
International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

16

Parallel Implementation of Otsu’s Binarization

Approach on GPU

Brij Mohan Singh, Rahul Sharma

Department of CSE,
College of Engineering Roorkee,

Roorkee-247667,Uttarakhand, India

Ankush Mittal

Director (Research),
Graphic Era University, Dehradun-

248002, Uttarakhand, India

Debashish Ghosh
Department of E&C,

IIT Roorkee,
Roorkee-247667,Uttarakhand, India

ABSTRACT

Fast algorithms are important for efficient image processing

systems for handling large set of calculations. To speedup the

processing, parallel implementation of an algorithm can be done

using Graphics Processing Unit (GPU). GPU is general purpose

computation hardware; programmability and low cost make it

productive. Binarization is widely used technique in the image

analysis and recognition applications. In this paper, we

investigate the accuracy and performance characteristics of

GPUs on well known global binarization Otsu’s approach for

Optical Character Recognition systems. The main goal of this

research work is to make binarization faster for recognition of a

large number of document images on GPU. The algorithm is

implemented using Compute Unified Device Architecture

(CUDA). Experimental results show that parallel

implementation achieved an average speedup of 1.6x over the

serial implementation when running on a GPU named GeForce

9500 GT having 32 cores. Otsu’s method is also evaluated using

PSNR, F-measure, NRM, and IND evaluation measures.

General Terms

Document Analysis and Recognition, Image Processing, Pattern

Recognition.

Keywords
Binarization; CUDA; GPU; OCR; Parallelization.

1. INTRODUCTION
Binarization is an active research area in the field of Document

Image Processing. Binarization (thresholding) converts grey

image into binary image. Binarization of document images is the

first most important step in pre-processing of scanned

documents to save all or maximum subcomponents such us text,

background and image [1]. Binarization computes the threshold

value that differentiate object and background pixels [2]. Color

and grey level image processing consumes lots of processing

powers. But binary images decrease computational load and

increase efficiency of the systems.

Binarization has many applications such as medical image

processing, document image analysis, face recognition etc. [3]

Binarization can be classified into two categories: global and

adaptive. Global methods [4-9] are based on the finding a single

threshold value for the entire image, and adaptive methods [10-

15] are based on the local information obtained from the

candidate pixel and is needed for the calculation of threshold

value for each pixel. If illumination of input image is not equal

(evenly illuminated), local methods might perform better. If

image has equal illumination then global methods can work

better. But global methods cannot handle any of the image

degradation and not able to remove noise. Local methods are

significantly more time-consuming and computationally

expensive.

Fast and accurate algorithms are necessary for Optical Character

Recognition (OCR) systems to perform operations on document

images. To speedup the processing, parallel implementation of

an algorithm can be done using Graphics Processing Unit (GPU)

as general purpose computation hardware; programmability and

low cost make it productive [16].

Some studies of GPU implementation are in [17-22]. To reduce

the computation of numerical problems, parallel

implementations on GPUs have been applied in [22-25].Parallel

implementations on GPUs to handwritten character recognition

were proposed in [26-30]. Oh at al. parallelized Neural

Networks on GPU. In [31], GPU was used to implement the

matrix multiplication of a Neural Network to enhance the time

performance. Jung [32] proposed a Neural Network based text

localization in color images. Recently, Singh et al. proposed

parallel implementation of well known profiling based

segmentation algorithm for Devanagari character recognition on

GPU [33].

2. NVIDIA CUDA
The programmable GPU has evolved due to growing need for

real-time and high definition 3D graphics processing. It has

evolved into multithreaded, highly parallel and multi-core chip

system with excellent computational and high memory

bandwidth [34]. To fulfill the dream of parallelization, CUDA™

was introduced by NVIDIA in November 2006 [35]. It is a

general purpose parallel computing architecture. It contains new

instruction set architecture and parallel programming model.

CUDA provides a new software environment that allows

developers to use C as a high-level programming language that

enable a straightforward implementation of parallel algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

17

and supports heterogeneous computation where applications use

both the CPU and GPU. Serial implementations of algorithm run

on CPUs and parallel implementations run on GPUs. CPU and

GPU have own memory space when executing programs and

allows simultaneous computation on both the CPU and GPU

without contention for memory resources. Many languages such

as FORTRAN, C++, OpenCL, and DirectX Compute will be

supported in the future. The development of application

software that transparently scales its parallelism to leverage the

increasing number of processor cores such as GPUs are

challenging. To run the CUDA programs, the CUDA Toolkit for

compiling and build a CUDA application in conjunction with

Microsoft Visual Studio and CUDA SDK includes sample

projects that have all the necessary project configuration and

build files to perform one-click builds using Microsoft Visual

Studio.

3. OTSU’S METHOD OF BINARIZATION
The most well-known global binarization method was proposed

by N. Otsu [9]. Otsu’s method works better where clear

separation between foreground and background exists or where

image illumination is not variable as shown in fig. 1.

