
International Journal of Computer Applications (0975 – 8887)

Volume 32– No.10, October 2011

1

A Survey of High-Level Synthesis Techniques for
Area, Delay and Power Optimization

S.M. Logesh

Department of Electronics and
Communication Engineering
Amrita Vishwa Vidyapeetham

University
Coimbatore, India

 D. S. Harish Ram
Department of Electronics and
Communication Engineering
Amrita Vishwa Vidyapeetham

University
Coimbatore, India

M.C. Bhuvaneswari
Department of Electrical and

Electronics Engineering
PSG College of Technology

Coimbatore, India

ABSTRACT
With increasing complexity of digital signal processing VLSI

circuits in recent decades, design methodologies and tools have

moved to higher abstraction levels. High level Synthesis has

been gaining lot of interest in recent years since the major

design objectives such as area, delay and power of the circuit are

mutually conflicting thereby necessitating trade-offs between

different objectives. The electronic system-level (ESL)

paradigm facilitates exploration, synthesis, and verification that

can handle the complexity of today’s system-on-chip (SoC)

designs. Processor customization and High Level Synthesis have

become necessary paths to efficient ESL design. This paper

presents the survey of high level synthesis approaches and

methodologies for simultaneous area, delay and power

optimization.

Keywords
High level synthesis; Design space exploration; System level

design; Genetic Algorithm; Optimization; Allocation;

Scheduling; Binding; Dataflow graph; Behavioral description

1. INTRODUCTION

 High-level synthesis (HLS) is the process of translating abstract

behavioral description into a hardware implementation at

register transfer level (RTL). The design specification is usually

written as a behavioral description, in a language such as C and

compiled into data flow graphs (DFGs). DFG’s are then mapped

to the functional units that are selected from the resource library

to meet design goals (power, area, and performance).

Automation of the translation from a behavioral level of

abstraction to RTL results in considerable savings in design

cycle time. VLSI designs are multi-objective by nature, since

they have to trade-off several conflicting design objectives such

as chip area, circuit delays, and power dissipation. The shorter

design time using behavioral synthesis allows one to examine

many alternative circuit realizations during the design process,

thus enabling a wider design space exploration for more optimal

designs.

2. PHASES OF HIGH-LEVEL SYNTHESIS

2.1 Allocation
Allocation is a process of allocating resources or Functional

Units (FUs) to execute a particular operation. Allocation defines

the type and the number of hardware resources like FU’s,

registers and multiplexer which are necessary to satisfy the

design constraints. Resources are selected from the RTL

component library. The library must also include component

characteristics (such as area, delay, and power) and its metrics to

be used by other synthesis tasks. For instance, one possible

allocation for the DFG in Fig 1 is three adders and one

multiplier.

Fig. 1 Data Flow Graph (DFG)

2.2 Scheduling

All operations required in the specification model must be

scheduled at time steps or clock cycles. For each operation,

variables must be read from their sources (either Registers or

FUs) and brought to the input of a functional unit that can

execute the operation and the result must be stored in registers.

Depending on the functional component to which the operation

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.10, October 2011

2

Fig. 2 Silicon Compilation through High Level Synthesis Subtasks

is mapped, the operation can be scheduled within one clock

cycle or scheduled over several cycles. Operations can be

scheduled to execute in parallel provided there are no data

dependencies between them and there are sufficient resources

available at the same time. In the DFG in Fig. 1, the node 1 is

scheduled during the first time step. Some nodes have mobility

in that they can have several potential execution instances as in

the case of node 3 which can execute in time step 1 or 2 without

affecting the schedule.

2.3 Binding
Each variable that carries values across cycles must be bound to

a storage unit. In addition, several variables with nonoverlapping

or mutually exclusive lifetimes can be bound to the same storage

units. Storage and functional unit binding also influence

connectivity binding such as a bus or a multiplexer. In the above

allocation, node 1 may be bound to Adder 1, node 2 to Adder 2

and node 3 to Adder 3. The above sub-tasks can be performed in

any order or simultaneously. The result of each sub-task

influences the others. Ideally, high-level synthesis estimates the

connectivity delay and area as early as possible so that later HLS

steps can better optimize the design. An alternative approach is

to specify the complete architecture during allocation so that

initial floor planning results can be used during binding and

scheduling.

2.4 RTL Generation
Once allocation, scheduling and binding decisions are made, the

goal is to generate RTL architecture. All design decisions are

applied and an RTL model of the synthesized design is

generated. Overall flow of silicon compilation through HLS

flow is shown in Fig 2.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.10, October 2011

3

Fig. 3 (a) Data Flow Graph (b) ASAP Schedule (c) ALAP Schedule

3. CLASSIFICATION OF HLS

 TECHNIQUES

Over past decades researchers have come up with various kinds

of solutions to HLS problem. Well known HLS methodologies

and approaches are categorized as shown in Fig 4.

