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ABSTRACT 

Fast algorithms are important for efficient image processing 

systems for handling large set of calculations. To speedup the 

processing, parallel implementation of an algorithm can be done 

using Graphics Processing Unit (GPU). GPU is general purpose 

computation hardware; programmability and low cost make it 

productive. Binarization is widely used technique in the image 

analysis and recognition applications. In this paper, we 

investigate the accuracy and performance characteristics of 

GPUs on well known global binarization Otsu’s approach for 

Optical Character Recognition systems. The main goal of this 

research work is to make binarization faster for recognition of a 

large number of document images on GPU. The algorithm is 

implemented using Compute Unified Device Architecture 

(CUDA). Experimental results show that parallel 

implementation achieved an average speedup of 1.6x over the 

serial implementation when running on a GPU named GeForce 

9500 GT having 32 cores. Otsu’s method is also evaluated using 

PSNR, F-measure, NRM, and IND evaluation measures. 

General Terms 

Document Analysis and Recognition, Image Processing, Pattern 

Recognition. 
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1. INTRODUCTION 
Binarization is an active research area in the field of Document 

Image Processing. Binarization (thresholding) converts grey 

image into binary image. Binarization of document images is the 

first most important step in pre-processing of scanned 

documents to save all or maximum subcomponents such us text, 

background and image [1]. Binarization computes the threshold 

value that differentiate object and background pixels [2]. Color 

and grey level image processing consumes lots of processing 

powers. But binary images decrease computational load and 

increase efficiency of the systems.  

 

Binarization has many applications such as medical image 

processing, document image analysis, face recognition etc. [3] 

Binarization can be classified into two categories: global and 

adaptive. Global methods [4-9] are based on the finding a single 

threshold value for the entire image, and adaptive methods [10-

15] are based on the local information obtained from the 

candidate pixel and is needed for the calculation of threshold 

value for each pixel. If illumination of input image is not equal 

(evenly illuminated), local methods might perform better. If 

image has equal illumination then global methods can work 

better. But global methods cannot handle any of the image 

degradation and not able to remove noise. Local methods are 

significantly more time-consuming and computationally 

expensive. 

 

Fast and accurate algorithms are necessary for Optical Character 

Recognition (OCR) systems to perform operations on document 

images. To speedup the processing, parallel implementation of 

an algorithm can be done using Graphics Processing Unit (GPU) 

as general purpose computation hardware; programmability and 

low cost make it productive [16]. 

Some studies of GPU implementation are in [17-22]. To reduce 

the computation of numerical problems, parallel 

implementations on GPUs have been applied in [22-25].Parallel 

implementations on GPUs to handwritten character recognition 

were proposed in [26-30]. Oh at al. parallelized Neural 

Networks on GPU. In [31], GPU was used to implement the 

matrix multiplication of a Neural Network to enhance the time 

performance. Jung [32] proposed a Neural Network based text 

localization in color images. Recently, Singh et al. proposed 

parallel implementation of well known profiling based 

segmentation algorithm for Devanagari character recognition on 

GPU [33]. 

2. NVIDIA CUDA 
The programmable GPU has evolved due to growing need for 

real-time and high definition 3D graphics processing. It has 

evolved into multithreaded, highly parallel and multi-core chip 

system with excellent computational and high memory 

bandwidth [34]. To fulfill the dream of parallelization, CUDA™ 

was introduced by NVIDIA in November 2006 [35]. It is a 

general purpose parallel computing architecture. It contains new 

instruction set architecture and parallel programming model. 

CUDA provides a new software environment that allows 

developers to use C as a high-level programming language that 

enable a straightforward implementation of parallel algorithms 
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and supports heterogeneous computation where applications use 

both the CPU and GPU. Serial implementations of algorithm run 

on CPUs and parallel implementations run on GPUs. CPU and 

GPU have own memory space when executing programs and 

allows simultaneous computation on both the CPU and GPU 

without contention for memory resources.  Many languages such 

as FORTRAN, C++, OpenCL, and DirectX Compute will be 

supported in the future. The development of application 

software that transparently scales its parallelism to leverage the 

increasing number of processor cores such as GPUs are 

challenging. To run the CUDA programs, the CUDA Toolkit for 

compiling and build a CUDA application in conjunction with 

Microsoft Visual Studio and CUDA SDK  includes sample 

projects that have all the necessary project configuration and 

build files to perform one-click builds using Microsoft Visual 

Studio. 

