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ABSTRACT 
With increasing complexity of digital signal processing VLSI 

circuits in recent decades, design methodologies and tools have 

moved to higher abstraction levels. High level Synthesis has 

been gaining lot of interest in recent years since the major 

design objectives such as area, delay and power of the circuit are 

mutually conflicting thereby necessitating trade-offs between 

different objectives. The electronic system-level (ESL) 

paradigm facilitates exploration, synthesis, and verification that 

can handle the complexity of today’s system-on-chip (SoC) 

designs. Processor customization and High Level Synthesis have 

become necessary paths to efficient ESL design. This paper 

presents the survey of high level synthesis approaches and 

methodologies for simultaneous area, delay and power 

optimization. 
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1. INTRODUCTION 

 High-level synthesis (HLS) is the process of translating abstract 

behavioral description into a hardware implementation at 

register transfer level (RTL). The design specification is usually 

written as a behavioral description, in a language such as C and 

compiled into data flow graphs (DFGs). DFG’s are then mapped 

to the functional units that are selected from the resource library 

to meet design goals (power, area, and performance). 

Automation of the translation from a behavioral level of 

abstraction to RTL results in considerable savings in design 

cycle time. VLSI designs are multi-objective by nature, since 

they have to trade-off several conflicting design objectives such 

as chip area, circuit delays, and power dissipation. The shorter 

design time using behavioral synthesis allows one to examine 

many alternative circuit realizations during the design process, 

thus enabling a wider design space exploration for more optimal 

designs. 

2. PHASES OF HIGH-LEVEL SYNTHESIS 

2.1 Allocation 
Allocation is a process of allocating resources or Functional 

Units (FUs) to execute a particular operation. Allocation defines 

the type and the number of hardware resources like FU’s, 

registers and multiplexer which are necessary to satisfy the 

design constraints. Resources are selected from the RTL 

component library. The library must also include component 

characteristics (such as area, delay, and power) and its metrics to 

be used by other synthesis tasks. For instance, one possible 

allocation for the DFG in Fig 1 is three adders and one 

multiplier.  

 

Fig. 1 Data Flow Graph (DFG) 

2.2 Scheduling 

All operations required in the specification model must be 

scheduled at time steps or clock cycles. For each operation, 

variables must be read from their sources (either Registers or 

FUs) and brought to the input of a functional unit that can 

execute the operation and the result must be stored in registers. 

Depending on the functional component to which the operation  
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Fig. 2 Silicon Compilation through High Level Synthesis Subtasks 

 

is mapped, the operation can be scheduled within one clock 

cycle or scheduled over several cycles. Operations can be 

scheduled to execute in parallel provided there are no data 

dependencies between them and there are sufficient resources 

available at the same time. In the DFG in Fig. 1, the node 1 is 

scheduled during the first time step. Some nodes have mobility 

in that they can have several potential execution instances as in 

the case of node 3 which can execute in time step 1 or 2 without 

affecting the schedule. 

2.3 Binding 
Each variable that carries values across cycles must be bound to 

a storage unit. In addition, several variables with nonoverlapping 

or mutually exclusive lifetimes can be bound to the same storage 

units. Storage and functional unit binding also influence 

connectivity binding such as a bus or a multiplexer. In the above 

allocation, node 1 may be bound to Adder 1, node 2 to Adder 2 

and node 3 to Adder 3. The above sub-tasks can be performed in 

any order or simultaneously. The result of each sub-task 

influences the others. Ideally, high-level synthesis estimates the 

connectivity delay and area as early as possible so that later HLS 

steps can better optimize the design. An alternative approach is 

to specify the complete architecture during allocation so that 

initial floor planning results can be used during binding and 

scheduling. 

 

2.4 RTL Generation 
Once allocation, scheduling and binding decisions are made, the 

goal is to generate RTL architecture. All design decisions are 

applied and an RTL model of the synthesized design is 

generated. Overall flow of silicon compilation through HLS 

flow is shown in Fig 2. 
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Fig. 3 (a) Data Flow Graph (b) ASAP Schedule (c) ALAP Schedule 

 

3. CLASSIFICATION OF HLS      

      TECHNIQUES 

Over past decades researchers have come up with various kinds 

of solutions to HLS problem. Well known HLS methodologies 

and approaches are categorized as shown in Fig 4.   

3.1 Constructive Approaches 

3.1.1 ASAP and ALAP Algorithm 
The “As Soon as Possible” (ASAP) [1] scheduling starts with 

the nodes that have no predecessors in the DFG and assigns time 

steps in increasing order for the dependent nodes. The successor 

node can execute only after its predecessors has executed. ASAP 

algorithm gives the fastest schedule possible as shown in Fig 

3(b). The “As Late as Possible” (ALAP) algorithm [1] works 

exactly as ASAP expect that it starts at the bottom of the DFG 

and proceeds upwards as shown in Fig 3(c). ALAP gives the 

slowest possible schedule and takes the maximum number of 

control steps but does not reduce the number of functional units. 

