Image processing and pattern recognition algorithms take more

time for execution on a single core processor. Graphics

Processing Unit (GPU) is more popular now-a-days due to their

speed, programmability, low cost and more inbuilt execution

cores in it. Most of the researchers started work to use GPUs as

a processing unit with a single core computer system to speedup

execution of algorithms. The main goal of this research work is

to make binarization faster for recognition of a large number of

degraded document images on GPU. In this paper, parallel

implementation is focused on the well known Niblack‟s

binarization approach for Optical Character Recognition (OCR)

systems, since it is one of the most fundamental and important

problems in the field of computer vision and pattern

recognition. Our work employs extensive usage of highly

multithreaded architecture of multi-cored GPU. An efficient use

of shared memory is required to optimize parallel reduction in

Compute Unified Device Architecture (CUDA). Experimental

results show that parallel implementation achieved an average

speedup of 20.84x over the serial implementation when running

on a GPU named GeForce 9500 GT having 32 cores. Niblack‟s

method of binarization is also evaluated using PSNR, F-

measure, NRM, and IND evaluation measures.

General Terms

Document Analysis and Recognition, GPU, Parallel Computing.

Keywords
Binarization; CUDA; OCR; GPU; Parallelization.

1. INTRODUCTION
Graphical Processing Units (GPUs) have been proved its

importance in terms of performance as hardware for computer

graphics [1]. Many researchers have already been applied GPUs

to implement many algorithms in various areas such as image

processing, computational geometry, and scientific computation,

as well as computer graphics [2-7]. GPUs play important role to

speedup processing of document image analysis algorithms

because it has more inbuilt execution cores. The parallel

implementation of image analysis algorithms using GPU

encounters two problems. First, the programmer should master

of the fundamentals of GPU and CUDA [8]. CUDA platform is

used to implement the parallel implementation of algorithms.

Second, in a job it needs much process cooperation between

CPU and GPU.

Presented approach of parallelization is based on the first most

important phase of character recognition systems named

binarization. Binarization is used to produce regions of

uniformity within the given image based on some threshold

criterion. There are two types of binarization; local and global.

Global thresholding methods [9-14] determine a single threshold

value for whole image, while local thresholding methods [15-

21] are based on the local information for the calculation of

threshold value for each pixel. Local thresholding methods are

used to remove degradation from poor quality as well as uniform

illuminated document images. In old documents degradations

always appears due to the environment conditions and may

occur due to several reasons of acquisition source type.

Parallel implementations on GPUs have been applied to various

numerical problems [22-25] to reduce the computation time

without sacrificing the degree of accuracy. Handwritten

character recognition is one of the important problems in the

field of computer vision. The complexity of the procedure and

the high computation cost are the main drawbacks of

implementations of fast OCR systems. Computational cost

reduction approaches to handwritten character recognition were

proposed in [26-30]. Oh at al. implemented neural networks on

GPU, which is one of popular algorithm of pattern recognition,

and the GPU was used to implement the matrix multiplication of

a neural network to enhance the time performance [31]. Jung

[32] proposed a Neural Network based text localization in color

images. Recently, Singh et al. proposed parallel implementation

of well known profiling based segmentation algorithm for

Devanagari character recognition on GPU [33].

In the following sections, we present a detailed description of

the proposed methodology as well as experimental results that

demonstrate the efficiency of the proposed methodology.

2. INTRODCTION TO NVIDIA CUDA

ARCHITECTURE
CUDA™ is a general purpose parallel computing architecture

introduced by NVIDIA. It contains the CUDA Instruction Set

Architecture (ISA) and parallel compute engine in the GPU. The

CUDA architecture is programmed using C language, which can

then be run with great performance on a CUDA enabled

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

23

processor [34]. CUDA-enabled GPUs have hundreds of cores

that can collectively run thousands of computing threads. Each

core has shared resources, including registers and memory. The

on-chip shared memory allows parallel tasks running on these

cores to share data without sending it over the system memory

bus [35]. Thread hierarchy, shared memories and barrier

synchronization are the three key abstractions of CUDA. A

kernel can be executed by a one dimensional or two dimensional

grids of multiple equally-shaped thread blocks. A thread block is

a 3, 2 or 1-dimensional group of threads. Threads within a block

can cooperate among themselves by sharing data through some

shared memory and synchronizing their execution to coordinate

memory accesses. Threads in different blocks cannot cooperate

and each block can execute in any order relative to other blocks.