 

3. OTSU’S METHOD OF BINARIZATION 
The most well-known global binarization method was proposed 

by N. Otsu [9]. Otsu’s method works better where clear 

separation between foreground and background exists or where 

image illumination is not variable as shown in fig. 1. 

Unfortunately, real life document images possess various kinds 

of degradations (e.g. illumination contrast, skewed, stains, and 

noise) that weaken thresholding proposed by N. Otsu as shown 

in fig.2.  

   

         (a)                     (b) 

   

      (c)                       (d) 

Input Images 
Binarized images by Otsu’s 

Method 

 

Figure 1: Sample of Binarization 

This method is based on the pixels of an image are separated 

into two classes C0 (e.g. objects) and C1 (background) and by a 

threshold T. C0 denotes pixels with gray level [1, ..., T] and C1 

denotes pixels with gray level [T + 1, ..., L]. The gray level 

histogram is normalized and regarded as a probability 

distribution:  

  

Input Images 
Binarized image by Otsu’s 

Method 

            

Figure 2:  Otsu’s binarization over degraded image 
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Where ωi (Weights) are the probabilities of the two classes and 

i
2 variances of classes. According to Otsu, intra-class 

variance minimizing is the same as maximizing inter-class 

variance: 

          22121
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(2) 

which is expressed in terms of class probabilities ωi and class 

means μi which in turn can be updated iteratively.  

 

The sequential algorithm is implemented in C++ and making use 

of C++ Standard Template Library. GCC 3.4.2 (mingw-special) 

compiler is used and thread model is win32. The following 

pseudo-code outlines the structure of sequential code of Otsu’s 

method. 

 

int bin[256], bin1, bin2; 

for( int i=0; i< 256; i++) 

 bin[i] = 0; 

for( int i=0; i<nop; i++) 

 bin[image[i]]++; 

for( int i=0; bin[i]==0; i++) 

 bin1 = i; 

for( int i=255; bin[i]==0; i--) 

 bin2 = i; 

double nh[256], ch[256], m[256]; 

for( int i=0; i<256; i++) 

 nh[i] = bin[i]/nop; 

ch[0] = nh[0]; 

m[0] = 0.0; 

for( int =1; i<256; i++){ 

 ch[i] = ch[i-1] + nh[i]; 

 m[i] = m[i-1] + i*nh[i]; 

} 

double mean = m[255], max=0; 

int threshold = 0; 

for( i=bin1; i<=bin2; i++){ 

 bcv = mean*ch[i]-m[i]; 

 bcv *= bcv/(ch[i]*(1.0-ch[i])); 

 if( max<bcv){ 

  max = bcv; 
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  threshold = I; 

 } 

} 

for( int i=0; i<nop; i++) 

 outImage[i] = (image[i]>threshold)?WHITE:BLACK; 

where 

‘nop’ is number of pixels in image 

 

4. PARALLEL IMPLEMENTATION 
In the second set of experiment the algorithm is parallelized 

using CUDA platform. In CUDA, it is assumed that both host 

and device maintain their own DRAM. Host memory is 

allocated using malloc and device memory is allocated using 

cudaMalloc. CUDA threads are assigned a unique thread ID that 

identifies its location within the thread, block and grid. The 

following pseudo-code outlines the structure of parallel code of 

Otsu’s method. 