Unfortunately, real life document images possess various kinds

of degradations (e.g. illumination contrast, skewed, stains, and

noise) that weaken thresholding proposed by N. Otsu as shown

in fig.2.

 (a) (b)

 (c) (d)

Input Images
Binarized images by Otsu’s

Method

Figure 1: Sample of Binarization

This method is based on the pixels of an image are separated

into two classes C0 (e.g. objects) and C1 (background) and by a

threshold T. C0 denotes pixels with gray level [1, ..., T] and C1

denotes pixels with gray level [T + 1, ..., L]. The gray level

histogram is normalized and regarded as a probability

distribution:

Input Images
Binarized image by Otsu’s

Method

Figure 2: Otsu’s binarization over degraded image

)()()(2
2

21
2

1

2
ttttt

(1)

Where ωi (Weights) are the probabilities of the two classes and

i
2 variances of classes. According to Otsu, intra-class

variance minimizing is the same as maximizing inter-class

variance:

 22121

222)(ttttttb

(2)

which is expressed in terms of class probabilities ωi and class

means μi which in turn can be updated iteratively.

The sequential algorithm is implemented in C++ and making use

of C++ Standard Template Library. GCC 3.4.2 (mingw-special)

compiler is used and thread model is win32. The following

pseudo-code outlines the structure of sequential code of Otsu’s

method.

int bin[256], bin1, bin2;

for(int i=0; i< 256; i++)

 bin[i] = 0;

for(int i=0; i<nop; i++)

 bin[image[i]]++;

for(int i=0; bin[i]==0; i++)

 bin1 = i;

for(int i=255; bin[i]==0; i--)

 bin2 = i;

double nh[256], ch[256], m[256];

for(int i=0; i<256; i++)

 nh[i] = bin[i]/nop;

ch[0] = nh[0];

m[0] = 0.0;

for(int =1; i<256; i++){

 ch[i] = ch[i-1] + nh[i];

 m[i] = m[i-1] + i*nh[i];

}

double mean = m[255], max=0;

int threshold = 0;

for(i=bin1; i<=bin2; i++){

 bcv = mean*ch[i]-m[i];

 bcv *= bcv/(ch[i]*(1.0-ch[i]));

 if(max<bcv){

 max = bcv;

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

18

 threshold = I;

 }

}

for(int i=0; i<nop; i++)

 outImage[i] = (image[i]>threshold)?WHITE:BLACK;

where

‘nop’ is number of pixels in image

4. PARALLEL IMPLEMENTATION
In the second set of experiment the algorithm is parallelized

using CUDA platform. In CUDA, it is assumed that both host

and device maintain their own DRAM. Host memory is

allocated using malloc and device memory is allocated using

cudaMalloc. CUDA threads are assigned a unique thread ID that

identifies its location within the thread, block and grid. The

following pseudo-code outlines the structure of parallel code of

Otsu’s method.

Main()

{

Define block and grid

 Kernal_Histogram(numOfPixels, image, histogram)

 Calculate threshold from histogram

 Kernal_Threshold(numOfPixels, image, threshold)

}

Kernal_Histogram(numOfPixels, image, histogram){

 Declare shared memory subHist[numOfThreads][256];

 for each data pixels in window

 subHist [threadId][currentPixelValue]++;

 end for

 Apply scan to merge subHist into histogram

}

Kernal_Threshold(numOfPixels, image, threshold){

for each data pixels in window

 if(currentPixelValue<threshold)

 currentPixelValue = BLACK;

 else currentPixelValue = WHITE;

 end for

}

5. HARDWARE SPECIFICATIONS
All the experiments are carried out using the hardware

specifications of GPU: GeForce 9500 GT, 1 MB DDR2, No of

Processors = 4, No of core =32, RAM 1 GB, Frequency 1.35

GHz, DDR2 and CPU: Intel Core 2 Duo, 2.66 GHZ, No of cores

available =2, No of thread=1, No of thread/core=1, Physical

Memory =2 GB, DDR2

6. EVALUATION MEASURES
 F-Measure: it is a way of combining recall and precision

scores into a single measure of performance

ecisioncall

ecisioncall
MeasureF

PrRe

PrRe2

 (2)

Where FNTP

TP
call

Re

and FPTP

TP
ecision

Pr

 Peak Signal to Noise Ratio (PSNR): the ratio between the

maximum possible power of a signal and the power of

corrupting noise that affects the fidelity of its

representation.

MSE

C
PSNR

2

log10

 (3)

 Where

MN

yxIyxI
MSE

M

x

N

y

1 1

2
),('),(

, I is the original

image and I’ is binarized.

 Negative Rate Metric (NRM): It is based on pixel-wise

mismatches between the xground truth and observations in

a frame.