The number of threads per block is therefore restricted by the

limited memory resources of a processor core.

CUDA kernel function is a fundamental building block of

CUDA programs. When launching a CUDA kernel function, a

developer specifies how many copies of it to run. We call each

of these copies a task. Because of the hardware support of the

GPU, each of these tasks can be small, and the developer can

queue hundreds of thousands of them for execution at once.

These tasks are organized in a two-level hierarchy, block and

grid. Small sets of tightly coupled tasks are grouped into blocks.

In a given execution of a CUDA kernel function, all blocks

contain the same number of tasks. The tasks in a block run

concurrently and can easily communicate with each other, which

enables useful optimizations such as those of the section

“Shared Memory”. GPU‟s hardware keeps multiple blocks in

flight at once, with no guarantees about their relative execution

order. As a result, synchronization between blocks is difficult.

The set of all blocks run during the execution of a CUDA kernel

function is called a grid.

3. NIBLACK’S BINARIZATION

APPROACH
Niblack‟s algorithm is a local thresholding algorithm [16]. The

threshold value for a pixel is decided by local mean and local

standard deviation over a specific window size around each

pixel. The local threshold T(x,y) for pixel (x,y) is calculated by

formula:

     yxskyxmyxT ,,, 

(1)

Where m(x,y) and s(x,y) are the local mean and local standard

deviation of the pixels within the local window region. The local

window is rectangular in nature and pixel (x,y) is the centre of it.

The value of „k‟ controls the amount of text region inside the

local window. To conserve local details and handle local

illumination level one requires small window size but if choose

too small window size then it will not cover object and eliminate

noise in the gray image. Window size of 15x15 and k=-0.2 was

recommended by Trier and Jain [36].

4. EVALUATION MEASURES
The method of Niblack is evaluated using the four evaluation

measures: F-measure, Peak Signal to Noise Ratio (PSNR),

Negative Rate Metric (NRM), and Information to Noise

Difference (IND).

 F-Measure

ecisioncall

ecisioncall
MeasureF

PrRe

PrRe2




 (2)

Where
FNTP

TP
call


Re and

FPTP

TP
ecision


Pr

 PSNR











MSE

C
PSNR

2

log10 (3)

 Where
 

MN

yxIyxI
MSE

M

x

N

y  



1 1

2
),('),(

, I is the original

image and I’ is binarized.

 NRM

2

FPFN NRNR
NRM


 (4)

Where
TPFN

FN
NRFN


 and

TNFP

FP
NRFP




 Information to Noise Difference (IND)

We have designed a method to test the quality of the

binarized image based on information and noise.

NvalueIvalueIND  (5)

Where

GTNB

TP
Ivalue  and

BINB

FP
Nvalue  ; NBGT and NBBI

are the number of black pixels in ground truth and in binarized

image respectively. Here Ivalue signifies the information

preserved in the binarized image and Nvalue represents the noise

in the binarized image. The value of IND ranges between -1 to

+1 where +1 means binarized image is the exact copy of ground

truth while -1 signifies that binarized image is the invert of

ground truth.

5. IMPLEMENTATION
In this work, the implementation of proposed approach is based

on the two set of experiments. In the first set of experiment,

proposed algorithm is implemented in C language and in second

set, parallel implementation is done using CUDA. The following

section dictates the detailed description of the parallel

implementation of the algorithm.