3.1.2 Force Directed Scheduling 
The “Force Directed Scheduling” (FDS) [2] is a heuristic 

method which tries to reduce the total number of FUs used. The 

FDS algorithm achieves this by uniformly distributing the 

operations of the same type over the available control steps. The 

FDS algorithm does not always produce an optimal solution; 

this can be alternated [3] by pruning one control step from its 

mobility range and postponing the decision. Hence it is 

classified under constructive approaches. 

3.1.3 List-Based Scheduling 
List based scheduling [4] is a generalization of the ASAP 

algorithm with the inclusion of resource constraints. These 

maintain a priority list of nodes called ready nodes whose 

predecessors have already been scheduled.  Scheduling a node in 

a control step makes its successor nodes as ready nodes which 

could be added in priority list. 

 

3.1.4 Static List Scheduling 
This algorithm [5] first creates a single static large list before 

scheduling preventing dynamic growth. It uses ASAP and 

ALAP to obtain least (LCS) and the greatest possible control 

step assignments (GCS) for each operation. All operations are 

sorted in ascending order with GCS and descending order with 

LCS to form priority list. Operations are scheduled sequentially 

with highest priority, when the limit for the number of resources 

is reached rest of the operations is deferred to later control steps. 

Scheduling mainly depends upon the type of operation. For Ex: 

A low priority addition operation can be even scheduled in spite 

of high priority multiply operation if adder unit is available and 

if its predecessors are already scheduled. 

3.1.5 Iterative Transformational Approaches 
An iterative transformational approach usually starts with 

default schedules and applies semantic preserving 

transformations to improve the initial schedules. The Yorktown 

Silicon Compiler system described in [6] starts with a 

maximally parallel schedule which is then serialized to satisfy 

the resource constraints. The CAMAD design system described 

in [7] starts with a maximally serial schedule and attempts to 

parallelize it to reduce the schedule length. These systems 

attempt to escape local minima in the design space by 

incorporating suitable hill-climbing heuristics. However, the 

quality of solutions found by transformational techniques 

depends, to a large extent, on the variety and effectiveness of the 

transformations used, as well as the heuristics used to select 

between applicable transformations. 

3.2 Probabilistic Techniques  

3.2.1 Simulated Annealing 
Schedules are represented as a two dimensional table of control 

steps [8] versus available FUs, while scheduling is viewed as 

placement problem. Beginning with an initial schedule it 

iteratively modifies the table by displacing an entry and   

 

(a)                                                                      (b)                                                                                           (c)      
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Fig. 4 Classification of High-Level Synthesis Methodologies

determining the cost of the displacement. Modification is 

accepted with a probability that resulting schedule is not better, 

so that it is possible to search solution space by climbing out of 

local minima in search of a global optimal solution. 

3.2.2 Simulated Evolution 
Simulated evolution approach was applied by Ly and 

Mowchenko [9] for simultaneous scheduling and resource 

allocation in high-level synthesis. Though these probabilistic 

methods produce good quality solutions, their run times are 

often large and increase rapidly with the size of the problem. 

3.3 Mathematical Approaches 

3.3.1 Integer Linear Programming 
“Integer Liner Programming” (ILP) [10] tries to find an optimal 

schedule using a branch-and-bound search algorithm. It also 

uses backtracking mechanisms to change the decisions taken 

earlier if necessary. Complexity increases rapidly with the 

number of control steps which increases the execution time 

rapidly. Thus in practice the ILP approach can be applied to very 

small problems.  

3.3.2 Game Theory 
A game-theoretic approach for power optimization of a 

scheduled DFG is described in [11]. The functional units are 

modeled as bidders for the operations in the DFG with Power 

Consumption as the cost. The algorithm does not scale well for 

larger number of functional units since the complexity increases 

exponentially as the number of players (bidders). 

3.4 Evolutionary Approaches 
Genetic Algorithms (GAs) are potentially good candidates when 

large design space is to be explored since their behavior is 

similar to that of a designer. They produce alternative designs of 

different area, power and delay objectives. The architecture 

which meets the desired requirements can be obtained from the 

design space. Thus GAs provides a fully automated solution for 

HLS problems providing better performance and faster 

exploration. Several HLS system using GAs have been 

proposed, some of the techniques are as follows; 