3.1 Constructive Approaches

3.1.1 ASAP and ALAP Algorithm
The “As Soon as Possible” (ASAP) [1] scheduling starts with

the nodes that have no predecessors in the DFG and assigns time

steps in increasing order for the dependent nodes. The successor

node can execute only after its predecessors has executed. ASAP

algorithm gives the fastest schedule possible as shown in Fig

3(b). The “As Late as Possible” (ALAP) algorithm [1] works

exactly as ASAP expect that it starts at the bottom of the DFG

and proceeds upwards as shown in Fig 3(c). ALAP gives the

slowest possible schedule and takes the maximum number of

control steps but does not reduce the number of functional units.

3.1.2 Force Directed Scheduling
The “Force Directed Scheduling” (FDS) [2] is a heuristic

method which tries to reduce the total number of FUs used. The

FDS algorithm achieves this by uniformly distributing the

operations of the same type over the available control steps. The

FDS algorithm does not always produce an optimal solution;

this can be alternated [3] by pruning one control step from its

mobility range and postponing the decision. Hence it is

classified under constructive approaches.

3.1.3 List-Based Scheduling
List based scheduling [4] is a generalization of the ASAP

algorithm with the inclusion of resource constraints. These

maintain a priority list of nodes called ready nodes whose

predecessors have already been scheduled. Scheduling a node in

a control step makes its successor nodes as ready nodes which

could be added in priority list.

3.1.4 Static List Scheduling
This algorithm [5] first creates a single static large list before

scheduling preventing dynamic growth. It uses ASAP and

ALAP to obtain least (LCS) and the greatest possible control

step assignments (GCS) for each operation. All operations are

sorted in ascending order with GCS and descending order with

LCS to form priority list. Operations are scheduled sequentially

with highest priority, when the limit for the number of resources

is reached rest of the operations is deferred to later control steps.

Scheduling mainly depends upon the type of operation. For Ex:

A low priority addition operation can be even scheduled in spite

of high priority multiply operation if adder unit is available and

if its predecessors are already scheduled.

3.1.5 Iterative Transformational Approaches
An iterative transformational approach usually starts with

default schedules and applies semantic preserving

transformations to improve the initial schedules. The Yorktown

Silicon Compiler system described in [6] starts with a

maximally parallel schedule which is then serialized to satisfy

the resource constraints. The CAMAD design system described

in [7] starts with a maximally serial schedule and attempts to

parallelize it to reduce the schedule length. These systems

attempt to escape local minima in the design space by

incorporating suitable hill-climbing heuristics. However, the

quality of solutions found by transformational techniques

depends, to a large extent, on the variety and effectiveness of the

transformations used, as well as the heuristics used to select

between applicable transformations.

3.2 Probabilistic Techniques

3.2.1 Simulated Annealing
Schedules are represented as a two dimensional table of control

steps [8] versus available FUs, while scheduling is viewed as

placement problem. Beginning with an initial schedule it

iteratively modifies the table by displacing an entry and

(a) (b) (c)

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.10, October 2011

4

Fig. 4 Classification of High-Level Synthesis Methodologies

determining the cost of the displacement. Modification is

accepted with a probability that resulting schedule is not better,

so that it is possible to search solution space by climbing out of

local minima in search of a global optimal solution.

3.2.2 Simulated Evolution
Simulated evolution approach was applied by Ly and

Mowchenko [9] for simultaneous scheduling and resource

allocation in high-level synthesis. Though these probabilistic

methods produce good quality solutions, their run times are

often large and increase rapidly with the size of the problem.

3.3 Mathematical Approaches

3.3.1 Integer Linear Programming
“Integer Liner Programming” (ILP) [10] tries to find an optimal

schedule using a branch-and-bound search algorithm. It also

uses backtracking mechanisms to change the decisions taken

earlier if necessary. Complexity increases rapidly with the

number of control steps which increases the execution time

rapidly. Thus in practice the ILP approach can be applied to very

small problems.

3.3.2 Game Theory
A game-theoretic approach for power optimization of a

scheduled DFG is described in [11]. The functional units are

modeled as bidders for the operations in the DFG with Power

Consumption as the cost. The algorithm does not scale well for

larger number of functional units since the complexity increases

exponentially as the number of players (bidders).