 

Main() 

{ 

Define block and grid 

 Kernal_Histogram(numOfPixels, image, histogram) 

 Calculate threshold from histogram 

 Kernal_Threshold(numOfPixels, image, threshold) 

} 

Kernal_Histogram(numOfPixels, image, histogram){ 

 Declare shared memory subHist[numOfThreads][256]; 

 for each data pixels in window 

  subHist [threadId][ currentPixelValue]++; 

 end for 

 Apply scan to merge subHist into histogram 

} 

 

Kernal_Threshold(numOfPixels, image, threshold){ 

for each data pixels in window 

  if(currentPixelValue<threshold) 

   currentPixelValue = BLACK; 

  else currentPixelValue = WHITE; 

 end for 

} 

 

 

5. HARDWARE SPECIFICATIONS 
All the experiments are carried out using the hardware 

specifications of GPU: GeForce 9500 GT, 1 MB DDR2, No of 

Processors = 4, No of core =32, RAM 1 GB, Frequency 1.35 

GHz, DDR2 and CPU: Intel Core 2 Duo, 2.66 GHZ, No of cores 

available =2, No of thread=1, No of  thread/core=1, Physical 

Memory =2 GB, DDR2 

 

6. EVALUATION MEASURES 
 F-Measure: it is a way of combining recall and precision 

scores into a single measure of performance 

ecisioncall
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 Peak Signal to Noise Ratio (PSNR): the ratio between the 

maximum possible power of a signal and the power of 

corrupting noise that affects the fidelity of its 

representation.   
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image and I’ is binarized. 

 

 Negative Rate Metric (NRM): It is based on pixel-wise 

mismatches between the xground truth and observations in 

a frame. 

2
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 Information to Noise Difference (IND): It is a method to 

test the quality of the binarized image based on information 

and noise. 

 

NvalueIvalueIND                                                 (5) 

Where GTNB

TP
Ivalue 

 and BINB

FP
Nvalue 

; NBGT and  

 

NBBI are the number of black pixels in ground truth and in 

binarized image respectively. Here Ivalue signifies the 

information preserved in the binarized image and Nvalue 

represents the noise in the binarized image. The value of 

IND ranges between -1 to +1 where +1 means binarized 

image is the exact copy of ground truth while -1 signifies 

that binarized image is the invert of ground truth. 

 

7. RESULTS AND DISCUSSION 
For the testing of Otsu’s approach of local binarization, we 

collected a data set of handwritten as well as printed documents 

from newspapers, old books and from different writers. The 

collected documents are scanned using a scanner at 300 dpi and 
tested on the computer and GPU specifications shown in content 

5. To make faster the method, we parallelized it on CUDA and 

achieved an average speedup of 1.6x over the serial 

implementation when running on a GPU. The comparison of 

execution time of serial implementation over parallel is shown 

in table 1. Since Otsu’s method is global binarization method, 

the execution time of algorithm depends on the window size and 

image size in megapixels as shown in fig.3.  

 

The results of Otsu’s binarization approach are shown in fig. 4 

that demonstrates the efficiency of this approach. The algorithm 
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of global binarization approach is also evaluated using PSNR, F-

measure, NRM and IND measures. The experimental results of 

evaluation measure are shown in table 2. 

 

Table 1: comparison of execution time of serial implementation 

over parallel 

 

Table 2: Evaluation Measures  

Image 
F- measure 

(%) 

PSNR 

(db) 

NRM 

(10-2) 
IND 

1 
93.88 70.36 1.59 .171 

2 
92.23 65.06 1.99 .198 

3 
90.35 63.12 2.01 .201 

4 
72.76 50.31 2.87 .278 

 

 
 

Figure 3: Speed-up Vs. Image size 

 

8. CONCLUSION 

In this research work, a well known Otsu’s global binarization 

algorithm has been parallelized and analyzed with evaluation 

measures.  The method is evaluated using PSNR, F-measure, 

NRM, and IND evaluation measures. The implementation of 

binarization algorithm on the graphics device is promising. 

However, proposed method is not so much speed-up due to its 

global properties of binarization. 

Fast and accurate algorithms are necessary for fast Optical 

Character Recognition (OCR) systems to perform operations on 

large size document images. To speedup the processing, parallel 

implementation of algorithms on Graphics Processing Unit 

(GPU) makes it attractive. GPU itself has been shown to be an 

excellent hardware device to accelerate computational speed-up 

in the development of fast OCR systems.  
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Figure 4: Otsu’s output of binarization 