3.4.1  Integrated Genetic Algorithm Approach to   

             HLS  
An Integrated approach to the scheduling, allocation and binding 

problems based on hierarchical application of two genetic 

algorithms was used in [19]. The first genetic algorithm (GA1) 

performs allocation from library and tries not to exceed the area 

constraints specified by user.  The second genetic algorithm 

(GA2) performs scheduling and binding using the allocation 

provided by GA1. If a schedule which satisfies the timing 

constraint is found the process terminates, otherwise GA2 

returns the length of the best schedule to GA1 and whole 

concurrent process runs till a schedule meeting user defined area 

and timing constraints are met. Chromosome representations are 

through Priority-based encoding. Here a single functional unit 

capable of performing all operations in the DFG in a single 

control step is assumed. Partially-Mapped Crossover (PMX) 

proposed by Goldberg has been used as crossover operator and 

“swap” mutation operator is used as mutation operator. 
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3.4.2 Problem- Space Genetic Algorithm Approach  
Problem-space GA (PSGA) [12] was proposed for design space 

exploration of datapaths. A problem-specific chromosome 

representation was used, in each operation is assigned a priority 

known as work remaining. This assignment is based on the 

length of the longest path from the node to the output. Each 

chromosome is mapped to a valid schedule using a problem-

specific heuristic, called the work remaining heuristic. This 

heuristic is used to decode each chromosome into a schedule and 

a module allocation. Simple crossover and mutation operators 

are used to generate valid chromosomes. The main disadvantage 

of this technique is that the number of unique chromosomes that 

map to the same solution is large due to their chromosome 

representation. This makes the design space exploration vast 

even for medium sized problems.  

3.4.3 GA approach to Allocation and Binding 
A GA approach to allocation and binding for the high-level 

synthesis of data paths (GABIND) is proposed in [13].  An 

unconventional crossover mechanism which relies on the force 

of the directed datapath binding completion algorithm was used. 

The main feature of the proposed system was the use of bus-

based interconnection scheme and the use of multiport 

memories. The system does not handle scheduling of operations 

as a scheduled data-flow graph is assumed as its input 

3.4.4 GA based Simultaneous Scheduling and     

          Storage Optimization 
A GA-based high-level synthesis system using binary 

encoding scheme for chromosomes was proposed in [14]. This 

mainly opposes problem-specific representations of 

chromosome. Binary encoding schemes were used to store 

information on the control step assigned to each operation in the 

data-flow graph, and the functional module assigned to the 

operation. The main and inherent disadvantage of using a binary 

encoding scheme in chromosome representation evidently 

exponentially increases the size of the chromosome with the size 

of the problem. This increases the size of the design search 

space which leads to large run times for real problems.   

3.4.5 GA in SoC level and Microcode level   
Recently GAs have been applied at SoC level [15] and at 

microcode level of instruction set processors [16]. In these GA 

approaches populations of solutions are iteratively improved 

through the application of genetic operators to the individuals. 

These systems mainly differ in their chromosome 

representations and the genetic operators used to search the 

solution space. 

3.4.6 GA for Design Space Exploration 
Recently, GAs has been applied to design space exploration 

using a priority-based approach [17]. Multi-chromosome 

encoding scheme is used to represent the chromosome. In this 

scheme a chromosome has a node scheduling priority field and a 

module allocation field. The structure of the chromosome is 

such that simultaneous scheduling of a DFG and FU allocation 

can be carried out. The DFG nodes are scheduled using a list 

scheduling heuristic. The nodes are taken up for scheduling in 

the order in which they appear in the chromosome known as 

node priority field. The module constraint is described in 

resource allocation field where the number of FU (adders and 

multipliers etc) is specified. Resource binding and the 

interconnection elements are not taken into account in an 

accurate way. Moreover, the main disadvantage of this method 

is that they work with just one objective or with linear 

combination of weighted objectives. The GA uses a weighted 

cost function incorporating both area and delay. But the 

weighted sum approach suffers from the drawback that in a 

sufficiently nonlinear problem, it is likely that the optimal 

solutions resulting from a uniformly spaced set of weight 

vectors may not result in a uniformly spaced set of Pareto-

optimal solutions. 

3.4.7 Multi-Objective GA for Design Space   

          Exploration 
Ferrandi et al [18] have proposed an approach based on 

Multi-objective GA using the algorithm NSGA II. The authors 

have used two different encoding schemes. The priority based 

scheme arranges nodes in the DFG in the order in which they 

have to be scheduled by a list scheduler. Whereas the binding 

based scheme incorporates binding information pertaining to 

each DFG node. Use of Non Dominated Sorting Genetic 

algorithm II ensures the solutions to be in Pareto optimal front 

and uniformly spaced solutions in search space. Area and 

performance are estimated using a model derived from actual 

evaluated solutions by applying regressive techniques. Power 

was not included in the fitness evaluation.  

4. FUTURE DIRECTIONS 
As seen there is growing need for raising the level of abstraction 

in hardware design to simplify the design process. Many HLS 

approaches have been proposed to solve this problem. Most of 

the approaches have been surveyed and presented in this paper. 

Combining the strengths of genetic algorithms and high-level 

synthesis approaches have proved to produce better results and 

able to explore the design space efficiently for better 

architectures. As VLSI objectives like area, delay and power are 

mutually conflicting in nature, while optimizing one objective 

the tradeoff with other objective should be taken into account. 

Thus efficient Multi-objective algorithms need to be developed 

to address these issues.    
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