3.4 Evolutionary Approaches
Genetic Algorithms (GAs) are potentially good candidates when

large design space is to be explored since their behavior is

similar to that of a designer. They produce alternative designs of

different area, power and delay objectives. The architecture

which meets the desired requirements can be obtained from the

design space. Thus GAs provides a fully automated solution for

HLS problems providing better performance and faster

exploration. Several HLS system using GAs have been

proposed, some of the techniques are as follows;

3.4.1 Integrated Genetic Algorithm Approach to

 HLS
An Integrated approach to the scheduling, allocation and binding

problems based on hierarchical application of two genetic

algorithms was used in [19]. The first genetic algorithm (GA1)

performs allocation from library and tries not to exceed the area

constraints specified by user. The second genetic algorithm

(GA2) performs scheduling and binding using the allocation

provided by GA1. If a schedule which satisfies the timing

constraint is found the process terminates, otherwise GA2

returns the length of the best schedule to GA1 and whole

concurrent process runs till a schedule meeting user defined area

and timing constraints are met. Chromosome representations are

through Priority-based encoding. Here a single functional unit

capable of performing all operations in the DFG in a single

control step is assumed. Partially-Mapped Crossover (PMX)

proposed by Goldberg has been used as crossover operator and

“swap” mutation operator is used as mutation operator.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.10, October 2011

5

3.4.2 Problem- Space Genetic Algorithm Approach
Problem-space GA (PSGA) [12] was proposed for design space

exploration of datapaths. A problem-specific chromosome

representation was used, in each operation is assigned a priority

known as work remaining. This assignment is based on the

length of the longest path from the node to the output. Each

chromosome is mapped to a valid schedule using a problem-

specific heuristic, called the work remaining heuristic. This

heuristic is used to decode each chromosome into a schedule and

a module allocation. Simple crossover and mutation operators

are used to generate valid chromosomes. The main disadvantage

of this technique is that the number of unique chromosomes that

map to the same solution is large due to their chromosome

representation. This makes the design space exploration vast

even for medium sized problems.

3.4.3 GA approach to Allocation and Binding
A GA approach to allocation and binding for the high-level

synthesis of data paths (GABIND) is proposed in [13]. An

unconventional crossover mechanism which relies on the force

of the directed datapath binding completion algorithm was used.

The main feature of the proposed system was the use of bus-

based interconnection scheme and the use of multiport

memories. The system does not handle scheduling of operations

as a scheduled data-flow graph is assumed as its input

3.4.4 GA based Simultaneous Scheduling and

 Storage Optimization
A GA-based high-level synthesis system using binary

encoding scheme for chromosomes was proposed in [14]. This

mainly opposes problem-specific representations of

chromosome. Binary encoding schemes were used to store

information on the control step assigned to each operation in the

data-flow graph, and the functional module assigned to the

operation. The main and inherent disadvantage of using a binary

encoding scheme in chromosome representation evidently

exponentially increases the size of the chromosome with the size

of the problem. This increases the size of the design search

space which leads to large run times for real problems.

3.4.5 GA in SoC level and Microcode level
Recently GAs have been applied at SoC level [15] and at

microcode level of instruction set processors [16]. In these GA

approaches populations of solutions are iteratively improved

through the application of genetic operators to the individuals.

These systems mainly differ in their chromosome

representations and the genetic operators used to search the

solution space.

3.4.6 GA for Design Space Exploration
Recently, GAs has been applied to design space exploration

using a priority-based approach [17]. Multi-chromosome

encoding scheme is used to represent the chromosome. In this

scheme a chromosome has a node scheduling priority field and a

module allocation field. The structure of the chromosome is

such that simultaneous scheduling of a DFG and FU allocation

can be carried out. The DFG nodes are scheduled using a list

scheduling heuristic. The nodes are taken up for scheduling in

the order in which they appear in the chromosome known as

node priority field. The module constraint is described in

resource allocation field where the number of FU (adders and

multipliers etc) is specified. Resource binding and the

interconnection elements are not taken into account in an

accurate way. Moreover, the main disadvantage of this method

is that they work with just one objective or with linear

combination of weighted objectives. The GA uses a weighted

cost function incorporating both area and delay. But the

weighted sum approach suffers from the drawback that in a

sufficiently nonlinear problem, it is likely that the optimal

solutions resulting from a uniformly spaced set of weight

vectors may not result in a uniformly spaced set of Pareto-

optimal solutions.

3.4.7 Multi-Objective GA for Design Space

 Exploration
Ferrandi et al [18] have proposed an approach based on

Multi-objective GA using the algorithm NSGA II. The authors

have used two different encoding schemes. The priority based

scheme arranges nodes in the DFG in the order in which they

have to be scheduled by a list scheduler. Whereas the binding

based scheme incorporates binding information pertaining to

each DFG node. Use of Non Dominated Sorting Genetic

algorithm II ensures the solutions to be in Pareto optimal front

and uniformly spaced solutions in search space. Area and

performance are estimated using a model derived from actual

evaluated solutions by applying regressive techniques. Power

was not included in the fitness evaluation.

4. FUTURE DIRECTIONS
As seen there is growing need for raising the level of abstraction

in hardware design to simplify the design process. Many HLS

approaches have been proposed to solve this problem. Most of

the approaches have been surveyed and presented in this paper.