2

FPFN NRNR
NRM

 (4)

Where TPFN

FN
NRFN

and TNFP

FP
NRFP

 Information to Noise Difference (IND): It is a method to

test the quality of the binarized image based on information

and noise.

NvalueIvalueIND (5)

Where GTNB

TP
Ivalue

 and BINB

FP
Nvalue

; NBGT and

NBBI are the number of black pixels in ground truth and in

binarized image respectively. Here Ivalue signifies the

information preserved in the binarized image and Nvalue

represents the noise in the binarized image. The value of

IND ranges between -1 to +1 where +1 means binarized

image is the exact copy of ground truth while -1 signifies

that binarized image is the invert of ground truth.

7. RESULTS AND DISCUSSION
For the testing of Otsu’s approach of local binarization, we

collected a data set of handwritten as well as printed documents

from newspapers, old books and from different writers. The

collected documents are scanned using a scanner at 300 dpi and
tested on the computer and GPU specifications shown in content

5. To make faster the method, we parallelized it on CUDA and

achieved an average speedup of 1.6x over the serial

implementation when running on a GPU. The comparison of

execution time of serial implementation over parallel is shown

in table 1. Since Otsu’s method is global binarization method,

the execution time of algorithm depends on the window size and

image size in megapixels as shown in fig.3.

The results of Otsu’s binarization approach are shown in fig. 4

that demonstrates the efficiency of this approach. The algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

19

of global binarization approach is also evaluated using PSNR, F-

measure, NRM and IND measures. The experimental results of

evaluation measure are shown in table 2.

Table 1: comparison of execution time of serial implementation

over parallel

Table 2: Evaluation Measures

Image
F- measure

(%)

PSNR

(db)

NRM

(10-2)
IND

1
93.88 70.36 1.59 .171

2
92.23 65.06 1.99 .198

3
90.35 63.12 2.01 .201

4
72.76 50.31 2.87 .278

Figure 3: Speed-up Vs. Image size

8. CONCLUSION

In this research work, a well known Otsu’s global binarization

algorithm has been parallelized and analyzed with evaluation

measures. The method is evaluated using PSNR, F-measure,

NRM, and IND evaluation measures. The implementation of

binarization algorithm on the graphics device is promising.

However, proposed method is not so much speed-up due to its

global properties of binarization.

Fast and accurate algorithms are necessary for fast Optical

Character Recognition (OCR) systems to perform operations on

large size document images. To speedup the processing, parallel

implementation of algorithms on Graphics Processing Unit

(GPU) makes it attractive. GPU itself has been shown to be an

excellent hardware device to accelerate computational speed-up

in the development of fast OCR systems.

9. REFERENCES
[1] Fernando, R and Kilgard, M. J. 2003. The Cg tutorial the

definitive guide to programmable real-time graphics.

Addison-Wesley.

[2] Moravanszky, A. 2003. Linear algebra on the GPU, in:

W.F. Engel (Ed.), Shader X 2, Wordware Publishing,

Texas.

[3] Manocha, D. 2003. Interactive geometric & scientific

computations using graphics hardware, SIGGRAPH 2003

Tutorial Course #11.

[4] Moreland, K. and Angel E. 2003. The FFT on a GPU. In

Proceedings of SIGGRAPH Conference on Graphics

Hardware, 112-119.

[5] Mairal, J., Keriven, R. and Chariot, A. 2006. Fast and

efficient dense variational Stereo on GPU. In Proceedings

of International Symposium on 3D Data Processing,

Visualization, and Transmission, 97-704.

[6] Yang, R. and Welch, G. 2002. Fast image segmentation and

smoothing using commodity graphics hardware. Journal of

Graphics Tools, Vol. 17, (4), 91-100.

[7] Fung, J. and Man, S. 2005. OpenVIDIA: Parallel GPU

computer vision. In Proceedings of ACM International

Conference on Multimedia, 849-852.

[8] Jang, H., Park, A. and Jung, K. 2008. Neural network

implementation using CUDA and OpenMP. In Proceeding

of Computing: Techniques and Applications, (DICTA),

IEEE, 155 – 161.

[9] Otsu, N. 1979. A threshold selection method from gray

level histograms. IEEE Trans. on Systems, Man and

Cybernetics, Vol. 9, 62-66.

[10] Yu, B., Jain, A. and Mohiuddin, M. 1997. Address block

location on complex mail Pieces,” In Proceeding of

International Conference of Document Analysis and

Recognition, IEEE, 897-901.

[11] Rosenfeld, A. and Kak, A.C. 1982. Digital picture

processing, second ed., Academic Press, New York.

[12] Kittler J. and Illingworth J. 1985. On threshold selection

using clustering criteria. IEEE Trans. Systems Man

Cybernetics, Vol. 15, 652–655.