5.1 Parallel Implementation
In CUDA, it is assumed that both host and device maintain their

own DRAM. Host memory is allocated using malloc and device

memory is allocated using cudaMalloc. CUDA threads are

assigned a unique thread ID that identifies its location within the

thread, block and grid. This provides a natural way to invoke

computation across the image, by using the thread IDs for

addressing. The parallel implementation of algorithm of

binarization is shown in the form of pseudo code shown in

algorithm 1.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

24

6. HARDWARE SPECIFICATIONS
All the experiments are carried out using the hardware

specifications of GPU: GeForce 9500 GT, 1 MB DDR2, No of

Processors = 4, No of core =32, RAM 1 GB, Frequency 1.35

GHz, DDR2 and CPU: Intel Core 2 Duo, 2.66 GHZ, No of cores

available =2, No of thread=1, No of thread/core=1, Physical

Memory =2 GB, DDR2

7. RESULTS AND DISCUSSIONS
For the testing of Niblack‟s approach of local binarization, we

collected a data set of handwritten as well as printed documents

from newspapers, old books and from different writers. The

collected documents are scanned using a scanner at 300 dpi and

tested on the computer specifications shown in content 5. The

results of Niblack‟s binarization approach are shown in fig. 2

that demonstrates the efficiency of this approach. On the basis of

visual observation, Niblack‟s method of binarization recovers

text from degraded image but it produce background noise. To

make faster the method, we parallelized it on CUDA and

achieved an average speedup of 20.84x over the serial

implementation when running on a GPU. The comparison of

serial implementation over parallel is shown in table 1. Table 1

also shows that execution time depends on the window size and

image size in megapixels.

Table 1: Execution time serial over parallel implementation

Further, the performance of method is evaluated using F-

measure, PSNR, NRM, and IND measures, which show the

effectiveness of method shown in table 2. Fig.1 shows the graph

of execution time of GPU in seconds vs. window size. Fig.2

shows the graph of speedup vs. window size. Fig. 3 shows the

graph of execution time of CPU in seconds vs. window size.

Output images of Niblack approach is shown in fig. 4.

Algorithm 1: Parallel Implementation of binarization

algorithm

Texture grayImage;

Kernal(windowSize, outputImage){

 int x = blockIdx.x * blockDim.x + threadIdx.x;

 int y = blockIdx.y * blockDim.y + threadIdx.y;

 int sum=0, sqr_sum=0;

 for(i=y-windowSize to y+windowSize)

 for(j=x-windowSize to x+windowSize)

 {

 int v = grayImage.getPixel(j, i);

 sum += v;

 sqr_sum += v*v;

 }

 Calculate mean & varience;

 Threshold = mean+k*varience;

 If

 (grayImage.getPixel(x, y) <= threshold)

 outputImage.setPixel(x, y) = BLACK;

 else

 outputImage.setPixel(x, y) = WHITE;

 }

Main(){

 dim3 dBlock(BLOCKSIZE, BLOCKSIZE);

 dim3 dGrid((width+dBlock.x-1)/dBlock.x,

(height+dBlock.y-1)/dBlock.y);

 kernel<<< dGrid, dBlock>>>(windowSize,

outputImage);

}

Window

Size
 Megapixels Serial Parallel Speed-Up

Speed-Up

Average

7

1 0.328 0.013831 23.7148435

 22.97599222

2 0.625 0.027624 22.6252534

4 1.25 0.05525 22.6244344

8 2.535 0.110483 22.9447064

16 5.078 0.221064 22.9707234

11

1 0.75 0.035703 21.0066381

21.04631935

2 1.507 0.071432 21.0969873

4 3.002 0.142813 21.0204953

8 6.016 0.285665 21.0596328

16 12.03 0.571555 21.0478432

15

1 1.39 0.068424 20.3145095

20.34245156

2 2.797 0.137383 20.359142

4 5.594 0.274672 20.3661094

8 11.172 0.549496 20.3313582

16 22.359 1.099201 20.3411387

19

1 2.25 0.112249 20.044722

20.04419945

2 4.507 0.224998 20.0312892

4 9.015 0.450076 20.0299505

8 18.047 0.899823 20.0561666

16 36.125 1.800949 20.058869

23

1 3.296 0.167096 19.7251879

19.79943118

2 6.625 0.335233 19.7623742

4 13.265 0.669849 19.8029705

8 26.572 1.339179 19.8420077

16 53.265 2.681401 19.8646155

Average Speed-Up

20.8416787

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

25

 Fig. 1: Execution time of GPU in seconds vs. window size Fig. 2: Speedup vs. Window size

 Fig 3: Execution time of CPU in seconds vs. window size

0

0.5

1

1.5

2

2.5

3

7 11 15 19 23Ex
e

cu
ti

o
n

 T
im

e
(i

n
 s

e
co

n
d

s)