Combining the strengths of genetic algorithms and high-level

synthesis approaches have proved to produce better results and

able to explore the design space efficiently for better

architectures. As VLSI objectives like area, delay and power are

mutually conflicting in nature, while optimizing one objective

the tradeoff with other objective should be taken into account.

Thus efficient Multi-objective algorithms need to be developed

to address these issues.

5. REFERENCES
[1] De Micheli, Synthesis and Optimization of Digital Circuits.

New York: McGraw-Hill, 1994.

[2] Pierre G. Paulin and John P. Knight, “Force Directed

Scheduling for the behavioral synthesis of ASIC’s, ”IEEE

Trans. Computer Aided Design, Vol.8, pp 661-679, June

1989.

[3] W.F.J. Verhaegh, E.H.L Aarts, J.H.M. Korst and P.E.R

Lippens, “Improved Force Directed Scheduling,” Proc. Of

European Design Automation Conf., pp.430-435, 1991.

[4] S. Davidson et. al., “Some experiments in local microcode

compaction for horizontal machines,” IEEE Trans. On

Computer, pp. 460-477, July 1981.

[5] R. Jain, A. Mujumdar, A. Sharma and H. Wang, “Emprical

evaluation of some high-level synthesis scheduling

heuristics,” Proc. of 28th DAC, pp. 210-215, 1991.

International Journal of Computer Applications (0975 – 8887)

Volume 32– No.10, October 2011

6

[6] R. K. Brayton, R. Camposano, G. De Micheli, R. Otten,

and J. van Eijndhoven, “The Yorktown silicon compiler

system,” in Silicon Compilation, D. D. Gajski, Ed.

Reading, MA: Addison-Wesley, 1988, pp. 204–310.

[7] Z. Peng, “Synthesis of VLSI systems with the CAMAD

design aid,” in Proc. 23rd ACM/IEEE Design Automation

Conf., 1986, pp. 278-284.

[8] S. Devadas and A.R. Newton, “Algorithm for allocation in

datapath synthesis,” IEEE Trans. on CAD of Interg. Cir.

And Systems, Vol. 8, pp. 768-781, July 1989.

[9] T. A. Ly and J. T. Mowchenko, “Applying simulated

evolution to high level synthesis,” IEEE Trans. Comput.-

Aided Des., vol. 12, no. 2, pp. 389-409, Feb. 1993.

[10] J.Lee, Y.Hsu, and Y.Lin, “A new Integer Linear

Programming Formulation for the Scheduling Problem in

Data-Path Synthesis,” Proc of the Int. conf. on Computer-

Aided Design, pp. 20-23, 1989.

[11] Ashok. K. Murugavel and Nagarajan Ranganathan, “A

Game Theoretic Approach For Power Optimization During

Behavioral Synthesis,” IEEE Transactions on VLSI, Vol

11, No. 6, Dec 2003.

[12] M. K. Dhodhi, F. H. Hielscher, R. H. Storer, and J.

Bhasker, “Datapath synthesis using a problem-space

genetic algorithm,” in IEEE Trans, Comput.-Aided Des.,

vol. 14, 1995, pp.934-944.

[13] C. Mandal, P. P. Chakrabarti, and S. Ghose, “GABIND: A

GA approach to allocation and binding for the high-level

synthesis of data paths,” IEEE Trans. Very Large-Scale

Integrated Circuits, vol. 8, no. 5, pp. 747-750, Oct. 2000.

[14] E. Torbey and J. Knight, “Performing scheduling and

storage optimization simultaneously using genetic

algorithms,” in Proc. IEEE Midwest Symp. Circuits

Systems, 1998, pp. 284–287.

[15] G. Ascia, V. Catania, and M. Palesi, “A GA-based design

space exploration framework for parameterized system-on-

a-chip platform, “IEEE Trans. Evol. Comput., vol. 8, no. 4,

pp. 329–346, Aug. 2004

[16] D. Jackson, “Evolution of processor microcode,” IEEE

Trans. Evol Comput., vol. 9, no. 1, pp. 44–54, Feb. 2005.

[17] V. Krishnan and S. Katkoori, “A genetic algorithm for the

design space exploration of datapaths during high-level

synthesis,” IEEE Trans. Evolutionary Computation, 10(3):

213–229, 2006.

[18] Fabrizio Ferrandi, Pier Luca Lanzi, Daniele Loiacono,

Christian Pilato, Donatella Sciuto, “A Multi-Objective

Genetic Algorithm for Design Space Exploration in High-

Level Synthesis,” IEEE Computer Society Annual

Symposium on VLSI, pp 417-422, 2008.

[19] G. Grewal, M.O’Cleirigh and M.Wineberg, “An

Evolutionary Approach to Behavioral-Level Synthesis”,

Proc. of Evolutionary Computation, Vol 1, 264-272, 2003.