[13] Brink, A.D. 1992. Thresholding of digital images using

two-dimensional entropies. Pattern Recognition, Vol. 25,

803–808.

1.54
1.56
1.58

1.6
1.62
1.64
1.66
1.68

1.7

1 2 4 8 16

Image Size (in Megapixels)

Speed-Up

Window
Size

Megapixels Serial Parallel Speed-Up
Speed-Up
Average

7

1 0.0169 0.0106 1.59

1.6x

2 0.0335 0.0209 1.60

4 0.067 0.0403 1.66

8 0.1339 0.0804 1.66

16 0.2679 0.1597 1.67

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

20

[14] Yan, H. 1996. Unified formulation of a class of image

thresholding techniques. Pattern Recognition, Vol. 29,

2025–2032.

[15] Bernsen, J. 1986. Dynamic thresholding of grey-level

images. In Proceeding of International Conference of

Pattern Recognition, 1251-1255.

[16] Niblack, W. 1986. An Introduction to digital image

processing, Prentice-Hall, Englewood Cliffs, NJ, 115–116.

[17] Sauvola, J. and Pietikainen, M. 2000. Adaptive document

image binarization. Pattern Recognition, Vol. 33, 225–236.

[18] Kim, I.K., Jung, D.W. and Park, R.H. 2002. Document

image binarization based on topographic analysis using a

water flow model. Pattern Recognition, Vol. 35, 265–277.

[19] Gatos, B., Pratikakis, I. and Perantonis, S. J. 2006.

Adaptive degraded document image binarization. Pattern

Recognition, Vol. 39, 317–327.

[20] Chang, Y.F., Pai, Y.T. and Ruan, S.J. 2008. An efficient

thresholding algorithm for degraded document images

based on intelligent block detection. In Proceeding of IEEE

International Conference on Systems, Man, and

Cybernetics,667-672.

[21] Valizadeh, M., Komeili, M., Armanfard, N. and Kabir, E.

2009. Degraded document image binarization based on

combination of two complementary algorithms. In

Proceeding of International Conference of Advances in

Computational Tools for Engineering Applications, IEEE,

595-599.

[22] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M.,

Kruger, J., Lefohn, A. E. and Purcell, T. J. 2005. A survey

of general-purpose computation on graphics hardware. In

proceeding of Eurographics, State of the Art Reports, 21–

51.

[23] Larsen, E. S., McAllister, D. 2001. Fast Matrix Multiplies

using Graphics Hardware. In Proceeding of International

Conference for High Performance Computing and

Communications, 159-168.

[24] Trendall C. and Stewart, A. J. 2000. General calculations

using graphics hardware with applications to interactive

caustics. Rendering Techniques 2000: 11th Eurographics

Workshop on Rendering, 287-298.

[25] Li, Wei, Wei, Xiaoming, A. and Kaufman, 2001.

Implementing lattice boltzmann computation on graphics

hardware. In proceeding of the International Conference for

High Performance Computing and Communications.

[26] Mizukami, Y., Koga, K. and Torioka, T. 1994. A

handwritten character recognition system using hierarchical

extraction of displacement. IEICE, J77-D-II(12):2390–

2393.

[27] Kruger, J. and Westermann, R. 2003. Linear operators for

GPU implementation of numerical algorithms. In

Proceedings of SIGGRAPH, San Diego, 908- 916.

[28] Steinkraus, D., Buck, I., and Simard, P. Y. 2005. GPUs for

machine learning algorithms. In proceeding of International

Conference of Document Analysis and Recognition, 1115-

1120.

[29] Mizukami, Y. and Koga, K. 1996. A handwritten character

recognition system using hierarchical displacement

extraction algorithm. In Proceeding of International

Conference of Pattern Recognition, volume 3,160–164.

[30] Ilie, A. Optical character recognition on graphics hardware.

Downloaded from www.cs.unc.edu/~adyilie/IP/Final.pdf

[31] Oh, K.S. and Jung, K. 2004. GPU implementation of neural

networks. Pattern Recognition, Elsevier, 1311-1314.

[32] Jung, K. 2001. Neural Network-based text

localization in color images. Pattern Recognition Letters,

Vol. 22, (4), 1503- 1515.

[33] Singh, B.M., Mittal A. and Ghosh, D. 2011. Parallel

implementation of Devanagari text line and word

segmentation approach on GPU. International Journal of

Computer Applications 24(9):7–14.

[34] NVIDIA CUDA Programming Guide Version 2.0,

available at www.nvidia.com/object/cuda_develop.html.

[35] NVIDIA Corporation: NVIDIA CUDA programming

guide. Jan 2007, available at

http://developer.download.nvidia.com/compute/cuda/2_0/d

ocs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

http://www.nvidia.com/object/cuda_develop.html

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.2, October 2011

21

Image Input Image Output Image

1

2

3

4

Figure 4: Otsu’s output of binarization