Window Size

GPU
1 MegaPixels
2 MegaPixels
4 MegaPixels
8 MegaPixels
16 MegaPixels

0

5

10

15

20

25

7 11 15 19 23

Sp
e

e
d

 U
p

Window Size

1 MegaPixels

2 MegaPixels

4 MegaPixels

8 MegaPixels

16 MegaPixels

0

10

20

30

40

50

60

7 11 15 19 23

E
x

ec
u

ti
o
n

 T
im

e

(i
n

 s
ec

o
n

d
s)

Window Size

CPU

1 MegaPixels

2 MegaPixels

4 MegaPixels

8 MegaPixels

16 MegaPixels

Table 2: Evaluation Measures

Image F- measure

 (%)

PSNR

(db)

NRM

(10-2)

IND

1 56.623 16.319 12.024 0.379

2 63.762 21.012 6.853 0.468

3 49.131 16.867 10.166 0.326

4 62.357 20.410 7.281 0.453

5 49.473 15.831 11.436 0.328

Image

No.
Degraded Image Ground Truth Image Niblack‟s Output

1.

2.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

26

Fig. 4: Output images of Niblack‟s approach of binarization

8. CONCLUSION

In this research work, a well known Niblack‟s binarization

algorithm has been parallelized and analyzed with evaluation

measures. The method is evaluated using PSNR, F-measure,

NRM, and IND evaluation measures. The implementation of

binarization algorithm on the graphics device is promising with

large two dimensional degraded document images. However,

Niblack‟s binarization method produces more background noise

but it completely recovers text from severely degraded

documents. Adding few post-processing steps make it very

attractive for restoration of information from the degraded

document images.

CUDA itself has been shown to be an excellent framework to

accelerate computational problems in image processing,

numerical solving techniques and pattern recognition areas.

9. REFERENCES
[1] Fernando, R and Kilgard, M. J. 2003. The Cg tutorial the

definitive guide to programmable real-time graphics.

Addison-Wesley.

[2] Moravanszky, A. 2003. Linear algebra on the GPU, in:

W.F. Engel (Ed.), Shader X 2, Wordware Publishing,

Texas.

3.

4.

5.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

27

[3] Manocha, D. 2003. Interactive geometric & scientific

computations using graphics hardware, SIGGRAPH 2003

Tutorial Course #11.

[4] Moreland, K. and Angel E. 2003. The FFT on a GPU. In

Proceedings of SIGGRAPH Conference on Graphics

Hardware, 112-119.

[5] Mairal, J., Keriven, R. and Chariot, A. 2006. Fast and

efficient dense variational Stereo on GPU. In Proceedings

of International Symposium on 3D Data Processing,

Visualization, and Transmission, 97-704.

[6] Yang, R. and Welch, G. 2002. Fast image segmentation and

smoothing using commodity graphics hardware. Journal of

Graphics Tools, Vol. 17, (4), 91-100.

[7] Fung, J. and Man, S. 2005. OpenVIDIA: Parallel GPU

computer vision. In Proceedings of ACM International

Conference on Multimedia, 849-852.

[8] Jang, H., Park, A. and Jung, K. 2008. Neural network

implementation using CUDA and OpenMP. In Proceeding

of Computing: Techniques and Applications, (DICTA),

IEEE, 155 – 161.

[9] Otsu, N. 1979. A threshold selection method from gray

level histograms. IEEE Trans. on Systems, Man and

Cybernetics, Vol. 9, 62-66.

[10] Yu, B., Jain, A. and Mohiuddin, M. 1997. Address block

location on complex mail Pieces,” In Proceeding of

International Conference of Document Analysis and

Recognition, IEEE, 897-901.

[11] Rosenfeld, A. and Kak, A.C. 1982. Digital picture

processing, second ed., Academic Press, New York.

[12] Kittler J. and Illingworth J. 1985. On threshold selection

using clustering criteria. IEEE Trans. Systems Man

Cybernetics, Vol. 15, 652–655.

[13] Brink, A.D. 1992. Thresholding of digital images using

two-dimensional entropies. Pattern Recognition, Vol. 25,

803–808.

[14] Yan, H. 1996. Unified formulation of a class of image

thresholding techniques. Pattern Recognition, Vol. 29,

2025–2032.

[15] Bernsen, J. 1986. Dynamic thresholding of grey-level

images. In Proceeding of International Conference of

Pattern Recognition, 1251-1255.

[16] Niblack, W. 1986. An Introduction to digital image

processing, Prentice-Hall, Englewood Cliffs, NJ, 115–116.

[17] Sauvola, J. and Pietikainen, M. 2000. Adaptive document

image binarization. Pattern Recognition, Vol. 33, 225–236.

[18] Kim, I.K., Jung, D.W. and Park, R.H. 2002. Document

image binarization based on topographic analysis using a

water flow model. Pattern Recognition, Vol. 35, 265–277.

[19] Gatos, B., Pratikakis, I. and Perantonis, S. J. 2006.

Adaptive degraded document image binarization. Pattern

Recognition, Vol. 39, 317–327.

[20] Chang, Y.F., Pai, Y.T. and Ruan, S.J. 2008. An efficient

thresholding algorithm for degraded document images

based on intelligent block detection. In Proceeding of IEEE

International Conference on Systems, Man, and

Cybernetics, 667-672.

[21] Valizadeh, M., Komeili, M., Armanfard, N. and Kabir, E.

2009. Degraded document image binarization based on

combination of two complementary algorithms. In

Proceeding of International Conference of Advances in

Computational Tools for Engineering Applications, IEEE,

595-599.

[22] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M.,

Kruger, J., Lefohn, A. E. and Purcell, T. J. 2005. A survey

of general-purpose computation on graphics hardware. In

proceeding of Eurographics, State of the Art Reports, 21–

51.

[23] Larsen, E. S., McAllister, D. 2001. Fast Matrix Multiplies

using Graphics Hardware. In Proceeding of International

Conference for High Performance Computing and

Communications, 159-168.

[24] Trendall C. and Stewart, A. J. 2000. General calculations

using graphics hardware with applications to interactive

caustics. Rendering Techniques 2000: 11th Eurographics

Workshop on Rendering, 287-298.

[25] Li, Wei, Wei, Xiaoming, A. and Kaufman, 2001.

Implementing lattice boltzmann computation on graphics

hardware. In proceeding of the International Conference for

High Performance Computing and Communications.

[26] Mizukami, Y., Koga, K. and Torioka, T. 1994. A

handwritten character recognition system using hierarchical

extraction of displacement. IEICE, J77-D-II(12):2390–

2393.

[27] Kruger, J. and Westermann, R. 2003. Linear operators for

GPU implementation of numerical algorithms. In

Proceedings of SIGGRAPH, San Diego, 908- 916.

[28] Steinkraus, D., Buck, I., and Simard, P. Y. 2005. GPUs for

machine learning algorithms. In proceeding of International

Conference of Document Analysis and Recognition, 1115-

1120.

[29] Mizukami, Y. and Koga, K. 1996. A handwritten character

recognition system using hierarchical displacement

extraction algorithm. In Proceeding of International

Conference of Pattern Recognition, volume 3,160–164.

[30] Ilie, A. Optical character recognition on graphics hardware.

Downloaded from www.cs.unc.edu/~adyilie/IP/Final.pdf

[31] Oh, K.S. and Jung, K. 2004. GPU implementation of neural

networks. Pattern Recognition, Elsevier, 1311-1314.

[32] Jung, K. 2001. Neural Network-based text

localization in color images. Pattern Recognition Letters,

Vol. 22, (4), 1503- 1515.

[33] Singh, B.M., Mittal A., and Ghosh, D. 2011. Parallel

implementation of Devanagari text line and word

segmentation approach on GPU. International Journal of

Computer Applications 24(9):7–14.

[34] NVIDIA CUDA Programming Guide Version 2.0,

available at www.nvidia.com/object/cuda_develop.html.

[35] NVIDIA Corporation: NVIDIA CUDA programming

guide. Jan 2007, available at

http://developer.download.nvidia.com/compute/cuda/2_0/d

ocs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

[36] Trier, O.D. and Jain, A.K. 1995. Goal-directed evaluation

of thresholding methods, IEEE Trans. Pattern Anal. Mach.

Intell. 17 (12) 1191–1201.

http://www.nvidia.com/object/cuda_develop.html

